Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Spodoptera frugiperda
(fall armyworm)

Toolbox

Datasheet

Spodoptera frugiperda (fall armyworm)

Summary

  • Last modified
  • 10 October 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Spodoptera frugiperda
  • Preferred Common Name
  • fall armyworm
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • The fall armyworm, Spodoptera frugiperda, is a lepidopteran pest that feeds in large numbers on the leaves, stems and reproductive parts of more than 350 plant species, causing major damage to economically impo...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Spodoptera frugiperda (fall armyworm); adult male. Museum set specimen.
TitleAdult
CaptionSpodoptera frugiperda (fall armyworm); adult male. Museum set specimen.
Copyright©Lyle J. Buss/University of Florida/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); adult male. Museum set specimen.
AdultSpodoptera frugiperda (fall armyworm); adult male. Museum set specimen.©Lyle J. Buss/University of Florida/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); adult at rest, lateral view. Laboratory image. USA.
TitleAdult
CaptionSpodoptera frugiperda (fall armyworm); adult at rest, lateral view. Laboratory image. USA.
Copyright©Mark Dreiling/Bugwood.org - CC BY-NC 3.0 US
Spodoptera frugiperda (fall armyworm); adult at rest, lateral view. Laboratory image. USA.
AdultSpodoptera frugiperda (fall armyworm); adult at rest, lateral view. Laboratory image. USA.©Mark Dreiling/Bugwood.org - CC BY-NC 3.0 US
Spodoptera frugiperda (fall armyworm); egg mass on cotton (Gossypium hirsutum).
TitleEgg mass
CaptionSpodoptera frugiperda (fall armyworm); egg mass on cotton (Gossypium hirsutum).
Copyright©Ronald Smith/Auburn University/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); egg mass on cotton (Gossypium hirsutum).
Egg massSpodoptera frugiperda (fall armyworm); egg mass on cotton (Gossypium hirsutum).©Ronald Smith/Auburn University/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva on maize cob. The larvae, which are marked with a distinct inverted "Y" on the front of the head, feed on a wide variety of plants, and are a particular problem in fall seeded alfalfa and wheat.  Milo, sweet corn, and field corn also are important hosts. Laboratory image. USA.
TitleLarva
CaptionSpodoptera frugiperda (fall armyworm); larva on maize cob. The larvae, which are marked with a distinct inverted "Y" on the front of the head, feed on a wide variety of plants, and are a particular problem in fall seeded alfalfa and wheat. Milo, sweet corn, and field corn also are important hosts. Laboratory image. USA.
Copyright©Phil Sloderbeck/Kansas State University/Bugwood.org - CC BY-NC 3.0 US
Spodoptera frugiperda (fall armyworm); larva on maize cob. The larvae, which are marked with a distinct inverted "Y" on the front of the head, feed on a wide variety of plants, and are a particular problem in fall seeded alfalfa and wheat.  Milo, sweet corn, and field corn also are important hosts. Laboratory image. USA.
LarvaSpodoptera frugiperda (fall armyworm); larva on maize cob. The larvae, which are marked with a distinct inverted "Y" on the front of the head, feed on a wide variety of plants, and are a particular problem in fall seeded alfalfa and wheat. Milo, sweet corn, and field corn also are important hosts. Laboratory image. USA.©Phil Sloderbeck/Kansas State University/Bugwood.org - CC BY-NC 3.0 US
Spodoptera frugiperda (fall armyworm); larval damage in whorl of maize (Zea mays).
TitleLarval damage
CaptionSpodoptera frugiperda (fall armyworm); larval damage in whorl of maize (Zea mays).
Copyright©University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larval damage in whorl of maize (Zea mays).
Larval damageSpodoptera frugiperda (fall armyworm); larval damage in whorl of maize (Zea mays).©University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larval damage on maize (Zea mays).
TitleLarval damage
CaptionSpodoptera frugiperda (fall armyworm); larval damage on maize (Zea mays).
Copyright©University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larval damage on maize (Zea mays).
Larval damageSpodoptera frugiperda (fall armyworm); larval damage on maize (Zea mays).©University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva on bermuda grass (Cynodon dactylon).
TitleLarva
CaptionSpodoptera frugiperda (fall armyworm); larva on bermuda grass (Cynodon dactylon).
Copyright©Clemson University/USDA Cooperative Extension Slide Series/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva on bermuda grass (Cynodon dactylon).
