Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Liriomyza sativae
(vegetable leaf miner)



Liriomyza sativae (vegetable leaf miner)


  • Last modified
  • 19 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Vector of Plant Pest
  • Natural Enemy
  • Host Animal
  • Preferred Scientific Name
  • Liriomyza sativae
  • Preferred Common Name
  • vegetable leaf miner
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Leaf mines on tomato - mines usually white with dampened black and dried brown areas, typically serpentine, tightly coiled, or of irregular shape.
TitleSymptoms on tomato
CaptionLeaf mines on tomato - mines usually white with dampened black and dried brown areas, typically serpentine, tightly coiled, or of irregular shape.
Copyright©K.A. Spencer
Leaf mines on tomato - mines usually white with dampened black and dried brown areas, typically serpentine, tightly coiled, or of irregular shape.
Symptoms on tomatoLeaf mines on tomato - mines usually white with dampened black and dried brown areas, typically serpentine, tightly coiled, or of irregular shape.©K.A. Spencer
Leaf mine on Phaseolus vulgaris. The frass is distinctive in being deposited in black strips alternately at either side of the mine.
TitleSymptoms on Phaseolus vulgaris
CaptionLeaf mine on Phaseolus vulgaris. The frass is distinctive in being deposited in black strips alternately at either side of the mine.
Copyright©K.A. Spencer
Leaf mine on Phaseolus vulgaris. The frass is distinctive in being deposited in black strips alternately at either side of the mine.
Symptoms on Phaseolus vulgarisLeaf mine on Phaseolus vulgaris. The frass is distinctive in being deposited in black strips alternately at either side of the mine.©K.A. Spencer


Top of page

Preferred Scientific Name

  • Liriomyza sativae Blanchard, 1938

Preferred Common Name

  • vegetable leaf miner

Other Scientific Names

  • Agromyza subpusilla
  • Lemurimyza lycopersicae Pla & de la Cruz, 1981
  • Liriomyza canomarginis Frick, 1952
  • Liriomyza guytona Freeman, 1958
  • Liriomyza minutiseta Frick, 1952
  • Liriomyza munda Frick, 1957
  • Liriomyza propepusilla Frost, 1954
  • Liriomyza pullata Frick, 1952
  • Liriomyza subpusilla
  • Liriomyza verbenicola Hering, 1951

International Common Names

  • English: cabbage leaf miner; leaf miner of vegetables; melon leaf miner; serpentine vegetable leaf miner
  • Spanish: minador de la higuerilla; minador de las hojas de col; minador del tomate; minador serpentina de las hortalizas
  • French: mineuse maraichère

Local Common Names

  • UK: South American leaf miner
  • USA: tomato leaf miner

EPPO code

  • LIRISA (Liriomyza sativae)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Diptera
  •                         Family: Agromyzidae
  •                             Genus: Liriomyza
  •                                 Species: Liriomyza sativae

Notes on Taxonomy and Nomenclature

Top of page Liriomyza sativae was originally described in Argentina from material bred from the leaves of Medicago sativa. Since then it has been found in North, Central and South America, the Caribbean Islands, Africa, some Pacific Islands and some Asian countries. It has been introduced into Europe, usually via imports for glasshouse cultivation. Its many synonyms are evidence of its importance as a widespread pest over a large area (Spencer, 1973a; 1981, 1986).

L. sativae is one of a group of six polyphagous Liriomyza flies which have developed into serious agricultural pests in all parts of the world. They may be divided into two sub-groups: L. huidobrensis, L. trifolii, L. sativae and L. brassicae, originally discovered in the Americas, forming one group, and L. bryoniae and L. strigata from Europe forming the other.

Spencer (1973a; 1990) details a considerable increase in the number of species identified, no doubt in part due to increased work done on the Agromyzidae, but also to increased international commerce in fresh plant material creating opportunities for the establishment of flies across continents.

The extent of the darkening of the hind-margin of the eye and of the mesopleura [anepisternum] is not constant and the attachment of too much importance to these characters led Frick (1952) incorrectly to describe L. sativae as three species in Hawaii as L. pullata, L. canomarginis and L. minutiseta, thus emphasizing the need for caution in the use of external morphology alone. However, the hind margin of the eye is always darker than in L. trifolii and the mesopleura is always paler than in L. huidobrensis (Spencer, 1973a). Steyskal (1964) synonymized L. guytona with L. munda. Spencer (1973a) then synonymized L. munda, L. pullata, L. canomarginis and L. minutiseta with L. sativae.


Top of page Descriptions of L. sativae refer to fresh materials. Dry specimens may be distorted due to the manner in which they have been preserved. Also, the age of the specimen, when killed, will have some effect on its preservation characteristics.


L. sativae eggs are 0.2-0.3 x 0.1-0.15 mm, off-white and slightly translucent.


This is a legless maggot with no separate head capsule, transparent when newly hatched but colouring up to a yellow-orange in later instars, up to 3 mm long. Both larvae and puparia have a pair of posterior spiracles terminating in three cone-like appendages. Spencer (1973a) describes distinguishing features of the larvae. Petitt (1990) describes a method of identifying the different instars of the larvae.


Oval, slightly flattened ventrally, 1.3-2.3 x 0.5-0.75 mm with variable colour, pale yellow-orange, darkening to golden-brown. The pupa has posterior spiracles on a pronounced conical projection, each with three distinct bulbs, two of which are elongate. Pupariation occurs outside the leaf, either on the leaf or on the soil beneath the leaf.

