Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Silene latifolia subsp. alba
(white campion)



Silene latifolia subsp. alba (white campion)


  • Last modified
  • 27 September 2018
  • Datasheet Type(s)
  • Invasive Species
  • Host Plant
  • Preferred Scientific Name
  • Silene latifolia subsp. alba
  • Preferred Common Name
  • white campion
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • S. latifolia subsp. alba is a biennial or short-lived perennial herb growing to 1 m in height, producing white, 5-petalled, showy flowers. Native to Eurasia, it has been introduced to East Asia, Austra...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Silene latifolia subsp. alba, (white campion); close view of single flower. USA.
CaptionSilene latifolia subsp. alba, (white campion); close view of single flower. USA.
Copyright©David Cappaert/ - CC BY-NC 3.0 US
Silene latifolia subsp. alba, (white campion); close view of single flower. USA.
FlowerSilene latifolia subsp. alba, (white campion); close view of single flower. USA.©David Cappaert/ - CC BY-NC 3.0 US


Top of page

Preferred Scientific Name

  • Silene latifolia subsp. alba (Mill.) Greuter & Burdet

Preferred Common Name

  • white campion

Other Scientific Names

  • Lychnis alba Mill.
  • Melandrium album (Mill.) Garcke
  • Melandrium vespertinum Fr.
  • Silene alba (Mill.) E.H.L. Krause
  • Silene pratensis Godr.

International Common Names

  • English: bladder campion; campion (white); evening campion; white cockle
  • Spanish: colleja blanca
  • French: compagnon blanc; lychnis dioique; melandrie blanche
  • Chinese: bai jian qiu luo
  • Portuguese: assobios

Local Common Names

  • Germany: weisse Lichtnelke; weisse Nachtnelke; weisse Waldnelke
  • Italy: boccon di pecora; gittaione bianco; melandrio bianco; orecchiella; orecchietta
  • Japan: hirohanomantema; Matsuyoisenno
  • Netherlands: avondkoekoeksbloem
  • Poland: bniec bialy; lepnica biala
  • Sweden: vitblaera

EPPO code

  • MELAL (Silene latifolia subsp. alba)

Summary of Invasiveness

Top of page

S. latifolia subsp. alba is a biennial or short-lived perennial herb growing to 1 m in height, producing white, 5-petalled, showy flowers. Native to Eurasia, it has been introduced to East Asia, Australasia, and North and South America. In some introduced areas it has become a noxious invasive weed of hay fields and pastures. In North America it is a seed contaminant of lucerne (alfalfa), clover, grass and small grain seed crops. In western North America it is displacing the native and threatened Silene spaldingii.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Caryophyllales
  •                         Family: Caryophyllaceae
  •                             Genus: Silene
  •                                 Species: Silene latifolia subsp. alba

Notes on Taxonomy and Nomenclature

Top of page

The generic name Silene originally given by Linnaeus is thought to derive from the name of the Greek woodland god Selinus who was often depicted drunk and covered in a sticky foam from his drinking (Loudon, 1840); the name therefore alludes to the frothy foam secreted by female flowers of S. dioica (red campion) for capturing pollen. The specific epithet latifolia means wide-leaved, as leaves of S. latifolia subsp. alba are generally wider than those of the closely related S. dioica (First Nature, 2015). The subspecific epithet alba refers to the white colour of the flowers.

The taxonomy of this species is very confused. Most current botanists accept the name Silene latifolia subsp. alba, but in the literature a wide variety of other names can be found, some of them very similar to the names of similar species. Older taxonomic treatments place S. latifolia subsp. alba in the genus Lychnis, which differs from Silene in very small structural details of the flowers; however, Robinson and Fernald (1908) record both L. alba and S. latifolia, while other botanists record this species as S. alba. The differences between taxa were deemed so minor that taxonomists decided to disband Lychnis, absorbing its members into Silene (Flora Pittsburghensis, 2015). S. latifolia subsp. alba was validly published in 1982 in Willdenowia 12:189 (Greuter and Raus, 1982).

