Lolium multiflorum (Italian ryegrass)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Habitat
- Habitat List
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Biology and Ecology
- Rainfall
- Rainfall Regime
- Soil Tolerances
- Natural enemies
- Notes on Natural Enemies
- Plant Trade
- Wood Packaging
- Impact Summary
- Impact
- Environmental Impact
- Threatened Species
- Risk and Impact Factors
- Uses
- Uses List
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Lolium multiflorum Lam. (1779)
Preferred Common Name
- Italian ryegrass
Other Scientific Names
- Lolium italicum A. Braun
International Common Names
- English: annual ryegrass; westerwold ryegrass
- Spanish: ballico de Italia; raygras Italiano
- French: ivraie multiflore; ray-grass d'Italie
- Portuguese: azevem
Local Common Names
- Brazil: azevem-anual
- Germany: Italienisches Raygras; Welsches Weidelgras; Westerwoldisches Weidelgras
- Italy: loglio Italico; loietto Italico
- Japan: nezumimugi
- Netherlands: Italiaanse raaigras
- Sweden: Italienskt rajgraes
EPPO code
- LOLMU (Lolium multiflorum)
Summary of Invasiveness
Top of pageTaxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Monocotyledonae
- Order: Cyperales
- Family: Poaceae
- Genus: Lolium
- Species: Lolium multiflorum
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageDistribution
Top of pageDistribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 10 Feb 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Algeria | Present | Native | |||||
Egypt | Present | Native | |||||
Ethiopia | Present | Introduced | |||||
Kenya | Present | Introduced | |||||
Libya | Present | Native | |||||
Morocco | Present | Native | |||||
Réunion | Present | Introduced | 1978 | ||||
South Africa | Present | Introduced | |||||
Tunisia | Present, Widespread | Native | |||||
Zimbabwe | Present | Introduced | 1948 | ||||
Antarctica |
|||||||
French Southern Territories | Present | Introduced | 1996 | Original location reported: Kerguelen Islands | |||
Asia |
|||||||
Afghanistan | Present, Widespread | Native | |||||
Bhutan | Present | Introduced | 1974 | ||||
China | Present | Introduced | Original citation: Wang and (1980) | ||||
-Anhui | Present | Introduced | Original citation: Wang and (1980) | ||||
-Fujian | Present | Introduced | Original citation: Wang and (1980) | ||||
-Gansu | Present | Introduced | Original citation: Wang and (1980) | ||||
-Guangdong | Present | Introduced | Original citation: Wang and (1980) | ||||
-Guangxi | Present | Introduced | Original citation: Wang and (1980) | ||||
-Guizhou | Present | Introduced | Original citation: Wang and (1980) | ||||
-Hainan | Present | Introduced | Original citation: Wang and (1980) | ||||
-Hebei | Present | Introduced | Original citation: Wang and (1980) | ||||
-Heilongjiang | Present | Introduced | Original citation: Wang and (1980) | ||||
-Henan | Present | Introduced | Original citation: Wang and (1980) | ||||
-Hubei | Present | Introduced | |||||
-Hunan | Present | Introduced | Original citation: Wang and (1980) | ||||
-Inner Mongolia | Present | Original citation: Wang and (1980) | |||||
-Jiangsu | Present | Introduced | Original citation: Wang and (1980) | ||||
-Jiangxi | Present | Introduced | |||||
-Jilin | Present | Introduced | Original citation: Wang and (1980) | ||||
-Liaoning | Present | Introduced | Original citation: Wang and (1980) | ||||
-Ningxia | Present | Introduced | Original citation: Wang and (1980) | ||||
-Qinghai | Present | Introduced | Original citation: Wang and (1980) | ||||
-Shaanxi | Present | Introduced | Original citation: Wang and (1980) | ||||
-Shandong | Present | Introduced | Original citation: Wang and (1980) | ||||
-Shanxi | Present | Introduced | Original citation: Wang and (1980) | ||||
-Sichuan | Present | Introduced | Original citation: Wang and (1980) | ||||