Menken and Ulenberg (1986) describe a method of distinguishing L. sativae from L. bryoniae, L. huidobrensis, and L. trifolii using allozyme variation patterns as revealed by gel electrophoresis.


L. sativae is very small (1-1.3 mm body length, up to 1.7 mm in female with wings 1.3-1.7 mm.) The mesonotum is shiny black to the edge of a bright yellow scutellum; the face, frons and third antennal segment are bright yellow. Males and females are generally similar in appearance.

L. sativae are not very active fliers, and in crops showing active mining many flies may be seen walking rapidly over the leaves with only short jerky flights to adjacent leaves.

Head: the frons projects very slightly above the eye, just less than 1.5 times the width of the eye. There are two equal ors and two ori (the lower one weaker). Orbital setulae are sparse and reclinate. The jowls are deep (almost 0.33 times height of the eye at the rear); the cheeks form a distinct ring below the eye. The third antennal segment is small, round and noticeably pubescent, but not excessively so.

Mesonotum: 3+1 dc (3 dorsocentral bristles after the dorsal suture and 1 before it, nearer the head end), the third and fourth are substantially weaker. The distance between the first and second is up to twice that between second and third. The second, third and fourth are almost equidistant; acr appear irregularly in four rows.

Wing: length 1.3-1.7 mm, the discal cell is small. The last section is M<(sub)3+4> from 3-4 times the length of the penultimate one.

Genitalia: the shape of the distiphallus is fairly distinctive but could be misidentified for L. trifolii. Identification using the male genitalia should only be undertaken by specialists.

Colour: the head (including the antenna and face), is bright yellow. The hind margin of the eye is black, vte usually on black ground, the dark colour diminishes towards the upper orbits and becomes paler, brownish towards the base of vti, which may be just on dark ground or on the yellow. The mesopleura is predominantly yellow, with a variable dark area, from a slim grey bar along the base to extensive darkening reaching higher up the front margin than the back margin. The sternopleura is largely filled by a black triangle, but always with bright yellow above. The femora and coxa are bright yellow. The tibia and tarsi are darker. The fore-legs are brownish-yellow and the hind legs are brownish-black. The abdomen is largely black but the tergites are variably yellow, particularly at the sides. The squamae are yellowish, with a dark margin and fringe. Although individual specimens may vary considerably in colour, the basic pattern is consistent.


Top of page It is difficult to give accurate distributional notes on L. sativae at present, as there is every evidence that the fly is rapidly expanding its presence and colonizing most habitats to which it is introduced. An example is its present status in China, where it is widespread (Institute of Zoology, Beijing, China; report in preparation). Originally recognized as present in Sanya, Hainan Provinces in 1993 ( Xie-Qonh Hua et. al., 1997), it has quickly spread north and west to most Provinces since that time, causing serious damage in some areas. This is probably the true situation in most countries where it has been introduced. It will take some years before a more settled picture can be given, where a combination of natural climatic restrictions and man's effort at eradication will stabilize the flies' progress.

L. sativae has been identified as an A1 risk in the Netherlands (OEPP/EPPO, 1984) and the UK (EPPO, 1984).

See also CABI/EPPO (1998, No. 95).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


BangladeshPresentSantosh and Bhuiya, 2014
CambodiaAbsent, unreliable recordEPPO, 2014
ChinaRestricted distributionEPPO, 2014
-AnhuiPresentEPPO, 2014
-FujianPresentCABI/EPPO, 2006; EPPO, 2014
-GuangdongPresentEPPO, 2014
-HainanPresentEPPO, 2014
-HebeiPresentEPPO, 2014
-HenanPresentEPPO, 2014
-HubeiPresentLi et al., 2006
-HunanPresentEPPO, 2014
-ShandongPresentZeng et al., 2002
-ShanghaiPresentYuan et al., 2000
-ShanxiPresentCABI/EPPO, 2006; EPPO, 2014
-SichuanPresentCABI/EPPO, 2006; EPPO, 2014
-XinjiangPresentZhu et al., 2004
-YunnanPresentEPPO, 2014
-ZhejiangPresentEPPO, 2014
IndiaRestricted distributionEPPO, 2014
-Uttar PradeshPresentEPPO, 2014
IndonesiaPresentEPPO, 2014
-JavaPresentCABI/EPPO, 2006; EPPO, 2014
IranPresentCABI/EPPO, 2006; EPPO, 2014
IsraelPresentEPPO, 2014
JapanRestricted distributionEPPO, 2014
-HonshuRestricted distributionEPPO, 2014
-KyushuRestricted distributionEPPO, 2014
-Ryukyu ArchipelagoRestricted distributionEPPO, 2014
JordanPresentEPPO, 2014
LaosAbsent, unreliable recordEPPO, 2014
MalaysiaPresentCABI/EPPO, 2006; EPPO, 2014
-Peninsular MalaysiaPresentCABI/EPPO, 2006; EPPO, 2014
OmanPresent1990Deeming, 1992; EPPO, 2014
PakistanAbsent, unreliable recordEPPO, 2014
Sri LankaPresentCABI/EPPO, 2006; EPPO, 2014
ThailandRestricted distribution1994Martinez, 1994; EPPO, 2014
TurkeyRestricted distributionEPPO, 2014
UzbekistanRestricted distributionEPPO, 2014
VietnamWidespreadEPPO, 2014
YemenPresent, few occurrencesDeeming, 1992; EPPO, 2014