The common name 'white campion' is thought to be related to the word 'champion', as the flowers were used in the garlands used to crown the victors in ancient games.


Top of page

S. latifolia subsp. alba is a biennial or short-lived perennial herb growing to 1 m in height. It has a tap root system which spreads laterally as the plant matures. Stems have hairs on the lower section that become glandular nearer the flower. Leaves are egg-shaped, and lower leaves are up to 10 cm long, reducing in size upward. Stem leaves are opposite. Inflorescences comprise unisexual flowers (plants are dioecious, i.e., either male or female) which are rather showy, evening blooming and scented; there are several to many in open, spreading, leafy-bracted clusters. Petals 5, white, tips wide, deeply notched into 2 lobes, 2 appendages above each petal in the flower centre, dividing into 2 lobes. Sepals 5, united, forming a downy, sticky tube 15-20 mm long. The calyx of the male flower has 10 veins; the female’s 20 veins are longer, and inflate with ripening. Capsules are egg-shaped, to 20 mm long, with 10 teeth. Seeds are about 1.5 mm long, dark bluish-brown, and prominently warty-pimply in concentric rows (Alberta Weed Monitoring Network, 2014).


Top of page

The native range of S. latifolia subsp. alba encompasses most of Europe, from Scandinavia and the UK in the north, to the Mediterranean and western North Africa (Morocco, Algeria), then east to West Asia and through Russia as far as its Far Eastern provinces. The species has been introduced to East Asia (China, Japan), Australia, New Zealand and North America, and there are reports from South America (GBIF, 2015; USDA-ARS, 2015). In Canada it is reported from every southern Canadian province from British Columbia to Newfoundland. It is listed as a noxious weed in Alberta and as a class C noxious weed in Washington State, USA (Washington State Noxious Weed Control Board, 2010; Center for Invasive Species Management, 2014). In the USA it is found in most states, particularly in those of the north-central and north-eastern areas (USDA-ARS, 2015; USDA-NRCS, 2015).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


ChinaPresentPresent based on regional distribution.
-LiaoningPresentIntroducedUSDA-ARS, 2015
IranPresentNativeUSDA-ARS, 2015
IraqPresentNativeUSDA-ARS, 2015
JapanPresentIntroducedUSDA-ARS, 2015
LebanonPresentNativeUSDA-ARS, 2015
SyriaPresentNativeUSDA-ARS, 2015
TurkeyPresentNativeGBIF, 2015


AlgeriaPresentNativeUSDA-ARS, 2015
MoroccoPresentNativeUSDA-ARS, 2015

North America

CanadaPresentIntroducedUSDA-ARS, 2015
-AlbertaPresentIntroduced Invasive Alberta Weed Monitoring Network, 2014
-British ColumbiaPresentIntroducedAlberta Weed Monitoring Network, 2014
-ManitobaPresentIntroducedGBIF, 2015
-New BrunswickPresentIntroducedGBIF, 2015
-Newfoundland and LabradorPresentIntroducedAlberta Weed Monitoring Network, 2014
-Nova ScotiaPresentIntroducedGBIF, 2015
-OntarioPresentIntroduced1875Alberta Weed Monitoring Network, 2014
-Prince Edward IslandPresentIntroducedGBIF, 2015
-QuebecPresentIntroducedGBIF, 2015
-SaskatchewanPresentIntroducedGBIF, 2015
GreenlandPresentIntroducedUSDA-ARS, 2015
Saint Pierre and MiquelonPresentIntroducedGBIF, 2015
USAPresentIntroducedUSDA-ARS, 2015
-AlaskaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-ArizonaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-ArkansasPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-CaliforniaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-ColoradoPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-ConnecticutPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-DelawarePresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-District of ColumbiaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-GeorgiaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-IdahoPresentIntroducedUS Fish and Wildlife Service, 2001
-IllinoisPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-IndianaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-IowaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-KansasPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-KentuckyPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-MainePresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-MarylandPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-MassachusettsPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-MichiganPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-MinnesotaPresentIntroduced Invasive Strand and Wyse, 1982
-MissouriPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-MontanaPresentIntroduced Invasive US Fish and Wildlife Service, 2001
-NebraskaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-New HampshirePresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-New JerseyPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-New MexicoPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-New YorkPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-North CarolinaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-North DakotaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-OhioPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-OregonPresentIntroduced Invasive US Fish and Wildlife Service, 2001
-PennsylvaniaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-Rhode IslandPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-South CarolinaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-South DakotaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-TennesseePresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-UtahPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-VermontPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-VirginiaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-WashingtonPresentIntroduced Invasive US Fish and Wildlife Service, 2001; Washington State Noxious Weed Control Board, 2010
-West VirginiaPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-WisconsinPresentIntroducedGBIF, 2015; USDA-NRCS, 2015
-WyomingPresentIntroducedGBIF, 2015; USDA-NRCS, 2015

