Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Linaria vulgaris
(common toadflax)

Toolbox

Datasheet

Linaria vulgaris (common toadflax)

Summary

  • Last modified
  • 19 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Linaria vulgaris
  • Preferred Common Name
  • common toadflax
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • L. vulgaris is a perennial flowering plant with a spreading root system. It forms dense mats which can compete with crops and suppress native vegetation, reducing pasture productivity and/or biodiversity (...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Linaria vulgaris (common toadflax); flowers. Germany.
TitleFlowers
CaptionLinaria vulgaris (common toadflax); flowers. Germany.
Copyright©Georg Slickers via wikipedia - CC BY-SA 3.0
Linaria vulgaris (common toadflax); flowers. Germany.
FlowersLinaria vulgaris (common toadflax); flowers. Germany.©Georg Slickers via wikipedia - CC BY-SA 3.0
Linaria vulgaris (common toadflax); infestation in flower (note presence of ox-eye daisy, Leucanthemum vulgare). Routt National Forest, Colorado, USA.
TitleInfestation
CaptionLinaria vulgaris (common toadflax); infestation in flower (note presence of ox-eye daisy, Leucanthemum vulgare). Routt National Forest, Colorado, USA.
Copyright©William M. Ciesla/Forest Health Management International/Bugwood.org - CC BY-NC 3.0 US
Linaria vulgaris (common toadflax); infestation in flower (note presence of ox-eye daisy, Leucanthemum vulgare). Routt National Forest, Colorado, USA.
InfestationLinaria vulgaris (common toadflax); infestation in flower (note presence of ox-eye daisy, Leucanthemum vulgare). Routt National Forest, Colorado, USA.©William M. Ciesla/Forest Health Management International/Bugwood.org - CC BY-NC 3.0 US
Linaria vulgaris (common toadflax); infestation in flower. Alaska, USA.
TitleInfestation
CaptionLinaria vulgaris (common toadflax); infestation in flower. Alaska, USA.
Copyright©Michael Shephard/USDA Forest Service/Bugwood.org - CC BY 3.0 US
Linaria vulgaris (common toadflax); infestation in flower. Alaska, USA.
InfestationLinaria vulgaris (common toadflax); infestation in flower. Alaska, USA.©Michael Shephard/USDA Forest Service/Bugwood.org - CC BY 3.0 US
Linaria vulgaris (common toadflax); flower spike. Note unopened flowers and developing seed-pods. Alaska, USA.
TitleFlower spike
CaptionLinaria vulgaris (common toadflax); flower spike. Note unopened flowers and developing seed-pods. Alaska, USA.
Copyright©Michael Shephard/USDA Forest Service/Bugwood.org - CC BY 3.0 US
Linaria vulgaris (common toadflax); flower spike. Note unopened flowers and developing seed-pods. Alaska, USA.
Flower spikeLinaria vulgaris (common toadflax); flower spike. Note unopened flowers and developing seed-pods. Alaska, USA.©Michael Shephard/USDA Forest Service/Bugwood.org - CC BY 3.0 US
Linaria vulgaris (common toadflax); seeds (note scale). USA.
TitleSeeds
CaptionLinaria vulgaris (common toadflax); seeds (note scale). USA.
Copyright©Steve Hurst/USDA NRCS PLANTS Database/Bugwood.org - CC BY-NC 3.0 US
Linaria vulgaris (common toadflax); seeds (note scale). USA.
SeedsLinaria vulgaris (common toadflax); seeds (note scale). USA.©Steve Hurst/USDA NRCS PLANTS Database/Bugwood.org - CC BY-NC 3.0 US

Identity

Top of page

Preferred Scientific Name

  • Linaria vulgaris Miller

Preferred Common Name

  • common toadflax

Other Scientific Names

  • Antirrhinum commune Lam.
  • Antirrhinum genistifolium Lapeyr.
  • Antirrhinum glandulosum Lej.
  • Antirrhinum linaria L.
  • Antirrhinum linarioides L.
  • Antirrhinum ochroleucum Salisb.
  • Antirrhinum vulgaris L.
  • Linaria vulgaris f. peloria (With.) Rouleau
  • Linaria vulgaris var. communis Krylov
  • Peloria linaria (L.) Raf.

International Common Names

  • English: butter-and-eggs; common toadflax; toadflax; wild snapdragon; yellow toadflax
  • Spanish: linaria comun; pajarita
  • French: linaire commune; linaire vulgaire

Local Common Names

  • China: liu chuan yu
  • Czech Republic: hosoba-unran; inice obecná; sporrebloma
  • Denmark: torskemund
  • Finland: kannusruoho
  • Germany: Flachskraut; Frauenflachs; Gemeines Leinkraut; Leinkraut; Löwenmaul
  • Italy: linaiola; linajola; linaria volgare
  • Jamaica: dead man bones
  • Japan: hoso-ba un-ran; hosobaunran; seiyou un-ran
  • Netherlands: vlasbekje; vlasleeuwebek
  • Poland: linnete; lnica pospolita
  • Russian Federation: l'nânka obyknovennaâ
  • Slovakia: nevruzotu; pyštek obycajný
  • Sweden: gulsporre
  • USA: Jacob's ladder; ranstead

EPPO code

  • LINVU (Linaria vulgaris)

Summary of Invasiveness

Top of page

L. vulgaris is a perennial flowering plant with a spreading root system. It forms dense mats which can compete with crops and suppress native vegetation, reducing pasture productivity and/or biodiversity (ISSG, 2015). Native to temperate areas of Europe and Asia, it has been widely introduced to North America, Australia, New Zealand and South Africa, and is regarded as noxious in many of these countries. By inclusion in indexes of invasive species it is regarded as invasive widely in Canada and in the USA (Alberta Invasive Species Council, 2014; Invasive Plant Atlas of the United States, 2015). L. vulgaris received an invasive index of 69 (out of a maximum of 100) in Alaska, USA (ANHP, 2011). It is also regarded as invasive within its native range in Serbia (Dzigurski and Nikolic, 2014).

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Scrophulariales
  •                         Family: Scrophulariaceae
  •                             Genus: Linaria
  •                                 Species: Linaria vulgaris

Notes on Taxonomy and Nomenclature

Top of page

This species was named Antirrhinum linaria by Linnaeus, but was moved to the genus Linaria as L. vulgaris by Philip Miller in 1768, and that name has been universally accepted. The genus Linaria was previously included in the family Scrophulariaceae, and many sources still use that classification, but a series of genetic studies resulted in the disintegration of the old Scrophulariaceae. Apart from all the parasitic members of the family being transferred to the Orobanchaceae, Linaria - along with Antirrhinum and Scrophularia - were transferred to Plantaginaceae (Judd et al., 1999; 2002; Olmstead et al. 2001; APG, 2003). The genus has about 100 species.