-Tibet | Present | Introduced | Original citation: Wang and (1980) | ||||
-Xinjiang | Present | Introduced | Original citation: Wang and (1980) | ||||
-Yunnan | Present | Introduced | Original citation: Wang and (1980) | ||||
-Zhejiang | Present | Introduced | Original citation: Wang and (1980) | ||||
Indonesia | Present | Introduced | |||||
Iran | Present | Native | |||||
Iraq | Present | Native | |||||
Japan | Present | Introduced | First reported: 1867-1885 | ||||
-Honshu | Present | ||||||
Jordan | Present | Native | |||||
Lebanon | Present | Native | |||||
Nepal | Present | Introduced | |||||
Pakistan | Present | Native | |||||
Philippines | Present | Introduced | |||||
Saudi Arabia | Present | Native | |||||
South Korea | Present | Introduced | 1978 | ||||
Taiwan | Present | Introduced | 1956 | ||||
Turkey | Present | Native | |||||
Europe |
|||||||
Albania | Present | Native | |||||
Austria | Present | Introduced | 1843 | ||||
Belgium | Present | Introduced | 1814 | ||||
Bulgaria | Present | Native | |||||
Czechia | Present | Introduced | 1883 | ||||
Denmark | Present | Introduced | |||||
Estonia | Present | Introduced | 1905 | ||||
Federal Republic of Yugoslavia | Present | Native | |||||
France | Present | Native | |||||
-Corsica | Present | Native | |||||
Germany | Present | Introduced | |||||
Greece | Present | Native | |||||
-Crete | Present | Native | |||||
Hungary | Present, Widespread | Introduced | |||||
Iceland | Present | Introduced | 1922 | ||||
Ireland | Present | Introduced | 1866 | ||||
Italy | Present, Widespread | Native | |||||
-Sardinia | Present | Native | |||||
-Sicily | Present | Native | |||||
Latvia | Present | Introduced | 1892 | ||||
Lithuania | Present | Introduced | 1884 | ||||
Netherlands | Present | Introduced | 1899 | ||||
Norway | Present | Introduced | 1873 | ||||
Poland | Present, Widespread | Introduced | |||||
Portugal | Present | Native | |||||
-Azores | Present | Native | |||||
-Madeira | Present | Native | |||||
Romania | Present | Native | |||||
Russia | Present | Introduced | 1893 | ||||
Slovakia | Present | Introduced | 1869 | ||||
Spain | Present | Native | |||||
-Balearic Islands | Present | Native | |||||
-Canary Islands | Present | Native | |||||
Sweden | Present | Introduced | 1857 | ||||
Switzerland | Present | Introduced | |||||
United Kingdom | Present | Introduced | 1840 | ||||
North America |
|||||||
Canada | Present | Introduced | |||||
United States | Present | Introduced | |||||
-Alabama | Present | Introduced | |||||
-Arizona | Present | Introduced | |||||
-Arkansas | Present | Introduced | |||||
-California | Present | Introduced | |||||
-Colorado | Present | Introduced | |||||
-Connecticut | Present | Introduced | |||||
-Delaware | Present | Introduced | |||||
-Georgia | Present | Introduced | |||||
-Hawaii | Present | Introduced | 1910 | ||||
-Idaho | Present | Introduced | |||||
-Illinois | Present | Introduced | |||||
-Indiana | Present | Introduced | |||||
-Iowa | Present | Introduced | |||||
-Kansas | Present | Introduced | |||||
-Kentucky | Present | Introduced | |||||
-Maine | Present | Introduced | |||||
-Maryland | Present | Introduced | |||||
-Massachusetts | Present | Introduced | |||||
-Michigan | Present | Introduced | |||||
-Minnesota | Present | Introduced | |||||
-Mississippi | Present | Introduced | |||||
-Missouri | Present | Introduced | |||||
-Montana | Present | Introduced | |||||
-Nebraska | Present | Introduced | |||||
-Nevada | Present | Introduced | |||||
-New Hampshire | Present | Introduced | |||||
-New Jersey | Present | Introduced | |||||
-New Mexico | Present | Introduced | |||||
-New York | Present | Introduced | |||||
-North Carolina | Present | Introduced | |||||
-North Dakota | Present | Introduced | |||||
-Ohio | Present | Introduced | |||||
-Oklahoma | Present | Introduced | |||||