CameroonPresentMartinez and Bordat, 1996; EPPO, 2014
CongoAbsent, unreliable recordEPPO, 2014
EgyptPresentEPPO, 2014
EthiopiaAbsent, unreliable recordEPPO, 2014
KenyaPresentEPPO, 2014
NigeriaPresentEPPO, 2014
South AfricaAbsent, unreliable recordEPPO, 2014
SudanPresentMartinez and Bordat, 1996; EPPO, 2014
TanzaniaAbsent, unreliable recordEPPO, 2014
ZimbabweRestricted distributionEPPO, 2014

North America

CanadaRestricted distributionEPPO, 2014
-OntarioPresentMcClanahan, 1980; EPPO, 2014
MexicoPresentEPPO, 2014; Medina et al., 2014
USARestricted distributionEPPO, 2014
-AlabamaPresentSpencer and, 1986; EPPO, 2014
-ArizonaPresentEPPO, 1990; EPPO, 2014
-ArkansasPresentEPPO, 2014
-CaliforniaPresentSpencer and, 1986; EPPO, 1990; EPPO, 2014
-FloridaPresentSpencer and, 1986; EPPO, 1990; EPPO, 2014
-GeorgiaPresentChalfant and Young, 1984; EPPO, 1990; EPPO, 2014
-HawaiiPresentSpencer and, 1986; EPPO, 1990; EPPO, 2014
-IndianaPresentYork, 1988; EPPO, 2014
-LouisianaPresentEPPO, 2014
-MarylandPresentEPPO, 2014
-New JerseyPresentEPPO, 2014
-OhioPresentSpencer and, 1986; EPPO, 1990; EPPO, 2014
-PennsylvaniaPresentEPPO, 2014
-South CarolinaPresentSpencer and, 1986; EPPO, 2014
-TennesseePresentEPPO, 2014
-TexasPresentSpencer and, 1986; EPPO, 2014

Central America and Caribbean

Antigua and BarbudaPresentEPPO, 2014
BahamasRestricted distributionEPPO, 2014
BarbadosRestricted distributionSpencer and, 1986; EPPO, 2014
Costa RicaPresentEPPO, 2014
CubaPresentEPPO, 2014
DominicaPresentEPPO, 2014
Dominican RepublicPresentEPPO, 2014
GuadeloupePresentEPPO, 2014
JamaicaRestricted distributionSpencer and, 1986; EPPO, 2014
MartiniqueWidespreadEPPO, 2014
MontserratPresentEPPO, 2014
Netherlands AntillesPresentEPPO, 2014
NicaraguaPresentRosset et al., 1987; EPPO, 2014
PanamaPresentEPPO, 2014
Puerto RicoPresentEPPO, 2014
Saint Kitts and NevisPresentEPPO, 2014
Saint LuciaPresentIntroduced Invasive EPPO, 2014
Saint Vincent and the GrenadinesWidespreadEPPO, 2014
Trinidad and TobagoPresentEPPO, 2014

South America

ArgentinaWidespreadSpencer and, 1986; EPPO, 2014
BrazilRestricted distributionSpencer and, 1986; EPPO, 2014
-CearaPresentEPPO, 2014
-ParanaPresentLorini and Foerster, 1987; EPPO, 2014
-PernambucoPresentEPPO, 2014
-Rio de JaneiroPresentEPPO, 2014
-Rio Grande do NortePresentSpencer, 1990; EPPO, 2014
ChileRestricted distributionSpencer and, 1986; EPPO, 2014
ColombiaRestricted distributionEPPO, 2014
French GuianaPresentEPPO, 2014
PeruRestricted distributionSpencer and, 1986; EPPO, 2014
SurinameAbsent, unreliable recordEPPO, 2014
VenezuelaRestricted distributionSpencer, 1973b; Spencer and, 1986; EPPO, 2014


CroatiaAbsent, confirmed by surveyEPPO, 2014
EstoniaAbsent, confirmed by surveyEPPO, 2014
FinlandAbsent, intercepted onlyEPPO, 2014
NetherlandsAbsent, intercepted onlyEPPO, 2014Absent, intercepted only, confirmed by survey.
PolandAbsent, invalid recordCABI/EPPO, 2006; EPPO, 2014
UKAbsent, intercepted onlyLedieu and Bartlett, 1983; EPPO, 1984; EPPO, 2014


American SamoaWidespreadEPPO, 2014
AustraliaAbsent, formerly presentIPPC, 2008; EPPO, 2014; IPPC, 2015
-QueenslandPresentEPPO, 2014; Blacket et al., 2015; IPPC, 2015; IPPC, 2017
Cook IslandsRestricted distributionEPPO, 2014
French PolynesiaPresentEPPO, 2014
GuamRestricted distributionJohnson, 1993; EPPO, 2014
Micronesia, Federated states ofPresentJohnson, 1993; EPPO, 2014
New CaledoniaRestricted distributionEPPO, 2014
Northern Mariana IslandsPresentEPPO, 2014
Papua New GuineaPresentBlacket et al., 2015
SamoaWidespreadEPPO, 2014
VanuatuPresentEPPO, 2014

Risk of Introduction

Top of page L. sativae has become a major pest of a wide variety of ornamental and vegetable crops, most notably tomatoes, chrysanthemums and celery, particularly under glass. Its importance has grown rapidly in the Americas since the 1970s, and distribution through commerce to other parts of the world is now producing serious problems everywhere, particularly in warmer climates. L. sativae is therefore listed as an A1 quarantine pest by EPPO (1984).