Hybrids with L. repens (L. x sepium) can occur, and have been recorded in for example Newfoundland in the early 1900s (Zouhar, 2003). Zouhar also reported that hybrids with L. dalmatica had been created in the laboratory, and Ward et al. (2009) confirmed that L. dalmatica and L. vulgaris hybrids occur in the wild in Montana, USA, and are viable and fertile.

Description

Top of page

From Flora of China (2015):

Perennial, spreading by roots bearing adventitious buds, 20-80 cm tall, glabrous except for inflorescences. Stems erect, often apically branched. Leaves pale green, usually numerous and alternate, rarely basal ones whorled, rarely all in whorls of 4; leaf blade linear, 2-8 x 0.2-1.5 cm, veins 1(-3). Inflorescences racemose, flowers crowded, axis elongating in fruit; axis and pedicels glabrous to densely with short glandular hairs; bracts linear to narrowly lanceolate, longer than pedicel. Pedicel 2-8 mm. Calyx glabrous or inside sparsely glandular hairy; lobes lanceolate to ovate-lanceolate. Corolla yellow, 1-1.5 cm (excluding spur); spur 1-1.5 cm, slightly curved; lateral lower lip lobes ovate-orbicular, 3-4 mm wide, middle lobe ligular; upper lip longer than lower lip, lobes ca. 2 mm, ovate. Capsule ovoid-globose. Seeds 2 mm across, disc-like, margin broadly winged, centre verrucose when mature. Flowers from June to September.

Plant Type

Top of page Broadleaved
Herbaceous
Perennial
Seed propagated
Vegetatively propagated

Distribution

Top of page

L. vulgaris is native to temperate areas of Europe and Asia as far as China. It has been introduced to North America, where it has become naturalized throughout the USA and all but the northwestern territory of Canada. It has also become naturalized in Japan, South Africa, Chile, Australia and New Zealand. Hulten (1968) listed it as occurring in Guatemala and Jamaica; however, GBIF (2015) has no records for these two countries and L. vulgaris is presumably not naturalized but only in cultivation there.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

ChinaPresentUSDA-ARS, 2003; USDA-ARS, 2015
-GansuPresentNativeUSDA-ARS, 2015
-HebeiPresentFlora of China Editorial Committee, 2015
-HenanPresentNativeUSDA-ARS, 2015
-JiangsuPresentNativeUSDA-ARS, 2015
-JilinPresentFlora of China Editorial Committee, 2015
-LiaoningPresentFlora of China Editorial Committee, 2015
-Nei MengguPresentFlora of China Editorial Committee, 2015
-ShaanxiPresentNativeUSDA-ARS, 2015
-ShandongPresentNativeUSDA-ARS, 2015
-XinjiangPresentNativeUSDA-ARS, 2015
JapanPresentIntroduced1926GBIF, 2015
Korea, Republic ofPresentNativeFlora of China Editorial Committee, 2015
TurkeyPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015

Africa

South AfricaPresentIntroduced1892GBIF, 2015

North America

CanadaWidespreadIntroduced1820 Invasive Holm et al., 1979; Alberta Invasive Plants Council, 2014; USDA-NRCS, 2015
-AlbertaPresentIntroduced Invasive Alberta Invasive Plants Council, 2014; USDA-NRCS, 2015
-British ColumbiaPresentIntroducedUSDA-NRCS, 2015
-ManitobaPresentIntroducedUSDA-NRCS, 2015
-New BrunswickPresentIntroducedUSDA-NRCS, 2015
-Newfoundland and LabradorPresentIntroducedUSDA-NRCS, 2015
-Nova ScotiaPresentIntroducedUSDA-NRCS, 2015Including Sable Island (Catling et al., 2009)
-NunavutPresentIntroducedUSDA-NRCS, 2015
-OntarioPresentIntroducedUSDA-NRCS, 2015
-Prince Edward IslandPresentIntroducedUSDA-NRCS, 2015
-QuebecPresentIntroducedUSDA-NRCS, 2015
-SaskatchewanPresentIntroducedUSDA-NRCS, 2015
-Yukon TerritoryPresentIntroducedUSDA-NRCS, 2015
GreenlandPresentIntroducedUSDA-NRCS, 2015
Saint Pierre and MiquelonPresentIntroducedUSDA-NRCS, 2015
USAWidespreadIntroduced<1672 Invasive Holm et al., 1979; Invasive Plant Atlas of the United States, 2015; USDA-NRCS, 2015
-AlabamaPresentIntroducedUSDA-NRCS, 2015
-AlaskaPresentIntroduced Invasive Invasive Plant Atlas of the United States, 2015; USDA-NRCS, 2015
-ArizonaPresentIntroducedUSDA-NRCS, 2015
-ArkansasPresentIntroducedUSDA-NRCS, 2015
-CaliforniaPresentIntroduced Invasive Invasive Plant Atlas of the United States, 2015; USDA-NRCS, 2015
-ColoradoPresentIntroducedUSDA-NRCS, 2015
-ConnecticutPresentIntroduced Invasive Invasive Plant Atlas of the United States, 2015; USDA-NRCS, 2015
-DelawarePresentIntroducedUSDA-NRCS, 2015
-District of ColumbiaPresentIntroducedUSDA-NRCS, 2015
-FloridaPresentIntroducedUSDA-NRCS, 2015
-GeorgiaPresentIntroducedUSDA-NRCS, 2015
-IdahoPresentIntroducedUSDA-NRCS, 2015
-IllinoisPresentIntroducedUSDA-NRCS, 2015
-IndianaPresentIntroducedUSDA-NRCS, 2015
-IowaPresentIntroducedUSDA-NRCS, 2015
-KansasPresentIntroducedUSDA-NRCS, 2015
-KentuckyPresentIntroducedUSDA-NRCS, 2015
-LouisianaPresentIntroducedUSDA-NRCS, 2015
-MainePresentIntroducedUSDA-NRCS, 2015; USDA-NRCS, 2015
-MarylandPresentIntroducedUSDA-NRCS, 2015
-MassachusettsPresentIntroducedUSDA-NRCS, 2015
-MichiganPresentIntroduced Invasive Invasive Plant Atlas of the United States, 2015; USDA-NRCS, 2015
-MinnesotaPresentIntroducedUSDA-NRCS, 2015
-MississippiPresentIntroducedUSDA-NRCS, 2015
-MissouriPresentIntroducedUSDA-NRCS, 2015
-MontanaPresentIntroducedUSDA-NRCS, 2015
-NebraskaPresentIntroducedUSDA-NRCS, 2015
-NevadaPresentIntroducedUSDA-NRCS, 2015
-New HampshirePresentIntroducedUSDA-NRCS, 2015
-New JerseyPresentIntroduced Invasive Invasive Plant Atlas of the United States, 2015; USDA-NRCS, 2015
-New MexicoPresentIntroducedUSDA-NRCS, 2015
-North CarolinaPresentIntroducedUSDA-NRCS, 2015
-North DakotaPresentIntroducedUSDA-NRCS, 2015
-OhioPresentIntroducedUSDA-NRCS, 2015
-OklahomaPresentIntroducedUSDA-NRCS, 2015
-OregonPresentIntroduced Invasive Invasive Plant Atlas of the United States, 2015; USDA-NRCS, 2015
-PennsylvaniaPresentIntroducedUSDA-NRCS, 2015
-Rhode IslandPresentIntroducedUSDA-NRCS, 2015
-South CarolinaPresentIntroducedUSDA-NRCS, 2015
-South DakotaPresentIntroducedUSDA-NRCS, 2015
-TennesseePresentIntroducedUSDA-NRCS, 2015
-TexasPresentIntroducedUSDA-NRCS, 2015
-UtahPresentIntroducedUSDA-NRCS, 2015
-VermontPresentIntroducedUSDA-NRCS, 2015
-VirginiaPresentIntroducedUSDA-NRCS, 2015
-WashingtonPresentIntroducedUSDA-NRCS, 2015
-West VirginiaPresentIntroducedUSDA-NRCS, 2015
-WisconsinPresentIntroduced Invasive Invasive Plant Atlas of the United States, 2015; USDA-NRCS, 2015