-Oregon | Present | Introduced | |||||
-Pennsylvania | Present | Introduced | |||||
-Rhode Island | Present | Introduced | |||||
-South Carolina | Present | Introduced | |||||
-South Dakota | Present | Introduced | |||||
-Tennessee | Present | Introduced | |||||
-Texas | Present | Introduced | |||||
-Utah | Present | Introduced | |||||
-Vermont | Present | Introduced | |||||
-Virginia | Present | Introduced | |||||
-Washington | Present | Introduced | |||||
-West Virginia | Present | Introduced | |||||
-Wisconsin | Present | Introduced | |||||
-Wyoming | Present | Introduced | |||||
Oceania |
|||||||
Australia | Present | Introduced | 1897 | ||||
-New South Wales | Present | Introduced | |||||
-Queensland | Present | Introduced | |||||
-South Australia | Present | Introduced | |||||
-Tasmania | Present | Introduced | |||||
-Victoria | Present | Introduced | |||||
-Western Australia | Present | Introduced | |||||
Fiji | Present | Introduced | |||||
New Zealand | Present | Introduced | |||||
South America |
|||||||
Argentina | Present, Widespread | Introduced | |||||
Brazil | Present | Introduced | |||||
-Parana | Present | Introduced | |||||
-Rio Grande do Sul | Present | Introduced | |||||
-Santa Catarina | Present | Introduced | |||||
-Sao Paulo | Present | Introduced | |||||
Chile | Present | Introduced | 1854 | ||||
Colombia | Present | Introduced | |||||
Ecuador | Present | Introduced | |||||
Peru | Present, Widespread | Introduced | |||||
Suriname | Present | Introduced | |||||
Uruguay | Present, Widespread | Introduced |
History of Introduction and Spread
Top of pageHabitat
Top of pageL. multiflorum is able to invade a number of habitats, particularly where ground cover is discontinuous or where there is regular disturbance. It is grown as a forage species throughout its range and frequently occurs as a weed of arable land, or as an invasive species on waste ground, farm tracks and around farm buildings. It has also been reported as an invasive species on natural species-rich grassland and as a riparian weed species. It performs best in areas with relatively high rainfall and on fertile soils. Severe frost, drought, excessive moisture or infertile soils do not favour the establishment and development of L. multiflorum, and growth is best on soils ranging from pH 6 to 7, with 8 as maximum.
Habitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Cultivated / agricultural land | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Protected agriculture (e.g. glasshouse production) | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed forests, plantations and orchards | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Disturbed areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Rail / roadsides | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Urban / peri-urban areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural grasslands | Present, no further details | Harmful (pest or invasive) |
Littoral | Coastal areas | Present, no further details | Harmful (pest or invasive) |
Hosts/Species Affected
Top of pageHost Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Allium cepa (onion) | Liliaceae | Unknown | |
Avena sativa (oats) | Poaceae | Main | |
Beta vulgaris (beetroot) | Chenopodiaceae | Main | |
Brassica napus var. napus (rape) | Brassicaceae | Main | |
Brassica oleracea var. italica (broccoli) | Brassicaceae | Other | |
Citrus | Rutaceae | Other | |
Glycine max (soyabean) | Fabaceae | Other | |
Hordeum vulgare (barley) | Poaceae | Main | |
Lactuca sativa (lettuce) | Asteraceae | Other | |
Linum usitatissimum (flax) | Other | ||
Lupinus angustifolius (narrow-leaf lupin) | Fabaceae | Main | |
Medicago sativa (lucerne) | Fabaceae | Main | |
Oryza sativa (rice) | Poaceae | Unknown | |
Pisum sativum (pea) | Fabaceae | Other | |