Top of page L. sativae will spread in any suitable habitat with a warm temperature, especially in temperature-controlled glasshouses where reproduction can become almost continuous. Particularly suitable are monocultures of primary hosts (such as Solanaceae, Fabaceae and Asteraceae) which can give rise to very large fluctuations in populations, particularly in glasshouse conditions where natural migration of hymenopterous parasites is difficult. At harvest, when the primary host is removed, there are usually enough suitable wild hosts locally to act as a reservoir and ensure continuation of L. sativae until the fields, or glasshouses, are again planted with preferred hosts.

Hosts/Species Affected

Top of page L. sativae is able to colonize a wide range of plants (primarily although not exclusively Solanaceae, Fabaceae and Asteraceae), thus ensuring success in establishing itself at any opportunity (see Spencer, 1990).

Growth Stages

Top of page Flowering stage, Fruiting stage, Seedling stage, Vegetative growing stage


Top of page L. sativae feeding punctures on the upper side of the leaves appear as white speckles between 0.13 and 0.15 mm in diameter. Oviposition punctures are usually smaller (0.05 mm) and are usually more uniformly round.

Mines are usually white with dampened black and dried brown areas. They are typically serpentine, tightly coiled, or of irregular shape, increasing in width as larvae mature. The frass is distinctive in being deposited in black strips alternately at either side of the mine (Spencer, 1973a). In larger leaves, the mines often form an irregular 'U' shape.

Fungal destruction of the leaf may also occur as a result of infection introduced from other sources during breeding activity. Wilt may occur, especially in seedlings.

List of Symptoms/Signs

Top of page
SignLife StagesType
Leaves / abnormal colours
Leaves / abnormal leaf fall
Leaves / external feeding
Leaves / internal feeding
Leaves / necrotic areas
Leaves / rot
Leaves / wilting

Biology and Ecology

Top of page Egg

L. sativae eggs are inserted just below the leaf surface. Eggs hatch in 2-5 days according to temperature. Harris and Tate (1933) give 4-7 days at 24°C. Many eggs may be laid on a single leaf.


The duration of L. sativae larval development also depends on temperature and probably on host plant. Stegmaier (1966) reports up to 80 larvae per leaf in Ricinus. Up to 24 generations can occur during the year (Xie-QongHua et al., 1997; Chen-ZaiLiao et al., 1998; Zeng-Ling et al., 1998) although 10-14 is more normal, breeding probably only being restricted by the availability of fresh plant growth in suitable hosts (Spencer, 1973).


Puparial development will vary according to season and temperature. Adult emergence occurs 7-14 days after pupariation at temperatures between 20 and 30°C (Leibee, 1982). Wolfenbarger (1947) gives 24-28 days for the complete cycle, in Florida (USA) during December-January (winter period).


Peak emergence of L. sativae adults occurs before midday (McGregor, 1914). Males usually emerge before females. Mating takes place from 24 hours after emergence and a single mating is sufficient to fertilize all eggs laid.

Female flies puncture the leaves of the host plants causing wounds which serve as sites for feeding or oviposition. Feeding punctures cause the destruction of a large number of cells on the host plant and are more clearly visible to the naked eye. About 15% of oviposition punctures made by L. sativae contain viable eggs (Parrella et al., 1981). Males are unable to puncture the leaves but have been observed feeding at punctures made by females. Both males and females feed on dilute honey (in the laboratory) and take nectar from flowers (EPPO, 1990).

Both male and female L. sativae may act as vectors for disease by transference during feeding or egg laying, but are not inherent carriers of disease.

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Bacillus thuringiensis kurstaki Pathogen
Bacillus thuringiensis thuringiensis Pathogen
Beauveria bassiana Pathogen
Chrysocharis Parasite Eggs/Larvae
Chrysocharis caribea Parasite Larvae
Chrysocharis clarkae Parasite USA chrysanthemums
Chrysocharis giraulti Parasite USA chrysanthemums
Chrysocharis melaensis Parasite Hawaii chrysanthemums
Chrysocharis oscinidis Parasite Larvae Hawaii
Chrysonotomyia punctiventris Parasite Larvae
Closterocerus cinctipennis Parasite Eggs/Larvae
Closterocerus purpureus Parasite Larvae
Closterocerus utahensis Parasite Larvae USA; Hawaii watermelons
Cothonaspis pacifica Parasite USA; Hawaii watermelons
Derostenus Parasite Eggs/Larvae
Diglyphus begini Parasite Larvae Hawaii; USA; Hawaii chrysanthemums; watermelons
Diglyphus intermedius Parasite Larvae USA chrysanthemums
Diglyphus isaea Parasite Hawaii chrysanthemums
Diglyphus minoeus Parasite Barbados vegetables
Diglyphus pulchripes Parasite USA chrysanthemums
Ganaspidium hunteri Parasite Larvae USA; Hawaii watermelons
Ganaspidium utilis Parasite Larvae
Gronotoma adachiae Parasite Abe and Konishi, 2012
Halticoptera circulus Parasite Larvae USA; Hawaii watermelons
Halticoptera patellana Parasite Eggs/Larvae
Hemiptarsenus varicornis Parasite Larvae
Metarhizium anisopliae Pathogen
Neochrysocharis formosa Parasite Larvae Hawaii
Neochrysocharis punctiventris Parasite
Oenonogastra microrhopalae Parasite
Opius Parasite Eggs/Larvae
Opius dimidiatus Parasite Hawaii; USA chrysanthemums
Opius dissitus Parasite Eggs/Larvae USA; Hawaii watermelons
Paecilomyces farinosus Pathogen
Paecilomyces fumosoroseus Pathogen
Pediobius acantha Parasite Hawaii chrysanthemums
Zaeucoila unicarinata Parasite Brazil; Parana cucumbers