Central America and Caribbean

HaitiPresentIntroducedGBIF, 2015

South America

ArgentinaPresentIntroducedUSDA-ARS, 2015
BrazilPresentIntroducedGBIF, 2015


AlbaniaPresentNativeUSDA-ARS, 2015
AustriaPresentNativeUSDA-ARS, 2015
BelarusPresentNativeUSDA-ARS, 2015
BelgiumPresentNativeUSDA-ARS, 2015
BulgariaPresentNativeUSDA-ARS, 2015
CroatiaPresentNativeUSDA-ARS, 2015
EstoniaPresentNativeUSDA-ARS, 2015
FinlandPresentNativeUSDA-ARS, 2015
FrancePresentNativeUSDA-ARS, 2015
GermanyPresentNativeUSDA-ARS, 2015
GreecePresentNativeUSDA-ARS, 2015
HungaryPresentNativeUSDA-ARS, 2015
ItalyPresentNativeUSDA-ARS, 2015
LatviaPresentNativeUSDA-ARS, 2015
LithuaniaPresentNativeUSDA-ARS, 2015
NetherlandsPresentNativeUSDA-ARS, 2015
NorwayPresentNativeUSDA-ARS, 2015
PolandPresentNativeUSDA-ARS, 2015
PortugalPresentNativeUSDA-ARS, 2015
-AzoresPresentNativeGBIF, 2015
RomaniaPresentNativeUSDA-ARS, 2015
Russian FederationPresentPresent based on regional distribution.
-Central RussiaPresentNativeUSDA-ARS, 2015
-Eastern SiberiaPresentNativeUSDA-ARS, 2015
-Russian Far EastPresentNativeUSDA-ARS, 2015
-Southern RussiaPresentNativeUSDA-ARS, 2015
-Western SiberiaPresentNativeUSDA-ARS, 2015
SloveniaPresentNativeUSDA-ARS, 2015
SpainPresentNativeUSDA-ARS, 2015
SwedenPresentNativeUSDA-ARS, 2015
SwitzerlandPresentNativeUSDA-ARS, 2015
UKPresentNativeUSDA-ARS, 2015
UkrainePresentNativeUSDA-ARS, 2015


AustraliaPresentIntroducedUSDA-ARS, 2015
-New South WalesPresentIntroducedGBIF, 2015
-South AustraliaPresentIntroducedGBIF, 2015
-TasmaniaPresentIntroducedGBIF, 2015
-VictoriaPresentIntroducedGBIF, 2015
New ZealandPresentIntroducedUSDA-ARS, 2015

History of Introduction and Spread

Top of page

S. latifolia subsp. alba was introduced multiple times from western and eastern Europe into western and eastern North America (Keller et al., 2012) from about 200 years ago, possibly as a component of ship ballast, which at the time largely comprised sand, stone and soil. It was first reported in Ontario, Canada, in 1875 (Alberta Agriculture and Forestry, 2015). Blair and Wolfe (2004) found that the successful and rapid invasion of North America by the species was due to natural selection favouring individuals with earlier germination, faster growth, greater flower production, and higher survival rates due to release from natural enemies.


Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
Canada USA 1875 Yes Alberta Weed Monitoring Network (2014)
North America Europe 1800s Hitchhiker (pathway cause) Yes Arrived in ship ballast

Risk of Introduction

Top of page

S. latifolia subsp. alba can be introduced to new areas by accidental inclusion as a contaminant in fodder crop seed or as a contaminant of hay imported for livestock feeding.


Top of page

S. latifolia subsp. alba is commonly found in pastures and hay fields, along roadsides and rights-of-way, on grass embankments and in wasteland, as well as in many undisturbed areas (Washington State Noxious Weed Control Board, 2010). It prefers well-drained soils and is seldom seen in dry climates.  Seedlings do not tolerate high temperatures.

Habitat List

Top of page
Terrestrial – ManagedCultivated / agricultural land Principal habitat Harmful (pest or invasive)
Cultivated / agricultural land Principal habitat Natural
Managed grasslands (grazing systems) Principal habitat Harmful (pest or invasive)
Managed grasslands (grazing systems) Principal habitat Natural
Disturbed areas Secondary/tolerated habitat Natural
Rail / roadsides Secondary/tolerated habitat Natural

Hosts/Species Affected

Top of page

S. latifolia subsp. alba competes with seed crop species including lucerne, clovers, grasses such as timothy and small grains. It displaces native plants such as the threatened Silene spaldingii (US Fish and Wildlife Service, 2007).

Growth Stages

Top of page Fruiting stage, Post-harvest

Biology and Ecology

Top of page


The chromosome number of S. latifolia subsp. alba is 2n=24 (Halkka, 1985). It hybridizes with S. dioica when both species grow in close proximity, producing offspring with pink flowers (NatureGate, 2015).

Reproductive Biology

S. latifolia subsp. alba is dioecious and thus obligatory outcrossing. Male flowers open longer than female ones in order to increase the chance of pollen dispersal by insects. The longer the flowers are open, the higher the chances that pollination will occur. Flowers usually open for more than 12 hours, from evening until mid-morning the next day, allowing a range of both diurnal and nocturnal pollinators to effect pollination. Most pollination occurs at night, the primary nocturnal pollinators being noctuid and sphingid moths. Diurnal pollinators are bees, flies and wasps (Young, 2002). Plants are profuse seed producers; a single plant produces about 50 capsules, each capsule containing about 500 seeds (Frendahl and Anderson, 2013).

S. latifolia is a key plant model in the study of sex determination and sex chromosome evolution (Kejnovsky and Vyskot, 2010).

Physiology and Phenology

S. latifolia subsp. alba flowers from the end of April up to the end of October, but usually has two distinct flowering peaks at the end of May and the beginning of August (Biere and Honders, 1996). 


It is a biennial or short-lived perennial (Alberta Weed Monitoring Network, 2014).


S. latifolia subsp. alba is an alternative host or vector for Lychnis ringspot virus, which infects sugarbeet (Alberta Agriculture and Forestry, 2015).

Environmental Requirements

It can grow on light sandy, loam and heavy clay soils, with pH acid, neutral and alkaline. It prefers moist soil and cannot grow in the shade.


Top of page
Cf - Warm temperate climate, wet all year Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)
Df - Continental climate, wet all year Preferred Continental climate, wet all year (Warm average temp. > 10°C, coldest month < 0°C, wet all year)

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Aulacorthum solani Herbivore
Erysiphe buhrii Pathogen
Hadena bicruris Herbivore Seedlings/Seeds Brantjes, 1976; Elzinga et al., 2005
Microbotryum lychnidis-dioicae Pathogen Fontaine et al., 2013
Polymyxa betae Pathogen

Notes on Natural Enemies

Top of page

In western Europe, the caterpillars of the specialist Hadena bicruris, a night-active pollinating moth, are the most important herbivores consuming developing seeds of S. latifolia (Brantjes, 1976; Elzinga et al., 2005).