Prunus domestica (plum) | Rosaceae | Other | |
Saccharum officinarum (sugarcane) | Poaceae | Other | |
Secale cereale (rye) | Poaceae | Main | |
Solanum tuberosum (potato) | Solanaceae | Other | |
Spinacia oleracea (spinach) | Chenopodiaceae | Other | |
Triticale | Other | ||
Triticum aestivum (wheat) | Poaceae | Main | |
Vitis vinifera (grapevine) | Vitaceae | Other |
Biology and Ecology
Top of pageThe normal diploid chromosome number of L. multiflorum is 2n = 14 (Beddows, 1973). However, its tendency to form tetraploids has resulted in the development of a number of high-yielding commercial tetraploid varieties. Multiple introductions and the outcrossing breeding system of L. multiflorum mean that weedy populations can be highly genetically variable. L. multiflorum readily forms intrageneric hybrids with L. perenne, L. rigidum, L. temulentum and L. remotum. Bennett et al. (2002) used electrophoretic analysis of four enzyme systems to distinguish between Lolium species and suggested that plant breeding and agricultural practices were increasing hybridization between the species. Taxonomic evaluation of Italian populations of L. multiflorum (Dinelli et al., 2002) found a significant number (40-60%) of hybrid individuals in all populations. These were the result of intrageneric hybridization and of intergeneric hybridization with Festuca species. Lolium spp. are able to form hybrids with Festuca arundinacea and F. pratensis (Zeller, 1999; Morgan et al., 2001; Zare et al., 2002) and the potential for formation of these Festulolium hybrids is being used to combine valuable traits in commercial cultivars.
Life-Cycle and Growth Characteristics
The existence of a range of commercially produced cultivars of L. multiflorum makes generalizations about the species life-cycle and ecology difficult. It may complete its life-cycle as a summer annual, winter annual or biennial, and cultivars which persist for longer than two seasons have been developed. L. multiflorum cv. westerwolds is a strictly annual type.
L. multiflorum reproduces solely by seed. In arable soils in Italy, the peak emergence period was autumn (Covarelli and Peccetti, 1989). L. multiflorum grows vigorously in the seedling stage and exhibits good winter growth which continues into spring with some growth in the summer if sufficient moisture is available. It is a prolific seed producer and freshly disseminated seed exhibits little dormancy and high rates of germination. After 4 years burial in soil, initial germination of 93% had fallen to 3% (Lewis, 1958).
L. multiflorum is susceptible to freezing temperatures which cause rupturing of the cell walls (Beddows, 1973). The plants require an ample supply of water and are adversely affected by drought.
Associations
Many cultivars and populations of L. multiflorum have been shown to be associated in a symbiotic relationship with clavicipitaceous fungal endophytes from the genus Neotyphodium (Latch et al., 1987; Latch et al., 1988; Nelson and Read, 1990; Wilson et al., 1991). These endophytes modify the physiology, ecology and reproductive biology of infected plants (Clay, 1990). Germination rate and vegetative and reproductive biomass are all increased by this association (Latch et al., 1985; Clay, 1987; Reed, 1987).
L. multiflorum is host to a large number of pathogens which may also infect crop plants. Of particular note are Pythium arrhenomanes, which causes root rot disease of sugarcane (Dissanayake et al., 1997); Xylella fastidiosa, which causes leaf scald disease in plum trees (Leite et al., 1997); Xanthomonas campestris (Alizadeh et al., 1997); Polymyxa graminis (Adams and Jacquier, 1994); Barley yellow dwarf virus (Henry and Dedryver, 1991); Burkholderia glumae and B. plantarii, two important pathogens of rice (Miyagawa et al., 1988) and Rice gall dwarf virus (Morinaka, 1986).