Notes on Natural Enemies

Top of page

The families Eulophidae and Braconidae and near relatives (very small hymenopterous parasitic wasps), generally termed the Parasitica, appear to be the natural enemies of L. sativae. There is a worldwide distribution of these insects and in natural conditions L. sativae, like all Agromyzidae, is kept to low, balanced populations by their efforts. Waterhouse and Norris (1987) have compiled a complete list of recorded natural enemies of L. sativae.

However, since 1950, with the rise in the use of largely oil-based insecticides, many of the natural predators of L. sativae have been shown to be more susceptible to the insecticides than L. sativae itself. Consequently the survival of resistant strains of Agromyzidae have had no enemies to control them, resulting in very large and damaging populations.

Since the 1970s (Spencer, 1973a) damage done by artificial chemical control has been recognized and biological controls are now being studied and implemented to provide safer and more effective population controls.

Commercial breeding is now a regular method of producing early supplies of these parasites, particularly for glasshouse crops, thus reducing the initial population growth of L. sativae (McClanahan, 1980; Johnson, 1993). See also McClanahan (1980), Johnson (1993), Cruz and Cardona (1998), Xu-ZaiFu et al. (1998).


Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Fruits (inc. pods) eggs; larvae; pupae Yes Pest or symptoms usually visible to the naked eye
Leaves eggs; larvae; pupae Yes Pest or symptoms usually visible to the naked eye
Seedlings/Micropropagated plants eggs; larvae; pupae Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Growing medium accompanying plants
Stems (above ground)/Shoots/Trunks/Branches
True seeds (inc. grain)


Top of page L. sativae is the most serious of the agromyzid pests, causing severe damage and loss of yield in many of the southern states of America, and also in South America. Its spread to other areas has become a matter of considerable concern. Losses of 80% have been reported for celery in Florida; tomato yields in many parts of its range and many other crops may be seriously reduced by its activities. Medicago sativa in Argentina has been seriously damaged, with estimates of up to 80% losses (Spencer, 1973a). Young plants are particularly susceptible to damage and consequent reduced efficiency or death, whilst older plants may also be seriously damaged through leaf loss due to many mines occurring in each leaf.

In most of its habitats L. sativae presents a serious threat as a pest of many agricultural crops (particularly Solanaceae and Fabaceae, but has also been recorded on seven other families). It is difficult to eradicate because of its ability to survive in many weed plants which normally occur in areas adjacent to crop fields.

Detection and Inspection

Top of page The spread of Liriomyza species throughout international commerce means that identification of individual infestations must be done by a specialist of the family (Spencer, 1973a).

L. sativae flies may be detected flying closely around host plants or moving erratically and rapidly upon the leaf surfaces. Inspection of the leaf surface will reveal punctures of the epidermis and the obvious whitish mines with linear grains of frass at intervals along the length of the mine.

For accurate identification, examination of the leaf mine and all stages of development are crucial.

Successful L. sativae larvae will be found still feeding at the end of the mine, or the mine will end with a small convex slit in the epidermis. Sometimes the puparia, or its exuviae, may be found adhering to the leaf surface, although in most cases the fully fed larva will have found its way to the ground beneath the plant to pupariate. This is especially true in hot dry conditions where the larva/puparia would quickly desiccate if exposed on the leaf surface. Empty puparial cases are split at the anterior end, but not usually separated from the rest of the case.

Mined leaves should be collected into polythene bags and transferred to a press as soon as possible. Leaves containing larvae intended for breeding should be collected into individual polythene bags, which on return to the laboratory should be slightly over-pressurized by blowing into them before sealing the end. Blowing up the bag by mouth and sealing it adds valuable carbon dioxide to the moist air mix. Constant attention is required to ensure that pupae are transferred to individual tubes until the fly emerges. If the plant material begins rotting, good material with feeding larvae must be removed to more sanitary conditions.

When pupae are observed they can be removed to tubes containing a layer of fine sand or a small strip of blotting or filter paper. This should be kept damp, never wet, until the imago emerges.

On emergence, the fly should be kept for at least 24 hours to harden up. Do not allow condensation to come into contact with the fly, or it will stick to the water film and be damaged.

Collection of the adult L. sativae is done by netting. Sticky traps, especially yellow ones, placed near host plants provide a very effective method of collection and estimation of infestation. For positive identification, leaves containing larvae or puparia may be picked and kept in a humid, not wet, atmosphere in a sealed plastic bag. If the puparial stage is collected, these may be separated from the leaf. Great care is needed to ensure that no damage is done to the puparial skin or death will almost certainly follow. The pupariae may be stored in glass tubes on a layer of clean sand, or better still, thick filter paper. The tube must have an atmosphere of very high humidity, but without condensation. When the fly emerges, it should be allowed to harden for 24 hours before killing for identification purposes, but again care should be taken to ensure that there is no condensation present in the tube.