In North America, S. latifolia populations have become infected by the anther smut pathogen Microbotryum lychnidis-dioicae, a member of the M. violaceum complex, brought in fairly recently from Europe; the system is a well-studied model in evolutionary biology and ecology. Fontaine et al. (2013) found that the actual pathogen was likely introduced as a single population from Scotland, UK.

Means of Movement and Dispersal

Top of page

Natural Dispersal

S. latifolia subsp. alba spreads mostly by seed, but root and stem fragments can establish. Seed is dispersed by wind (Jongejans and Schippers, 1999).

Accidental Introduction

S. latifolia subsp. alba can be spread as a contaminant of lucerne, clover, timothy (Phleum pratense) and other seed crops, and in hay for livestock feeding (Alberta Weed Monitoring Network, 2014).

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
True seeds (inc. grain) Yes

Impact Summary

Top of page
Economic/livelihood Negative
Environment (generally) Negative

Economic Impact

Top of page

As S. latifolia subsp. alba seed is similar in size and shape to clover and lucerne seed, it is often encountered as a difficult-to-separate contaminant of commercial seed crops, which results in yield and economic losses in clover and lucerne seed production. It can also contaminate small grains and grass seed (Alberta Agriculture and Forestry, 2015). In Minnesota, USA, approximately 7% of the timothy seed intended for certification is rejected due to S. latifolia subsp. alba contamination (Strand and Wyse, 1982). S. latifolia subsp. alba is also problematic for Washington’s timothy growers (Washington State Noxious Weed Control Board, 2010).

Efforts to extirpate S. latifolia subsp. alba and other invasive alien plants from key conservation areas occupied by the threatened native species S. spaldingii in the western USA was estimated to cost a total of US $8,666,000, with an average yearly cost across the first 5 years of US $349,200. Of the estimated total, roughly a quarter was for surveys and monitoring (US Fish and Wildlife Service, 2007).

Environmental Impact

Top of page

Impact on Biodiversity

The presence of S. latifolia subsp. alba can have negative impacts on native plants. One such is the endangered species S. spaldingii (Spalding’s catchfly), a regional endemic found predominantly in bunchgrass grasslands and sagebrush steppe, occasionally in open pine communities, in eastern Washington, northeastern Oregon, west-central Idaho and western Montana in the USA, extending into southern British Columbia, Canada. There are currently 99 known populations, with 66 of these composed of fewer than 100 individuals each. The species was listed as threatened under the US Endangered Species Act in 2001 (US Fish and Wildlife Service, 2001) as it is impacted by habitat loss due to human development, habitat degradation associated with adverse grazing and trampling by domestic livestock and wildlife, and invasions of aggressive non-native plants, including S. latifolia subsp. alba, which can be separated from S. spaldingii by its much larger, inflated flowers. As part of the recovery plan for S. spaldingii, invasive alien plants with the potential to displace it have been continually controlled or eradicated within a 100-m radius of all populations within key conservation areas by utilizing integrated pest management measures. These measures include use of herbicides (e.g., spot spraying), prescribed burning and hand pulling (US Fish and Wildlife Service, 2007).

Threatened Species

Top of page
Threatened SpeciesConservation StatusWhere ThreatenedMechanismReferencesNotes
Silene spaldingii (Spalding's catchfly)USA ESA listing as threatened species USA ESA listing as threatened speciesUSACompetition - monopolizing resourcesUS Fish and Wildlife Service, 2001

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Has high reproductive potential
  • Reproduces asexually
Impact outcomes
  • Ecosystem change/ habitat alteration
  • Negatively impacts agriculture
  • Negatively impacts livelihoods
  • Reduced native biodiversity
  • Threat to/ loss of endangered species
Impact mechanisms
  • Competition - monopolizing resources
  • Pest and disease transmission
  • Hybridization
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect as a commodity contaminant
  • Difficult/costly to control


Top of page

Social Benefit

Roots contain saponin which, although mildly toxic, has been used in soap making; soap can be obtained by simmering roots in hot water (First Nature, 2015).