Central America and Caribbean

GuatemalaAbsent, unreliable recordHulten, 1968
JamaicaAbsent, unreliable recordHulten, 1968

South America

ChilePresentIntroduced1939GBIF, 2015

Europe

AlbaniaPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
AustriaPresentNativeHolm et al., 1979; USDA-ARS, 2015
BelarusPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
BelgiumPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
BulgariaPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
CroatiaPresentNativeUSDA-ARS, 2015
Czech RepublicPresentNativeUSDA-ARS, 2015
DenmarkPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
FinlandPresentNativeHolm et al., 1979; USDA-ARS, 2015
FrancePresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
-CorsicaPresentNativeUSDA-ARS, 2015
GermanyPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
GreecePresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
HungaryPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
IrelandPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
ItalyPresentNativeHolm et al., 1979; USDA-ARS, 2015
LatviaPresentNativeUSDA-ARS, 2015
LiechtensteinPresentNativeUSDA-ARS, 2015
MoldovaPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
NetherlandsPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
NorwayPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
PolandPresentNativeHolm et al., 1979; USDA-ARS, 2015
RomaniaPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
Russian FederationPresentNativeRoyal Botanic Garden Edinburgh, 2015; USDA-ARS, 2015
-Central RussiaPresentNativeRoyal Botanic Garden Edinburgh, 2015
-Eastern SiberiaPresentNativeUSDA-ARS, 2015
-Northern RussiaPresentNativeRoyal Botanic Garden Edinburgh, 2015
-Russian Far EastPresentNativeUSDA-ARS, 2015
-Southern RussiaPresentRoyal Botanic Garden Edinburgh, 2015
SerbiaPresentNative Invasive Dzigurski and Nikolic, 2014; USDA-ARS, 2015
SlovakiaPresentNativeUSDA-ARS, 2015
SloveniaPresentNativeUSDA-ARS, 2015
SpainPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
SwedenPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
SwitzerlandPresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
UKPresentNativeHolm et al., 1979; USDA-ARS, 2015
UkrainePresentNativeUSDA-ARS, 2003; USDA-ARS, 2015
Yugoslavia (Serbia and Montenegro)PresentNativeUSDA-ARS, 2003

Oceania

AustraliaPresentIntroduced1910Holm et al., 1979; Atlas of Living Australia, 2015
-New South WalesPresentIntroducedAtlas of Living Australia, 2015
-TasmaniaPresentIntroducedAtlas of Living Australia, 2015
-VictoriaPresentIntroducedAtlas of Living Australia, 2015
New ZealandPresentIntroduced1904Holm et al., 1979; GBIF, 2015

History of Introduction and Spread

Top of page

L. vulgaris has been widely spread as an ornamental plant. It was introduced to New England, USA, in the late 1600s as an ornamental and medicinal plant (Zouhar, 2003). Earliest collections recorded by GBIF (2015) include 1892 in South Africa, 1910 in Australia, 1926 in Japan, 1939 in Chile and 1978 in New Zealand.

Introductions

Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
Australia 1910 Yes No GBIF (2014); GBIF (2015) First record
Canada 1820 Yes No Saner et al. (1995)
Chile 1939 Yes No GBIF (2014); GBIF (2015) First record
Japan 1926 Yes No GBIF (2014); GBIF (2015) First record
New Zealand 1904 Yes No New Zealand Plant Conservation Network (2015)
South Africa 1892 Yes No GBIF (2014); GBIF (2015) First record
USA UK <1672 Horticulture (pathway cause) Yes No Mitich (1993); Saner et al. (1995)

Risk of Introduction

Top of page

The risk of further introductions is significant but not high. L. vulgaris continues to be sold in nurseries and seed catalogues and could be imported as an ornamental or for medicinal purposes. There is a small chance it could be introduced as a contaminant of pasture or forage seeds, but this should be precluded by phytosanitary controls.

Habitat

Top of page

L. vulgaris is a temperate species tolerating a wide range of habitats. In China, it occurs on mountain slopes, trail-sides, meadows, gravelly steppes and forests. In Finland, it was originally found on sea shores and rocks, but is now also found on road verges and other man-made habitats in the centre of the country (Hellström et al., 2006). In the USA, it is found in a wide variety of habitats, including cropland, pastures, rangeland, river banks, roadsides, railway lines and fallows, on a range of soil types (ISSG, 2015).