Newly emerged adult L.sativae are generally softer than specimens aged for several days and may crinkle as drying proceeds, especially at the head. The ptilinal sac may still protrude from the suture between the frons and face, obliterating some important characteristics. Adults should be dried slowly in the dark in a sealed receptacle over blotting paper. If preserving wet is preferred, the live specimen should be dropped into 20-40% alcohol, and transferred to 70-90% alcohol after 2 days.

Similarities to Other Species/Conditions

Top of page Liriomyza species, in general, may be recognized by their black (sometimes brilliantly black) and yellow colouring. Particularly, the scutellum is usually bright yellow and distinctive. All Liriomyza species are similar and may be mistaken for each other on quick examination. These are L. sativae (origins probably in South America); L. huidobrensis (origins in South America); L. trifolii (origins probably the Caribbean/Florida); L. bryoniae (origins in Europe); L. strigata (origins in Europe); L. congesta (origins in Europe/Western Asia); L. brassicae (origins probably North America).

L. sativae may often be distinguished from other species by the brilliant, shiny, black mesonotum, although the paler forms of L. brassicae may be confused with it. In particular, the scutellum of L. sativae is usually yellow and distinctive. In such cases final identification must be made from a study of the male genitalia.

The spread of Liriomyza species through international commerce and the similarities between the seven species means that identification of individual infestations must be done by specialists (Spencer, 1973).

Menken and Ulenberg (1986) describe a method of distinguishing L. sativae from L. bryoniae, L. huidobrensis and L. trifolii, using allozyme variation patterns as revealed by gel electrophoresis.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

The release of gamma-irradiated and hence sterile male L. sativae or Parasitica in glasshouses has been tested with considerable success. Süss et al. (1986) used L. trifolii on chrysanthemums, but the technique may be applied irrespective of species.

Parasitica release has also proved a useful technique in the control of L. sativae. Wharton (1984) used Opius dissectus reared from L. sativae on sorghum, tomatoes and Phaseolus spp. for biological control experiments.

Since 1950, with the rise in the use of largely oil-based insecticides, and chlorinated chemicals, many of the natural predators of L. sativae have been shown to be more susceptible to the insecticides than L. sativae itself. Consequently the survival of resistant strains (such as Agromyzidae) have had no enemies to control them, resulting in very large and damaging populations.

Regho-Filho et al. (1993) have reported on preventive spraying of seedlings with residual insecticides such as abermectin or pyrethrum sprays to reduce early egg laying. Oliveira et al. (1991) have used the insecticides trichlorfon and diazinon in an integrated control programme, but found that although the number of leaflets mined was reduced, permethrin could significantly improve the yield of tomatoes, and the presence of a natural enemy of the genus Opius, which attacks the puparial stage, was an important regulator. Within this study, a large number of tomato cultivars were tested for resistance to attack by L. sativae.

Limited success has also been obtained by exposing yellow sticky traps close above the growing plants, as the males tend to fly low between plants and in general are more mobile than the females. This practice helps to reduce the number of sexually active males, in particular, and so reduce mating probability (Espino et al., 1988; Liu et al., 1992).

Bordat et al. (1988) made studies of the effect of entomogenous fungal strains on L. sativae pupae and found great reductions (sometimes as much as 80%) in the emergence of adults.

General hygiene conditions in horticulture and farming should be maintained by clearing all weeds and treating glasshouse soils where practical, to destroy pupae. Weeds and waste plant material, if infested, should be burned and not composted (Velez et al., 1980).

All stages are killed within a few weeks by cold storage at 0°C. Newly laid eggs are the most resistant stage and it is recommended that cuttings of infested ornamental plants (such as carnations and chrysanthemums) be maintained under normal glasshouse conditions for 3-4 days after lifting to allow eggs to hatch. Subsequent storage of plants at 0°C for 1-2 weeks should then kill off the larvae of leaf miner species (Webb and Smith, 1970).

To avoid the introduction of L. sativae (and other leaf miner species L. huidobrensis and Amauromyza maculosa [Nemorimyza maculosa]), EPPO (OEPP/EPPO, 1990) recommends that propagating material (except seeds) of Capsicum, carnations, celery, chrysanthemums, Cucumis, Gerbera, Gypsophila, lettuces, Senecio hybridus and tomatoes from countries where L. sativae occurs must have been inspected at least monthly during the previous 3 months and found to be free from L. sativae.

A phytosanitary certificate should be required for cut flowers and for harvested and transported vegetables with leaves.



Top of page

1984. Data sheets on quarantine organisms. Bulletin OEPP, 14(1):78 pp.

Abe Y; Konishi K, 2012. New distributional and host records for the parasitoid Gronotoma adachiae (Hymenoptera: Figitidae: Eucoilinae) in Asia. Entomological Science, 15(3):346-348.

Blacket MJ; Rice AD; Semeraro L; Malipatil MB, 2015. DNA-based identifications reveal multiple introductions of the vegetable leafminer Liriomyza sativae (Diptera: Agromyzidae) into the Torres Strait Islands and Papua New Guinea. Bulletin of Entomological Research, 105(5):533-544.

Bordat D; Robert P; Renand M, 1988. Susceptibility of Liriomyza trifolii (Burgess) and L. sativae Blanchard (Diptera, Agromyzidae) to eleven strains of entomopathogenic fungi. Agronomie Tropicale, 43(1):68-73

CABI/EPPO, 1998. Distribution maps of quarantine pests for Europe (edited by Smith IM, Charles LMF). Wallingford, UK: CAB International, xviii + 768 pp.