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Mean annual rainfall | 400 | 1500 | mm; lower/upper limits |
Soil Tolerances
Top of pageSoil drainage
- free
Soil reaction
- alkaline
- neutral
Soil texture
- heavy
- light
- medium
Special soil tolerances
- saline
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Poanes melene | Herbivore |
Notes on Natural Enemies
Top of pagePlant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Growing medium accompanying plants | weeds/seeds | Yes | Pest or symptoms usually invisible | |
Seedlings/Micropropagated plants | weeds/seeds | Yes | Pest or symptoms usually invisible | |
True seeds (inc. grain) | weeds/seeds | Yes | Pest or symptoms usually visible to the naked eye |
Plant parts not known to carry the pest in trade/transport |
---|
Bark |
Flowers/Inflorescences/Cones/Calyx |
Fruits (inc. pods) |
Leaves |
Stems (above ground)/Shoots/Trunks/Branches |
Wood |
Wood Packaging
Top of pageWood Packaging not known to carry the pest in trade/transport |
---|
Loose wood packing material |
Non-wood |
Processed or treated wood |
Solid wood packing material with bark |
Solid wood packing material without bark |
Impact Summary
Top of pageCategory | Impact |
---|---|
Animal/plant collections | None |
Animal/plant products | None |
Biodiversity (generally) | Negative |
Crop production | Negative |
Environment (generally) | Negative |
Fisheries / aquaculture | None |
Forestry production | None |
Human health | None |
Livestock production | Positive |
Native fauna | None |
Native flora | Negative |
Rare/protected species | Negative |
Tourism | None |
Trade/international relations | None |
Transport/travel | None |
Impact
Top of pageEnvironmental Impact
Top of pageThreatened Species
Top of pageThreatened Species | Conservation Status | Where Threatened | Mechanism | References | Notes |
---|---|---|---|---|---|
Speyeria callippe callippe (callippe silverspot butterfly) | USA ESA listing as endangered species | California | Ecosystem change / habitat alteration | US Fish and Wildlife Service (2009a) | |
Trifolium dichotomum (showy Indian clover) | EN (IUCN red list: Endangered); National list(s); USA ESA listing as endangered species | USA | Competition - strangling | US Fish and Wildlife Service (2008b) | |
Tuctoria greenei (Greene's tuctoria) | National list(s); USA ESA listing as endangered species | California | Pest and disease transmission | US Fish and Wildlife Service (2008a) | |
Tuctoria mucronata (solano grass) | EN (IUCN red list: Endangered); USA ESA listing as endangered species | California | Pest and disease transmission | US Fish and Wildlife Service (2009b) |
Risk and Impact Factors
Top of page- Invasive in its native range
- Proved invasive outside its native range
- Highly adaptable to different environments
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Highly mobile locally
- Has high reproductive potential
- Has propagules that can remain viable for more than one year
- Negatively impacts agriculture
- Reduced native biodiversity
- Competition - monopolizing resources
- Competition - strangling
- Pest and disease transmission
- Highly likely to be transported internationally accidentally
- Difficult/costly to control
Uses
Top of pageUses List
Top of pageAnimal feed, fodder, forage
- Fodder/animal feed
- Forage
Environmental
- Erosion control or dune stabilization
- Revegetation
- Soil improvement
General
- Ornamental
Materials
- Poisonous to mammals
Similarities to Other Species/Conditions
Top of pageLolium temulentum has lemmas which are ovate to elliptic and less than three times as long as wide, the caryopsis is also less than three times as long as wide. In other Lolium spp. these structures are more than three times as long as wide.
Lolium perenne is a perennial species which has tillers at flowering and fruiting time and lemmas which are usually unawned.
Lolium rigidum is an annual species, very similar to L. multiflorum, without tillers at flowering, with (usually) unawned lemmas (awned in L. multiflorum) and spikelets with usually less than 11 florets (L. multiflorum usually has more than 11 florets).
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Cultural Control
Control of established plants by mechanical or hand weeding will only be effective if complete removal from the soil is achieved, preventing subsequent regrowth. This is generally impractical, although cultivation is able to successfully control small and recently emerged seedlings. In competition experiments between wheat and L. multiflorum, the yield of wheat was increased at higher N fertilizer rates, and when crop density was increased (Angonin and Caussanel, 1992). Cross-sowing of wheat is not an effective means of controlling L. multiflorum (Appleby and Brewster, 1992).