Sutton et al. (2007) found that L. vulgaris in the Colorado Rocky Mountains, USA, was most likely to invade open-canopy sites, along trails, and areas with higher species diversity plots (>23 species). In a similar study in Montana, USA, ridge populations of L. vulgaris were the most invasive, followed by those in valleys, and then forests (Lehnhoff et al., 2008).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedCultivated / agricultural land Principal habitat Harmful (pest or invasive)
Managed forests, plantations and orchards Secondary/tolerated habitat Harmful (pest or invasive)
Managed grasslands (grazing systems) Secondary/tolerated habitat Harmful (pest or invasive)
Disturbed areas Principal habitat Harmful (pest or invasive)
Disturbed areas Principal habitat Natural
Rail / roadsides Principal habitat Harmful (pest or invasive)
Rail / roadsides Principal habitat Natural
Urban / peri-urban areas Secondary/tolerated habitat Harmful (pest or invasive)
Urban / peri-urban areas Secondary/tolerated habitat Natural
Terrestrial ‑ Natural / Semi-naturalNatural forests Secondary/tolerated habitat Harmful (pest or invasive)
Natural grasslands Principal habitat Harmful (pest or invasive)

Hosts/Species Affected

Top of page

Although L. vulgaris is most common in non-crop and pasture situations, it is recorded as a significant weed in a wide range of annual and perennial crops, including wheat, barley, oats, rapeseed, mustard, pea, strawberry, raspberry, lucerne, orchard crops and vines (McClay and De Clerck-Floate, 2001; De Clercke-Floate and McClay, 2013; Mason and Gillespie, 2013).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Avena sativa (oats)PoaceaeOther
Brassica napusBrassicaceaeOther
Fragaria vesca (wild strawberry)RosaceaeOther
Hordeum vulgare (barley)PoaceaeOther
Medicago sativa (lucerne)FabaceaeOther
Pisum sativum (pea)FabaceaeOther
Potentilla pulcherrimaRosaceaeWild host
Rubus idaeus (raspberry)RosaceaeMain
Sinapis alba (white mustard)BrassicaceaeOther
Triticum aestivum (wheat)PoaceaeOther
Vitis vinifera (grapevine)VitaceaeOther

Growth Stages

Top of page Flowering stage, Vegetative growing stage

Biology and Ecology

Top of page

Genetics

Missouri Botanical Garden (2015) quoted a range of sources all giving a chromosome number of 2n = 12. However, Ward et al. (2008) confirmed considerable genetic diversity within populations of L. vulgaris in the USA. A naturally occurring mutant of L. vulgaris, originally described by Linnaeus, is characterized by the radial symmetry of the flower. This was shown by Theissen (2000) to be due to methylation of a single gene.

Reproductive Biology

L. vulgaris is self-incompatible and requires cross-pollination by insects, particularly bumble bees, which are attracted by the nectar in the spurs of the flowers (PFAF, 2015). In the UK, Stout et al. (2000) observed the longer-tongued Bombus hortorum and B. pascuorum to be legitimate pollinators whereas short-tongued species (B. lapidarius, B. lucorum and B. terrestris) robbed nectar by cutting holes in the side of the spur. However, they concluded that nectar robbing had little effect on plant fecundity because legitimate foragers were present in the population, and seed predation and seed abortion after fertilization may be more important factors in limiting seed production in L. vulgaris. Other pollnators noted by Arnold (1982) in the USA include Halictus confusus, Dialictus tegularis and D. pilosus,

Seed production is relatively low and germination is also usually low (ISSG, 2015). Up to 100 seeds may form per capsule but viability may be no more than 25%.

It is usually stated that most spread is vegetative by means of the roots bearing adventitious buds. These are widely but wrongly referred to as rhizomes (underground shoot structures) (Hellström et al., 2006). L. vulgaris can establish from root fragments as short as 1 cm long. The root system may penetrate up to one metre deep and several metres laterally, but shoots mainly originate from the shallower roots at depths of 2-5 cm.

Physiology and Phenology

Seeds are dormant when shed and require stratification, with maximum germination achieved after 8-20 weeks of wet stratification at 5°C (Necajeva and Probert, 2011). Germination may also be encouraged by increased light and alternating temperatures.

Seedlings (genets) can produce daughter shoots (ramets) from vegetative root buds as early as three weeks after cotyledon appearance (Zouhar, 2003). A patch one metre across consisting of 100 shoots can develop from a single seedling in a year, and the diameter of the patch can increase by at least a metre in each subsequent year (Zouhar, 2003). Development from root fragments may be even faster.

After winter, growth begins when soil temperatures reach 5-10°C. Flowering occurs in mid-summer. Above-ground growth may die down over winter but the root system can survive substantial exposure to frost.

Longevity

Seed stored at room temperature for 13 years had a germination rate of 67%. The root systems of L. vulgaris can persist for about four years (Zouhar, 2003).

Nutrition

In central Europe, L. vulgaris prefers dry to moderately humid sandy loam soils that are moderate to rich in nutrients and minerals. High soil fertility favours monocultures, but in the field extra fertility may result in greater competition from crops or other vegetation.

Environmental Requirements

L. vulgaris is a temperate species thriving in a wide range of conditions and on a wide range of soil types, from sandy and gravelly soils to more fertile, mainly chalky soils, but is less successful on acid soils. It is commonly associated with relatively summer-moist, coarse soils in the northwestern and north-central USA. Native European soils apparently have strong suppressive potential, whereas this is not the case in soils from across the introduced range in the USA (Maron et al., 2014).

It is moderately tolerant of shade and of drought (PFAF, 2015). The shoots may be killed by frost, but the underground parts persist. Similarly, L. vulgaris may survive fire (Zouhar, 2003). Germination is significantly reduced at sodium chloride concentrations greater than 100 mM (Necajeva and Ievinsh, 2008). L. vulgaris can occur up to nearly 3,000 m elevation in parts of the USA (Zouhar, 2003)

L. vulgaris may exhibit heavy metal tolerance (Saner et al., 1995).

Climate

Top of page
ClimateStatusDescriptionRemark
BS - Steppe climate Tolerated > 430mm and < 860mm annual precipitation
Cf - Warm temperate climate, wet all year Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)
Ds - Continental climate with dry summer Preferred Continental climate with dry summer (Warm average temp. > 10°C, coldest month < 0°C, dry summers)

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
65 50 0 0

Air Temperature

Top of page
Parameter Lower limit Upper limit
Mean annual temperature (ºC) 2
Mean minimum temperature of coldest month (ºC) -14

Rainfall

Top of page
ParameterLower limitUpper limitDescription
Mean annual rainfall00mm; lower/upper limits