CABI/EPPO, 2006. Liriomyza sativae. Distribution Maps of Plant Pests, No. 477. Wallingford, UK: CAB International.

Chalfant RB; Young JR, 1984. Management of insect pests of broccoli, cowpeas, spinach, tomatoes, and peanuts with chemigation by insecticides in oils, and reduction of watermelon virus 2 by chemigated oil. Journal of Economic Entomology, 77(5):1323-1326

Chen ZaiLiao; Xu FangCheng; Wu YongHan; Jiang ZhouDuo, 1998. A preliminary study on biology of Liriomyza sativae. Acta Agriculturae Zhejiangensis, 10(3):133-135; 3 ref.

Cruz M; Cardona C, 1998. Economic importance of the leafminer Liriomyza sativae (Diptera: Agromyzidae) as a pest of beans in the Valle del Cauca. Revista Colombiana de Entomologia, 24(1-2):49-53.

Deeming JC, 1992. Liriomyza sativae Blanchard (Diptera: Agromyzidae) established in the Old World. Tropical Pest Management, 38(2):218-219

EPPO, 1990. Data sheets on quarantine pests. Liriomyza sativae. Bulletin OEPP.

EPPO, 1990. Specific quarantine requirements. EPPO Technical Documents, No. 1008. Paris, France: European and Mediterranean Plant Protection Organization.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization.

Espino E; Barroso J; Carnero A, 1988. Preliminary results of integrated control in cucumber in the Canaries. Boletín de Sanidad Vegetal, Plagas, 14(1):55-66; 7 ref.

Frick, 1952. Four new Hawaiian Liriomyza species and notes on other Hawaiian Agromyzidae (Diptera). Proceedings, Hawaiian Entomological Society, (March) XIV(3):509-518.

Harris HM; Tate HD, 1933. A leafminer attacking the cultivated onion. Journal of Economic Entomology, 26:515-516.

Hedrick UP, 1972. Sturtevant's Edible Plants of the World. New York: Dover Publications Incorporated.

IPPC, 2008. Detection of vegetable leafminer in Torres Strait. IPPC Official Pest Report, No. AU-13/1. Rome, Italy: FAO.

IPPC, 2015. Detection of Vegetable Leafminer in Torres Strait. IPPC Official Pest Report, No. AUS-13/2. Rome, Italy: FAO.

Johnson MW, 1993. Biological control of Liriomyza leafminers in the Pacific Basin. Micronesica, No. 4 suppl:81-92

Ledieu MS; Bartlett PW, 1983. Leaf miners of chrysanthemum. Leaflet, Ministry of Agriculture, Fisheries and Food, UK, No. 550:8 pp.

Leibee GL, 1982. Development of Liriomyza trifolii on celery. In: Proceedings of IFAS (Institute of Food & Agricultural Sciences, University of Florida) Industry Conference on Biology and Control of Liriomyza leafminers, Lake Bu_na Vista, Florida, USA, 35-41.

Li ShaoQin; Deng WangXi; Zhang QiuDong; Cui Qi, 2006. Study on host selectivity of Liriomyza sativae to different cultivars of cucumber. Journal of Huazhong Agricultural University, 25(2):134-137.

Liu TS; Wang YS, 1992. Screening for insecticides and the application of yellow sticky cards in the control of the American leafminer Liriomyza trifolii (Burgess). Bulletin of Taichung District Agricultural Improvement Station, No. 36:7-16

Lorini I; Foerster LA, 1987. Seasonal damage and efficiency of insecticides against the pickleworm Diaphania nitidalis (Stoll), (Lepidoptera: Pyralidae) in cucumber (Cucumis sativus L.). Anais da Sociedade Entomologica do Brasil, 16(1):145-153

Mabberley DJ, 1989. The Plant Book. Cambridge, UK: Cambridge University Press.

Martinez M, 1994. A new pest menaces the Oriental Region: Liriomyza sativae Blanchard (Diptera, Agromyzidae). Bulletin de la Societe Entomologique de France, 99(4):356

Martinez M; Bordat D, 1996. Note on the occurrence of Liriomyza sativae Blanchard in Sudan and Cameroon (Diptera, Agromyzidae). Bulletin de la Socie^acute~te^acute~ Entomologique de France, 101(1):71-73; 3 ref.

McClanahan RJ, 1980. Biological control of Liriomyza sativae on greenhouse tomatoes. Bulletin SROP, 3:135-139

McGregor EA, 1914. The serpentine leafminer on cotton. Journal of Economic Entomology, 7:227-454.

Medina R; Partida L; Palacios RE; Ail CE; Díaz T; Velázquez TJ, 2014. First report of Liriomyza sativae (Diptera: Agromizidae) mining the leaves of Cicer arietinum. (Primer registro de Liriomyza sativae (Diptera: Agromizidae) como minador de la Hoja del Garbanzo Cicer arietium.) Southwestern Entomologist, 39(1):197-199.

Menken SBJ; Ulenberg SA, 1986. Allozymatic diagnosis of four economically important Liriomyza species (Diptera, Agromyzidae). Annals of Applied Biology, 109(1):41-47.

OEPP/EPPO, 1992. Quarantine Procedures No. 42. Identification of Liriomyza spp. Bulletin OEPP/EPPO Bulletin, 22:235-238.