Chemical Control
In trials in Argentina, pre-emergence applications of trifluralin gave effective control of L. multiflorum, and resulted in increased yield of barley (Scursoni and Satorre, 1997). Clodinafop is recommended for the control of Italian ryegrass up to the three tiller stage (Strachan, 1995) and, in trials in Chile, gave good control of a range of annual grass weeds including L. multiflorum only when sprayed at an early growth stage (Ormeno and Diaz, 1995). Oxyfluorfen applied to broccoli crops in autumn gave 69-97% control in the USA (Eaton et al., 1990). Post-emergence application of metribuzin at the two leaf stage gave good control of L. multiflorum in wheat in Mississippi, USA (Shaw and Wesley, 1991). In South Africa, 80% control was achieved using triasulfuron in wheat and barley (van Biljon et al., 1988). Propyzamide (Purea and Sutton, 1989), fluazifop (Bonanno and Monaco, 1986), chlorsulfuron applied pre-emergence in wheat (Griffin, 1986) and haloxyfop-ethoxyethyl (Visbecq and Morel, 1983) have all been used successfully to control L. multiflorum. Mamarot and Rodriguez (1997) give recommendations for herbicide use against Lolium spp. in a range of crops, for example, EPTC and atrazine in maize; carbetamide in legumes, rape and sunflower; monolinuron in potato; and a wide range of herbicides related to sethoxydim and fluazifop in broad-leaved crops. In Australia, glyphosate and/or paraquat-based herbicides are used for control of Lolium spp. prior to crop sowing (Neve et al., 2003).
Compounds and extracts from a number of plants have been shown to have allelopathic effects against L. multiflorum, though there are no reports of these being used on a commercial scale. Dry foliage extracts from leaves of Rhazya stricta collected in Saudi Arabia inhibited the germination and growth of L. multiflorum (Al-Mutlaq, 2001). Extracts from medium-grain fatty rice bran resulted in 30-96% stand reduction of L. multiflorum (Kuk et al., 2001). The n-hexane-, acetone- and water-soluble fractions from an aqueous acetone extract of lemon balm (Melissa officinalis) inhibited the germination and growth of L. multiflorum shoots and roots (Kato-Noguchi, 2001). Germination and shoot and root growth may also be inihibited by extracts from Evolvulus alsinoides (Kato-Noguchi, 2000). Seed germination of L. multiflorum has been shown to be reduced by aqueous extracts of Tribulus terrestris (Verdú et al., 1999).
Herbicide Resistance
Biotypes of L. multiflorum with evolved resistance to herbicides have been reported in Brazil, Chile, France, Italy, the UK and USA (Heap, 2003). In the UK, seeds were collected from fields in which diclofop-methyl had failed to control the grass. Glasshouse trials were performed on these accessions to determine their susceptibility to various herbicide treatments. Resistance to diclofop-methyl, fenoxaprop and fluazifop was detected, with some evidence of resistance to traloxydim and partial resistance to isoproturon (Moss et al., 1993). Diclofop resistance has also been reported in biotypes from wheat fields in Oregon, USA (Stanger and Appleby, 1989; Gronwald et al., 1992). These biotypes were susceptible to pre-emergence tri-allate + diuron or post-emergent applications of metribuzin and these have been recommended as alternatives for the control of L. multiflorum. Sulfometuron-resistant biotypes have been reported in Mississippi, USA (Taylor and Coats, 1996).
Detailed studies of four resistant L. multiflorum populations in the UK identified resistance to diclofop-methyl, fluazifop-P-butyl, tralkoxydim and partial resistance to isoproturon (Cocker et al., 2001). In three of the populations, resistance was conferred by an enhanced rate of herbicide metabolism. A fourth population possessed an insensitive ACCase target site. An L. multiflorum biotype resistant to diclofop-methyl was investigated in France. It showed intermediate resistance to tralkoxydim and a small increase in tolerance to haloxyfop-methyl, quizalofop-ethyl, sethoxydim and cycloxydim (Prado et al., 2000). Such patterns of cross-resistance are not uncommon in L. multiflorum and other grass weeds.