Rainfall Regime

Top of page Bimodal
Summer
Uniform
Winter

Soil Tolerances

Top of page

Soil drainage

  • free

Soil reaction

  • acid
  • alkaline
  • neutral

Soil texture

  • heavy
  • light
  • medium

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Brachypterolus pulicarius Herbivore Inflorescence to genus USA, Canada
Broad bean wilt virus Pathogen not specific
Cacyreus marshalli Herbivore not specific
Cucumber mosaic virus Pathogen not specific
Ditylenchus destructor Parasite not specific
Entyloma linariae Pathogen
Eteobalea serratella Herbivore Roots to species USA, Canada
Mecinus heydeni Herbivore Stems to genus
Mecinus janthinus Herbivore Stems to genus USA, Canada
Peronospora corollae Pathogen
Peronospora flava Pathogen
Phthorimaea operculella Pathogen not specific
Rhinusa antirrhini Herbivore Seeds to genus USA, Canada
Rhinusa linariae Herbivore Roots to species USA, Canada
Rhinusa neta Herbivore Seeds to genus USA, Canada
Rhinusa pilosa Herbivore Stems to species Canada

Notes on Natural Enemies

Top of page

Approximately 100 species of arthropods attacking L. vulgaris in Europe have been reported in the literature, a number of which appear to be host-specific to the tribe Antirrhinae (Saner et al., 1995). A number of these have been developed or have otherwise become important for biocontrol, as discussed under the Biological Control section.

Fungi that attack L. vulgaris include Peronospora corollae, P. flava and Entyloma linariae.

Means of Movement and Dispersal

Top of page

Natural Dispersal

The winged seeds can be dispersed by wind, though experiments suggest that most seeds still fall within a few metres of the parent plant (Zouhar, 2003). Seeds may also be dispersed by water.

Vector Transmission

The seeds have no particularly adhesive qualities but they may be dispersed in the guts of livestock, birds, rodents and ants (Zouhar, 2003).

Accidental Introduction

Accidental introduction could occur via contaminated crop seeds, but there are few clear records of this. On a local basis there can be short-distance spread via contaminated cultivation equipment.

Intentional Introduction

L. vulgaris continues to be sold in nurseries and seed catalogues and could be imported as an ornamental or for medicinal purposes. 

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Animal productionTransfer on or in livestock Yes Zouhar, 2003
Crop productionAs contaminant in crop seed Yes
Internet sales Yes Yes
Medicinal use Yes Yes
Seed tradeAs contaminant in crop seed Yes Yes

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
AircraftRare Yes
Livestock Yes Zouhar, 2003
Machinery and equipmentBy movement on cultivation equipment Yes Zouhar, 2003

Impact Summary

Top of page
CategoryImpact
Animal/plant collections None
Animal/plant products None
Biodiversity (generally) None
Crop production None
Cultural/amenity Positive
Economic/livelihood Negative
Environment (generally) Negative
Fisheries / aquaculture None
Forestry production None
Human health None
Livestock production None
Native fauna None
Native flora None
Other None
Rare/protected species None
Tourism None
Trade/international relations None
Transport/travel None

Economic Impact

Top of page

In Canada, L. vulgaris can have a negative impact in a range of field crops including wheat, barley, oats, rapeseed, mustard and pea (Mason and Gillespie, 2013). It has been described as the most troublesome perennial broad-leaved weed in Alberta, occurring in 20-30% of all crops, pastures and non-cropped land, and is becoming an increasing problem in several other provinces (Mason and Gillespie, 2013).

As an agricultural weed, L. vulgaris is favoured by reduced-tillage farming methods. It is resistant to many herbicides, and provides over-wintering sites for cucumber mosaic virus and broad bean wilt virus (Zouhar, 2003).

L. vulgaris is unpalatable and, although not significantly toxic either fresh or dried, is generally avoided by grazing cattle. The lack of grazing pressure thus allows it to build up and compete seriously with other plants in pasture. At populations of 180 stems/m2, it may reduce seed yields in forage crops such as creeping red fescue (Festuca rubra) by one-third, whereas yields in canola and wheat were reduced by 20% at infestation rates of 12 stems m2 and 74 stems m2, respectively (Saner et al., 1995)

Environmental Impact

Top of page

Impact on Habitats

Where sod-forming or bunchgrass communities are replaced by Linaria spp., soil erosion, surface runoff and sediment yield increase. However, on harsh, sparsely vegetated sites L. vulgaris can actually help stabilize soil (Zouhar, 2003). Zouhar (2003) concluded that L. vulgaris is unlikely to increase fire-risk but may be favoured by fire when competing vegetation is destroyed.

The Invasive Plant Atlas of the United States (2015) indicated that L. vulgaris is invasive in Glacier National Park (Montana), Harpers Ferry National Historical Parl (West Virginia), Rocky Mountains National Park (Colorado) and Yellowstone National Park (Wyoming).

Impact on Biodiversity

L. vulgaris can compete with native plants for soil water and suppress native grasses (ISSG, 2015). Wilke and Irwin (2010) showed that infestations of L. vulgaris in Colorado, USA, reduced the flowering of native plants including Potentilla pulcherrima.

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Pioneering in disturbed areas
  • Long lived
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
  • Reproduces asexually
  • Has high genetic variability
Impact outcomes
  • Ecosystem change/ habitat alteration
  • Modification of successional patterns
  • Monoculture formation
  • Negatively impacts agriculture
  • Reduced native biodiversity
  • Threat to/ loss of native species
Impact mechanisms
  • Competition - monopolizing resources
Likelihood of entry/control
  • Difficult to identify/detect as a commodity contaminant
  • Difficult/costly to control

Uses

Top of page

Economic Value

From Saner et al. (1995):

L. vulgaris ‘is used in folk medicine and in homeopathy. Historically, it has been used as an insecticide, for example in animal bedding, as a yellow dye, and as a plant of religious and magical attributes. It is considered useful for soil fixation and may be used to reclaim areas despoiled by mining or dumping of heavy metal-laden sewage sludge or of abandoned gravel pit slopes.’

Social Benefit

L. vulgaris has a long history of herbal use. It acts mainly on the liver and was once widely employed as a diuretic in the treatment of oedema. It is little used now (PFAF, 2015).