Environmental Services

S. latifolia subsp. alba is noted for attracting wildlife (Plants for a Future, 2015), particularly pollinating insects. Prior to dispersal, seeds are a source of food for noctuid moth larvae (Wright and Meagher, 2003).

Similarities to Other Species/Conditions

Top of page

Apart from flower colour and wider leaves, S. latifolia subsp. alba is very similar to S. dioica. Two other campions, S. vulgaris (bladder campion) and S. uniflora (sea campion), are sometimes mistaken for S. latifolia subsp. alba, but S. vulgaris has branched flower stems and greatly enlarged sepal tubes (seed pods), while S. uniflora is a short plant also with swollen sepal tubes but having unbranched flower stems, each topped by a single bloom (First Nature, 2015). Furthermore, S. vulgaris is not hairy or sticky, seed capsules only have 6 teeth and the calyx has netted veins. S. noctiflora also has similar flower appearance to S. latifolia subsp. alba but is hairy and sticky, its seed capsules only have 6 teeth and the calyx has branched veins. In general, S. latifolia subsp. alba can be differentiated from similar species by having (i) white flowers with 5 lobed/notched petals; (ii) leaves that are opposite and hairy; (iii) flowers which open at night and have a pleasant odour; (iv) hairy stems which may become almost woody when mature; and (v) a tap root and lateral roots (Alberta Weed Monitoring Network, 2014).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.


To prevent the infestation of pastures and seed crops by S. latifolia subsp. alba, the use of grass and legume seed that has a Certificate of Analysis declaring it free of S. latifolia subsp. alba seed is advocated. Also, any hay for livestock feeding should be certified as free of S. latifolia subsp. alba. As it requires full sun for best growth, crops sown at high densities and vigorous forage stands can generally outcompete its seedlings; however, established campion is not significantly reduced by crop competition (Alberta Agriculture and Forestry, 2015). 


Eradication of S. latifolia subsp. alba from S. spaldingii habitats involves the use of integrated pest management measures (US Fish and Wildlife Service, 2007).

Cultural Control and Sanitary Measures

Cultivation or tillage for seedbed preparation will kill many S. latifolia subsp. alba plants, although well-established plants generally survive cultivation, and tillage will promote weed seed germination. Tillage should be deep enough to cut off roots below the crown and deposit the plant on the soil surface to dry out. Tillage can be a suitable control method in row crops or prior to sowing small-seeded grasses or legumes. Surface tillage will also control seedlings in summer fallow situations. The addition of fertilizer to the crop, unfortunately, will enhance S. latifolia subsp. alba growth. Mowing can be effective in preventing campion seed production, but the weed can withstand annual mowing as the root will send up new shoots (Strand and Wyse, 1982; Alberta Weed Monitoring Network, 2014).

Physical/Mechanical Control

Hand pulling will work for small infestations, but the entire root must be removed (Alberta Agriculture and Forestry, 2015).

Chemical Control

Based on information from Minnesota, S. latifolia subsp. alba can be controlled in field crops by herbicide application most easily when it is at the seedling stage or during seed germination. In grass seed fields, dicamba has been shown to be the most effective, while for small-seeded legumes, benefin (benfluralin) gave the best results in new sowings. Metribuzin was among several herbicides used effectively on older stands (Strand and Wyse, 1982).


Integrated pest management practices used in controlling S. latifolia subsp. alba in S. spaldingii habitats include spot spraying of herbicides, prescribed burning and hand pulling (US Fish and Wildlife Service, 2007).


Top of page

Alberta Agriculture and Forestry, 2015. Pest selector: cockle, white. Canada: Alberta Agriculture and Forestry.