Parrella MP; Allen WW; Morishita P, 1981. Leafminer species causes California mum growers new problems. California Agriculture, 35(9/10):28-30

Petitt FL, 1990. Distinguishing larval instars of the vegetable leafminer Liriomyza sativae (Diptera: Agromyzidae). Florida Entomologist, 73(2):280-286

Rego Filho L de M; Perruso JC; Leite WW; Nascimento FN do; Leite JLB; Ferreira L; Cassino PCR, 1993. The efficiency of insecticides for the control of Liriomyza sativae Blanch. (Diptera: Agromyzidae) and Scrobipalpuloides absoluta Meir. (Lepidoptera: Gelechiidae) on staked tomato plants. Anais da Sociedade Entomologica do Brasil, 22(2):349-353

Rosset P; Diaz I; Ambrose R; Cano P; Varrela G; Snook A, 1987. Evaluation and validation of the polycultural system of tomatoes and beans as a part of an integrated pest management programme for tomatoes, in Nicaragua. Turrialba, 37(1):85-92

Santosh Mazumdar; Bhuiya BA, 2014. Vegetable leafminers (Diptera: Agromyzidae) and their plant hosts in Bangladesh. Journal of Threatened Taxa, 6(6):5894-5899.

Schotman CYL, 1989. Plant pests of quarantine importance to the Caribbean. RLAC-PROVEG, No. 21:80 pp.

Spencer KA, 1972. Agromyzidae (Diptera) of economic importance. Agromyzidae (Diptera) of economic importance. The Hague, The, Dr. W. Junk B.V. Netherlands, xi + 418 pp.

Spencer KA, 1973b. The Agromyzidae of Venezuela. Revista Facultad Agronómica, Maracay, 7(2):5-107.

Spencer KA, 1981. A revisionary study of the leaf-mining flies (Agromyzidae) of California. A revisionary study of the leaf-mining flies (Agromyzidae) of California. Division of Agricultural Sciences, California University Berkeley, California USA, iv + 489 pp.

Spencer KA, 1990. Host specialization in the world Agromyzidae (Diptera). Dordrecht, Netherlands: Kluwer Academic Publishers, 444 pp.

Spencer KA; Steyskal GC, 1986. Manual of the Agromyzidae (Diptera) of the United States. Agriculture Handbook, USDA, No. 638:vi + 478pp.

Stegmaier CE Jr, 1966. Host plants and parasites of Liriomyza munda in Florida (Diptera: Agromyzidae). Florida Entomologist, 49(2):81-86.

Steyskal GC, 1964. Descriptive and Synonymical Notes on Liriomyza munda (Diptera:Agromyzidae). Annals of the Entomological Society of America, 57(3):388-389.

Süss L; Agosti G, 1986. Valuatzione dell'uso di raggi gamma nella sterilizzazione di Liriomyza trifolii (Burgess). [Evaluation of gamma-rays in inducing infertility in Liriomyza trifolii (Burgess)]. Atti Giornate Fitopatologichce, 1, 169-176.

UK; CAB International Institute of Entomology, 1986. Distribution Maps of Pests, Nos. 7,76,157,191,284, 363,475,476,477

Velez A R; Madrigal C A; Morales S G, 1980. Management of the chrysanthemum miner in export crops in eastern Antioquia. Revista Colombiana de Entomologia, 6(1/2):37-42

Waterhouse DF; Norris KR, 1987. Biological control: Pacific prospects. viii + 454pp

Webb RE; Smith FF, 1970. Survival of eggs of Liriomyza munda in chrysanthemums during cold storage. Journal of Economic Entomology, 63:1359-1361.

Wharton RA, 1984. The status of certain Braconidae (Hymenoptera) cultured for biological control programmes, and description of a new species of Macrocentrus. Proceedings of the Entomological Society of Washington, 86(4):902-912

Wolfenbager DO, 1947. The serpentine leaf miner and its control. Florida Agriculture Experiment Station Press Bulletin, 639:1-6.

Xie QongHua; He TanLian; Cai DeJiang; Huang HeQing, 1997. Infestation of Liremyza sativae Blanchard and its control. Plant Protection, 23(1):20-22.

Xu ZaiFu; Zeng Ling, 1998. Current status of the study of parasitoids of Liriomyza sativae Blanchard. Natural Enemies of Insects, 20(3):129-135; 51 ref.

York AC, 1988. Leafminers (Diptera: Agromyzidae) on vegetables in Indiana. Acta Horticulturae, No. 219:115-117

Yuan YongDa; Wang DongSheng; Wu ShiChang, 2000. Studies on controlling Liriomyza sativae Blanchard with some pesticides. Acta Agriculturae Shanghai, 16(Supplement):29-31.

Zeng YiLiang; Wang DaSheng; Qin XiaoWei; Chen ZhiQiang, 2002. Field tests of several mixtures of abamectin and other insecticides for controlling Liriomyza sativae. Plant Protection, 28(6):52-54.

Zeng-Ling; Wu-JiaJiao; Liang-GuangWen, 1998. Effects of temperature on the development of Liriomyza sativae (Diptera: Agromyzidae). Journal of South China Agricultural University, 19(3):21-25.

Zhu XiaoHua; Fang DeLi; Wang Yong; Chen HongBing; Mei Yan; Wang Pei; Zhou HaiJun; Zhu RuiRong, 2004. Observation on life history of Liriomyza sativae Blanchard in Hami area of Xinjiang. Xinjiang Agricultural Sciences, 41(5):306-307.

Links to Websites

Top of page
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway source for updated system data added to species habitat list.

Distribution Maps

Top of page
You can pan and zoom the map
Save map