From PFAF (2015):

‘The whole plant is antiphlogistic, astringent, cathartic, detergent, depurative, diuretic, hepatic, ophthalmic and purgative. It is gathered when just coming into flower and can be used fresh or dried. The plant is especially valued for its strongly laxative and diuretic activities. It is employed internally in the treatment of oedema, jaundice, liver diseases, gall bladder complaints and skin problems. Externally it is applied to haemorrhoids, skin eruptions, sores and malignant ulcers. The plant should be used with caution. It should preferably only be prescribed by a qualified practitioner and should not be given to pregnant women. Dosage is critical, as the plant might be slightly toxic. The fresh plant, or an ointment made from the flowers, is applied to piles, skin eruptions etc. The juice of the plant, or the distilled water, is a good remedy for inflamed eyes and cleaning ulcerous sores. A homeopathic remedy is made from the plant and it is used in the treatment of diarrhoea and cystitis.’

Vrchovská et al. (2008) confirmed that there were antioxidative properties in extracts of L. vulgaris.

A yellow dye is obtained from the whole plant or just from the flowers. A tea made from the plant has been used as an insecticide (PFAF, 2015).

Mitich (1993) indicated that it is still prescribed for its astringent, detergent and hepatic principles, mainly for jaundice, liver troubles and various skin diseases. Its active constituents are two glycosides, linarin and pectolinarian. Mitich (1993) also referred to its use as a yellow dye, a treatment for insect bites and, after boiling the plant in milk, its use to repel and kill insects.

Environmental Services

L. vulgaris can be used for soil fixation. It can also be used to reclaim areas such as abandoned gravel pit slopes, areas despoiled by mining or by dumping of heavy metal-laden sewage sludge (Saner et al., 1995).

Uses List

Top of page

Environmental

  • Amenity
  • Revegetation

Medicinal, pharmaceutical

  • Source of medicine/pharmaceutical
  • Traditional/folklore

Similarities to Other Species/Conditions

Top of page

There are up to 100 other species of Linaria, but the most common one with which L. vulgaris could be confused is L. dalmatica (dalmation toadflax), also known as L. genistifolia. L. dalmatica differs in having black seeds, sharply angled and only slightly winged, and glaucous leaves, much broader, and ovate to heart-shaped.

Others species, such as L. purpureum, have mauve, pink or purple flowers rather than yellow, or are glabrous, or have broader leaves, shorter spurs, or are densely glandular-hairy.

Prevention and Control

Top of page

Prevention

From Zouhar (2003), quoting Lajeunesse (1999):

Equipment should be checked for seeds and root pieces, and cleaned before moving it from infested to uninfested areas.

Livestock moving from infested areas to uninfested areas should be held in corrals or small pastures, for six days for cattle and 11 days for sheep, to allow any viable seeds to pass through the digestive tract.

Livestock holdings and areas where fill dirt has been imported should be monitored for L. vulgaris establishment.

Avoid buying seed or feed that could be contaminated with L. vulgairs seeds.

SPS Measures

L. vulgaris is classified as a noxious weed or weed seed in many USA states, including Alaska, Colorado, Idaho, Montana, North Dakota, New Mexico, Nevada, Oregon, South Dakota, Utah, Washington and Wyoming (USDA-ARS, 2015), as well as several Canadian provinces (Zouhar, 2003).

Cultural Control and Sanitary Measures

Vigorous, healthy plant communities can often out-compete L. vulgaris seedlings and thus prevent their establishment. In areas where the weed is already established, any initial control needs to be followed by establishment of well-adapted, desirable plant species that will provide competition throughout the season at all levels of the soil-root profile. This can provide longer-term suppression. Proper grazing management to maintain the competitive ability of these plant communities is important for long-term control of L. vulgaris (Zouhar, 2003).

Physical/Mechanical Control

Seedlings can be readily destroyed by cultivation, but where plants already have an established root system, repeated cultivations will be needed over a period of 5-6 years to eradicate L. vulgaris. Saner et al. (1995) referred to successful control by means of intensive shallow cultivation, requiring at least 2 years, with 8-10 cultivations in the first year and 4-5 in the second year. Further control methods will be needed to prevent regeneration from seeds in the soil, perhaps for a further 10 or more years (Zouhar, 2003).

Mowing is unlikely to be effective, especially where competing vegetation is also removed in the process.

Biological Control

Zouhar (2003) reviewed the subject as follows: ‘Several insect species that feed on L. vulgaris have been purposely or accidentally released in the USA and Canada. The flower feeding beetle Brachypterolus pulicarius and seed-feeding Gymnetron antirrhini (= Rhinusa antirrhini) appear to be the most important insects for reducing seed production. B. pulicarius larvae develop inside floral ovaries, and adults feed on buds and young stems. B. pulicarius can reduce seed production by 80 to 90%. G. antirrhini can reduce seed production by 85-90%. McClay (1992) recorded a 74% reduction in seed viability due to infestation by Brachypterolus pulicarius; however, Mason and Gillespie (2013) stated that ‘B. pulicarius and G. antirrhini are already widespread in Canada but the impact is unknown. Egan and Irwin (2008) also obtained very variable results. There were reductions of seed and shoot production of L. vulgaris, but these were modest and minimal at high densities of the weed. Harris (1981), however, commented on a decline of the weed (in Canada) due to Brachypterolus pulicarius, Gymnetron antirrhinii and Calophasia lunula, and Quartes (2007) stated that seed weevils (such as G. antirrhini, have already led to the decline of L. vulgaris throughout Canada. The moth Calophasia lunula, a long-term accidental introduction to Canada, and two other insects, the moth Eteobalea serratella (approved for release in Canada in 1991) and the root-galling weevil Gymnetron linariae [Rhinusa linariae](approved for release in Canada in 1995) are referred to by McClay and De Clerck-Floate (2001), but were apparently not effective enough to deserve comment in later publications. Also, the seed capsule weevil R. neta appears to occur only in scattered populations in the eastern and western USA and Canada (Wilson et al., 2005).

Among other agents reviewed by Mason and Gillespie (2013), Mecinus janthinus has been released at numerous sites in Canada since 1996, but with mixed results, possibly because the closely related M. janthiniformis has sometimes been involved, which is more specific to L. dalmatica. Toševski et al. (2013) have now described a fast and accurate way of distinguishing the two Mecinus species haplotypes using PCR-RFLP diagnostic assay of the mitochondrial cytochrome oxidase subunit II (COII) gene. At a site in Alberta where M. janthinus was released in 1996, observations in 2012 found that the population of L. vulgaris had declined to a very low density, with the few remaining stems heavily infested with M. janthinus (Mason and Gillespie, 2013). More recently studies have started on another stem-boring weevil, M. heydenii (Tosevski et al 2016).