Alberta Weed Monitoring Network, 2014. White cockle (Silene latifolia ssp. alba).$Department/deptdocs.nsf/all/prm13930

Biere A; Honders SJ, 1996. Impact of flowering phenology of Silene alba and S. dioica on susceptibility to fungal infection and seed predation. Oikos, 77(3):467-480.

Blair AC; Wolfe LM, 2004. The evolution of an invasive plant: an experimental study with Silene latifolia. Ecology, 85(11):3035-3042.

Brantjes NBM, 1976. Prevention of superparasitism of Melandrium flowers (Caryophyllaceae) by Hadena (Lepidoptera). Oecologia, 24:1-6.

Center for Invasive Species Management, 2014. State and province noxious weed lists. Montana State University-Bozeman, USA: Center for Invasive Species Management.

Elzinga JA; Turin H; Damme JMMvan; Biere A, 2005. Plant population size and isolation affect herbivory of Silene latifolia by the specialist herbivore Hadena bicruris and parasitism of the herbivore by parasitoids. Oecologia, 144(3):416-426.

First Nature, 2015. Silene latifolia - white campion.

Flora Pittsburghensis, 2015. White campion (Silene latifolia ssp. alba).

Fontaine MC; Gladieux P; Hood ME; Giraud T, 2013. History of the invasion of the anther smut pathogen on Silene latifolia in North America. New Phytologist, 198(3):946-956.

Frendahl P; Anderson K, 2013. Silene latifolia.

GBIF, 2015. Global Biodiversity Information Facility.

Greuter W; Raus T, 1982. Med-Checklist Notulae, 6. Willdenowia, 12:183-199.

Halkka L, 1985. Chromosome counts of Finnish vascular plants. Annales Botanici Fennici, 22:315-317.

Jongejans E; Schippers P, 1999. Modelling seed dispersal by wind in herbaceous species. Oikos, 87(2):362-372.

Kejnovsky E; Vyskot B, 2010. Silene latifolia: the classical model to study heteromorphic sex chromosomes. Cytogenetic and Genome Research, 129(1/3):250-262.

Keller SR; Gilbert KJ; Fields PD; Taylor DR, 2012. Bayesian inference of a complex invasion history revealed by nuclear and chloroplast genetic diversity in the colonizing plant, Silene latifolia. Molecular Ecology, 21(19):4721-4734.

Loudon J, 1840. The ladies' flower-garden of ornamental annuals. London, UK: William Smith.

NatureGate, 2015. White campion.

Plants for a Future, 2015. Silene latifolia - Poir.

Robinson BL; Fernald ML, 1908. Gray’s New Manual of Botany, seventh edition. A Handbook of the Flowering Plants and Ferns of the Central and Northeastern United States and adjacent Canada. USA: American Book Company.

Strand OE; Wyse DS, 1982. Identification and control of white cockle and night flowering catchfly. University of Minnesota Agricultural Extension Service Agricultural Chemicals Fact Sheet No. 18. St. Paul, Minnesota, USA: University of Minnesota Agricultural Extension Service.

US Fish and Wildlife Service, 2001. Endangered and threatened wildlife and plants; final rule to list Silene spaldingii (Spalding's catchfly) as threatened. Federal Register, 66:51598-51606.

US Fish and Wildlife Service, 2007. Recovery plan for Silene spaldingii (Spalding's catchfly). Portland, Oregon, USA 203 pp.

USDA-ARS, 2015. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory.

USDA-NRCS, 2015. The PLANTS Database. Baton Rouge, USA: National Plant Data Center.

Washington State Noxious Weed Control Board, 2010. White cockle, Silene latifolia ssp. alba.

Wright JW; Meagher TR, 2003. Pollination and seed predation drive flowering phenology in Silene latifolia (Caryophyllaceae). Ecology, 84(8):2062-2073.

Young HJ, 2002. Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). American Journal of Botany, 89(3):433-440.


Top of page

22/06/15 Original text by:

Andrew Praciak, Consultant, UK

Distribution Maps

Top of page
You can pan and zoom the map
Save map