Of greater concern is the recent confirmation of evolved resistance to glyphosate in an L. multiflorum biotype from a Chilean orchard (Perez and Kogan, 2003).
Biological Control
The potential for biological control of L. multiflorum as a weed has not been investigated due to the economic importance of this species as a forage grass.
References
Top of pageAdams MJ, Jacquier C, 1994. Infection of cereals and grasses by isolates of Polymyxa graminis (Plasmodiophorales). Journal of the Lepidopterists' Society, 48(4):386-388.
Beddows AR, 1973. Biological flora of the British Isles, Lolium multiflorum. Journal of Ecology, 55:567-587.
Bennett SJ, Hayward MD, Marshall DF, 2002. Electrophoretic variation as a measure of species differentiation between four species of the genus Lolium. Genetic Resources and Crop Evolution, 49(1):59-66.
Clay K, 1990. Fungal endophytes of grasses. Annual Review of Ecology and Systematics, 21:275-295.
Fröman B, Persson S, 1974. An Illustrated Guide to the Grasses of Ethiopia. Assella, Ehiopia: Chilalo Awraja Development Unit.
Heap I, 2003. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com.
Hubbard CE, 1968. Grasses. 2nd Edition. Harmondsworth, UK: Penguin Books.
Humphries CJ, 1980. 5. Lolium L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, 1980. Flora Europaea, Volume 5. Alimataceae to Orchidaceae Monocotyledones. Cambridge, UK: Cambridge University Press, 153-154.
Lewis J, 1958. Longevity of crop and weed seeds. 1. First Interim Report. Proceedings of the International Seed Testing Association, 23:340-354.
Mamarot J, Rodriguez A, 1997. Sensibilité des Mauvaises Herbes aux Herbicides. 4th edition. Paris, France: Association de Coordination Technique Agricole.
Morgan WG, King IP, Koch S, Harper JA, Thomas HM, 2001. Introgression of chromosomes of Festuca arundinacea var. glaucescens into lolium multiflorum revealed by genomic in situ hybridization (GISH). Theoretical and Applied Genetics, 103:696-701.
Neve P, Diggle AJ, Smith FP, Powles SB, 2003. Simulating evolution of glyphosate resistance in Lolium rigidum II: past, present and future glyphosate use. Weed Research, 43:418-428.
Prado de R, Gonzalez-Guttierez J, Menendez J, Gasquez J, Gronwald JW, Gimenez-Espinosa R, 2000. Resistance to acetyl CoA carboxylase-inihibiting herbicides in Lolium multiflorum. Weed Science, 48:311-318.
Reed KFM, 1987. Perennial ryegrass in Victoria and the significance of the ryegrass endophyte. In: Proceedings Symposium on Perennial Ryegrass Without Staggers, Victoria, Australia, 1-7.
Strachan P, 1995. Topik - a new graminicide for cereals. Morley Bulletin, 97:1-2.
USDA-ARS, 2004. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx
Wang ZR, ed. , 1980. Farmland Weeds of China. Beijing, China: Agricultural Publishing House.
Zare AG, Humphreys MW, Rogers JW, Mortimer AM, Collin HA, 2002. Androgenesis in a Lolium multiflorum x Festuca arundinacea hybrid. Euphytica, 125: 1-11.
Zorilla RA, Davide RG, 1983. Host range, development and survival of the potato cyst nematode, Globodera rostochiensis, Woll., on potato in the Philippines. Philippine Agriculturalist, 66(4):439-447.
Distribution References
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Humphries CJ, 1980. Lolium L. In: Flora Europaea, Volume 5. Alimataceae to Orchidaceae Monocotyledones, Cambridge, UK: Cambridge University Press. 153-154.
USDA-ARS, 2004. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway | https://doi.org/10.5061/dryad.m93f6 | Data source for updated system data added to species habitat list. |
Global register of Introduced and Invasive species (GRIIS) | http://griis.org/ | Data source for updated system data added to species habitat list. |
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/