More recently, the stem-galling weevil weevil Rhinusa pilosa has been approved for release in USA (Gassmann et al., 2014). Although not quite specific to L. vulgaris, it is considered to be a suitable biocontrol species due to its high host specificity, minimal risk to related species in North America, robustness during rearing, impact on host growth and reproduction through galling and expected population release from the effects of a European gall intruder, the inquiline weevil Rhinusa eversmanni (Mason and Gillespie, 2013). 

The considerable genetic diversity in L. vulgaris (Ward et al., 2008) may help to explain its variable response to biocontrol organisms.

Chemical Control

2,4-D, 2,4-DB, MCPA, MCPB, mecoprop and Triclopyr are virtually ineffective for L. vulgaris control (Zouhar, 2003), though a mix of 2,4-D plus dichlorprop has given useful control in barley (Saner et al., 1995).

A pre-harvest application of glyphosate reduced densities by over 80% the following year, resulting in a significant increase in crop yields of barley, canola and flax (McClay and De Clerck-Floate, 2001). Such an application may damage to other vegetation, though this may be avoided by rope-wick application (Miller et al., 1981).

Alternatively, picloram or chlorsulfuron can be applied at late flowering stage, though a repeat application may be needed (Beck, 2014). Metsulfuron and imazapic may be partially effective. Boatman and Bain (1992) reported useful control of L. vulgaris with fluroxypyr and quimerac.

Surfactants may improve results.

IPM

Integrated control of L. vulgaris could involve combinations of clean cultivation, pulling, mowing, burning, grazing, competitive planting and the use of biological control agents and herbicides (Quartes, 2007), and collaboration between neighbouring properties (McDermott et al., 2013).

References

Top of page

Alberta Invasive Plants Council, 2014. Fact Sheet: Yellow Toadflax. https://www.abinvasives.ca/factsheets/140514-fs-commontoadflax.pdf

ANHP, 2011. Yellow toadflax. Linaria vulgaris P. Miller. Alaska Natural Heritage Program. http://aknhp.uaa.alaska.edu/wp-content/uploads/2013/01/Linaria_vulgaris_BIO_LIVU2.pdf

Arnold RM, 1982. Pollination, predation and seed set in Linaria vulgaris (Scrophulariaceae). American Midland Naturalist, 107(2):360-369.

Atlas of Living Australia, 2015. Atlas of Living Australia. http://bie.ala.org.au/

Beck KG, 2014. Biology and management of the toadflaxes. Fact sheet 3.114. Colorado, USA: Colorado State University. http://www.ext.colostate.edu/pubs/natres/03114.pdf

Bioforsk, 2015. Common Toadflax. The Weed Garden of Prof. Korsmo., Norway: Norwegian Institute for Agricultural and Environmental Research. http://foto.bioforsk.no/fotoweb/ugras/UK/Butt_About.fwx

Boatman ND, Bain AB, 1992. Evaluation of quinmerac and fluroxypyr against hedgerow flora and uncommon arable weeds. Tests of Agrochemicals and Cultivars, No. 13:42-43.

Cassidy FG, Page RBLe, 2009. Dictionary of Jamaican English 2nd Edition. Cambridge, UK: Cambridge University Press.

Catling P, Lucas ZOE, Freedman B, 2009. Plants and insects new to Sable Island, Nova Scotia. Canadian Field-Naturalist, 123(2):141-145. http://www.ofnc.ca/cfn/123-2/Catling.pdf

Dzigurski DM, Nikolic LM, 2014. Invasive species in ass. Trifolio-Agrostietum stoloniferae Markovic 1973 in Backa (Serbia). Matica Srpska Journal for Natural Sciences, No.126:35-45. http://www.maticasrpska.org.rs/stariSajt/casopisi/ZMSPN%20126.pdf

Egan JF, Irwin RE, 2008. Evaluation of the field impact of an adventitious herbivore on an invasive plant, yellow toadflax, in Colorado, USA. Plant Ecology, 199(1):99-114. http://springerlink.metapress.com/link.asp?id=100328

Flora of China Editorial Committee, 2015. Flora of China. St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria. http://www.efloras.org/flora_page.aspx?flora_id=2

Gassmann A, Clerck-Floate Rde, Sing S, Tosevski I, Mitrovic M, Krstic O, 2014. Biology and host specificity of Rhinusa pilosa, a recommended biological control agent of Linaria vulgaris. BioControl, 59(4):473-483. http://rd.springer.com/journal/10526

GBIF, 2015. Global Biodiversity Information Facility. http://www.gbif.org/species

Harris P, 1981. Linaria vulgaris Miller, yellow toadflax and L. dalmatica (L.) Mill., broad-leaved toadflax (Scrophulariaceae). Biological control programmes against insects and weeds in Canada 1969-1980 [ed. by Kelleher, J.S.\Hulme, M.A.]. Slough, UK: Commonwealth Agricultural Bureaux, 179-182.

Hellström K, Kytöviita MM, Tuomi J, Rautio P, 2006. Plasticity of clonal integration in the perennial herb Linaria vulgaris after damage. Functional Ecology, 20(3):413-420. http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1365-2435.2006.01115.x

Holm LC, Pancho JV, Herberger JP, Plucknett DL, 1979. A Geographical Atlas of World Weeds. New York: Wiley-Interscience.

Hulten E, 1968. Flora of Alaska and neighboring territories. Stanford University Press, California, 1008 pp.

Invasive Plant Atlas of the United States, 2015. Invasive Plant Atlas of the United States. http://www.invasiveplantatlas.org/

ISSG, 2015. Global Invasive Species Database (GISD). Invasive Species Specialist Group of the IUCN Species Survival Commission. http://www.issg.org/database/welcome/

Judd WS, Campbell CS, Kellogg EA, Stevens PF, 1999. Plant systematics: a phylogenetic approach. Sunderland, USA: Sinauer Associates Incorporated, xvi + 464 pp.

Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ, 2002. Plant Systematics: a Phylogenetic Approach. Second Edition. Sunderland, Massachusetts, USA: Sinauer Associates, 576 pp.

Lajeunesse S, 1999. Dalmatian and yellow toadflax. In: Biology and management of noxious rangeland weeds [ed. by Sheley, R. L. \Petroff, J. K.]. Corvallis, USA: Oregon State University Press, 202-216.

Lehnhoff EA, Rew LJ, Maxwell BD, Taper ML, 2008. Quantifying invasiveness of plants: a test case with yellow toadflax (Linaria vulgaris). Invasive Plant Science and Management, 1(3):319-325. http://www.wssa.net

Maron JL, Klironomos J, Waller L, Callaway RM, 2014. Invasive plants escape from suppressive soil biota at regional scales. Journal of Ecology (Oxford), 102(1):19-27. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2745

Mason PG, Gillespie DR, 2013. Biological control programmes in Canada 2001-2012 [ed. by Mason, P. G.\Gillespie, D. R.]. Wallingford, UK: CABI, xxv + 518 pp. http://www.cabi.org/cabebooks/ebook/20133355730

McClay AS, Clerck-Floate RAde, 2001. Linaria vulgaris Miller, yellow toadflax (Scrophulariaceae). In: Biological Control Programmes in Canada, 1981-2000 [ed. by Mason, P. G.\Huber, J. T.]. Wallingford, UK: CABI Publishing, 375-382. http://www.cabi.org/cabebooks/ebook/20083015081

McDermott SM, Irwin RE, Taylor BW, 2013. Using economic instruments to develop effective management of invasive species: insights from a bioeconomic model. Ecological Applications, 23(5):1086-1100. http://www.esajournals.org/doi/full/10.1890/12-0649.1

Miller RL, Lockerman RH, Hunt CR, 1981. Ropewick glyphosate application. In: Proceedings of the Western Society of Weed Science, Volume 34. 95.

Missouri Botanical Garden, 2015. Tropicos database. St. Louis, Missouri, USA: Missouri Botanical Garden. http://www.tropicos.org/

Mitich LW, 1993. Yellow toadflax. Weed Technology, 7(3):791-793.

Necajeva J, Ievinsh G, 2008. Seed germination of six coastal plant species of the Baltic region: effect of salinity and dormancy-breaking treatments. Seed Science Research, 18(3):173-177. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2152552&fulltextType=IB&fileId=S0960258508040403

Necajeva J, Probert RJ, 2011. Effect of cold stratification and germination temperature on seed germination of two ecologically distinct species, Linaria loeselii and L. vulgaris (Scrophulariaceae). Polish Botanical Journal, 56(2):261-266. http://www.ib-pan.krakow.pl

New Zealand Plant Conservation Network, 2015. New Zealand Plant Conservation Network. http://www.nzpcn.org.nz/

Olmstead RG, DePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA, 2001. Disintegration of the Scrophulariaceae. American Journal of Botany, 88:348-361.

PFAF, 2015. Plants For A Future. http://www.pfaf.org/user/Default.aspx

Quarles W, 2007. Integrated management of yellow and Dalmation toadflax. IPM Practitioner, 29(5/6):1-7.

Royal Botanic Garden Edinburgh, 2015. Flora Europaea. Edinburgh, UK: Royal Botanic Garden Edinburgh. http://rbg-web2.rbge.org.uk/FE/fe.html

Saner MA, Clements DR, Hall MR, Doohan DJ, Crompton CW, 1995. The biology of Canadian weeds. 105. Linaria vulgaris Mill. Canadian Journal of Plant Science, 75(2):525-537.

Sing SE, Peterson RKD, Weaver DK, Hansen RW, Markin GP, 2005. A retrospective analysis of known and potential risks associated with exotic toadflax-feeding insects. Biological Control, 35(3):276-287. http://www.sciencedirect.com/science/journal/10499644

Stout JC, Allen JA, Goulson D, 2000. Nectar robbing, forager efficiency and seed set: Bumblebees foraging on the self incompatible plant Linaria vulgaris (Scrophulariaceae). Acta Oecologica, 21(4/5):277-283.

Sutton JR, Stohlgren TJ, Beck KG, 2007. Predicting yellow toadflax infestations in the Flat Tops Wilderness of Colorado. Biological Invasions, 9(7):783-793. http://www.springerlink.com/content/t92851285358t763/?p=86dd84a5ce1848b3b7d41925ca8539ee&pi=3

Theissen G, 2000. Evolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus' monstrous flower. BioEssays, 22(3):209-213.

Toševski I, Gassmann A, Krstic O, Jovic J, 2016. Annual Report 2015. Delémont, Switzerland: CABI Europe-Switzerland, 28.

Toševski I, Jovic J, Krstic O, Gassmann A, 2013. PCR-RFLP-based method for reliable discrimination of cryptic species within Mecinus janthinus species complex (Mecinini, Curculionidae) introduced in North America for biological control of invasive toadflaxes. BioControl, 58(4):563-573. http://rd.springer.com/journal/10526

USA The Angiosperm Phylogeny Group, 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141(4):399-436.

USDA, 2015. National Invasive Species Information Center. National Agricultural Library. http://www.invasivespeciesinfo.gov/index.shtml

USDA-ARS, 2003. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

USDA-ARS, 2015. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

USDA-NRCS, 2015. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov/

Vrchovská V, Spilková J, Valentão P, Sousa C, Andrade PB, Seabra RM, 2008. Assessing the antioxidative properties and chemical composition of Linaria vulgaris infusion. Natural Product Research, 22(9):735-746.

Ward SM, Fleischmann CE, Turner MF, Sing SE, 2009. Hybridization between invasive populations of Dalmatian toadflax (Linaria dalmatica) and yellow toadflax (Linaria vulgaris). Invasive Plant Science and Management, 2(4):369-378. http://www.wssa.net

Ward SM, Reid SD, Harrington J, Sutton J, Beck KG, 2008. Genetic variation in invasive populations of yellow toadflax (Linaria vulgaris) in the Western United States. Weed Science, 56(3):394-399. http://wssa.allenpress.com/perlserv/?request=get-abstract&doi=10.1614%2FWS-07-157.1

Wilke BJ, Irwin RE, 2010. Variation in the phenology and abundance of flowering by native and exotic plants in subalpine meadows. Biological Invasions, 12(7):2363-2372. http://www.springerlink.com/content/q161156503471426/?p=d7cd067741504e1798da8d20b4ef2470&pi=38

Wilson LM, Sing SE, Piper GL, Hansen RW, Clerck-Floate Rde, MacKinnon DK, Randall CB, 2005. Biology and biological control of dalmatian and yellow toadflax. FHTET-05-13., USA: USDA Forest Service. http://www.invasive.org/weeds/ToadflaxBook.pdf

Zouhar K, 2003. Fire Effects Information System (FEIS)., USA: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. http://www.feis-crs.org/beta/

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.
Global register of Introduced and Invasive species (GRIIS)http://griis.org/Data source for updated system data added to species habitat list.

Contributors

Top of page

13/12/2016 Updated by:

André Gassmann, CABI-CH, Switzerland

14/04/15 Original text by:

Chris Parker, Consultant, UK

Distribution Maps

Top of page
You can pan and zoom the map
Save map