LarvaSpodoptera frugiperda (fall armyworm); larva on bermuda grass (Cynodon dactylon).©Clemson University/USDA Cooperative Extension Slide Series/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larvae on hay grass. USA. August 2006.
TitleLarva
CaptionSpodoptera frugiperda (fall armyworm); larvae on hay grass. USA. August 2006.
Copyright©Chazz Hesselein/Alabama Cooperative Extension System/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larvae on hay grass. USA. August 2006.
LarvaSpodoptera frugiperda (fall armyworm); larvae on hay grass. USA. August 2006.©Chazz Hesselein/Alabama Cooperative Extension System/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva on tomato (Lycopersicon esculentum).
TitleLarva
CaptionSpodoptera frugiperda (fall armyworm); larva on tomato (Lycopersicon esculentum).
Copyright©Alton N. Sparks, Jr./University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva on tomato (Lycopersicon esculentum).
LarvaSpodoptera frugiperda (fall armyworm); larva on tomato (Lycopersicon esculentum).©Alton N. Sparks, Jr./University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva, on cotton (Gossypium hirsutum). USA.
TitleLarva
CaptionSpodoptera frugiperda (fall armyworm); larva, on cotton (Gossypium hirsutum). USA.
Copyright©Russ Ottens/University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva, on cotton (Gossypium hirsutum). USA.
LarvaSpodoptera frugiperda (fall armyworm); larva, on cotton (Gossypium hirsutum). USA.©Russ Ottens/University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva, on cotton (Gossypium hirsutum L.). USA.
TitleLarva
CaptionSpodoptera frugiperda (fall armyworm); larva, on cotton (Gossypium hirsutum L.). USA.
Copyright©Russ Ottens/University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva, on cotton (Gossypium hirsutum L.). USA.
LarvaSpodoptera frugiperda (fall armyworm); larva, on cotton (Gossypium hirsutum L.). USA.©Russ Ottens/University of Georgia/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); early instar larvae (arrowed), and damage on cotton boll bract  (Gossypium hirsutum).
TitleLarvae
CaptionSpodoptera frugiperda (fall armyworm); early instar larvae (arrowed), and damage on cotton boll bract (Gossypium hirsutum).
Copyright©Ronald Smith/Auburn University/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); early instar larvae (arrowed), and damage on cotton boll bract  (Gossypium hirsutum).
LarvaeSpodoptera frugiperda (fall armyworm); early instar larvae (arrowed), and damage on cotton boll bract (Gossypium hirsutum).©Ronald Smith/Auburn University/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); severe larval damage on cotton boll (Gossypium hirsutum).
TitleLarval damage
CaptionSpodoptera frugiperda (fall armyworm); severe larval damage on cotton boll (Gossypium hirsutum).
Copyright©Ronald Smith/Auburn University/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); severe larval damage on cotton boll (Gossypium hirsutum).
Larval damageSpodoptera frugiperda (fall armyworm); severe larval damage on cotton boll (Gossypium hirsutum).©Ronald Smith/Auburn University/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larval damage on sorghum (Sorghum bicolor).
TitleLarval damage
CaptionSpodoptera frugiperda (fall armyworm); larval damage on sorghum (Sorghum bicolor).
Copyright©Clemson University/USDA Cooperative Extension Slide Series/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larval damage on sorghum (Sorghum bicolor).
Larval damageSpodoptera frugiperda (fall armyworm); larval damage on sorghum (Sorghum bicolor).©Clemson University/USDA Cooperative Extension Slide Series/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larva feeding on rice (Oryza sativa).
TitleLarva
CaptionSpodoptera frugiperda (fall armyworm); larva feeding on rice (Oryza sativa).
Copyright©Natalie Hummel/Louisiana State University AgCenter/Bugwood.org - CC BY-NC 3.0 US
Spodoptera frugiperda (fall armyworm); larva feeding on rice (Oryza sativa).
LarvaSpodoptera frugiperda (fall armyworm); larva feeding on rice (Oryza sativa).©Natalie Hummel/Louisiana State University AgCenter/Bugwood.org - CC BY-NC 3.0 US
Spodoptera frugiperda (fall armyworm); larval cannibalism. Honduras.
TitleLarval cannibalism
CaptionSpodoptera frugiperda (fall armyworm); larval cannibalism. Honduras.
Copyright©Frank Peairs/Colorado State University/Bugwood.org - CC BY 3.0 US
Spodoptera frugiperda (fall armyworm); larval cannibalism. Honduras.
Larval cannibalismSpodoptera frugiperda (fall armyworm); larval cannibalism. Honduras.©Frank Peairs/Colorado State University/Bugwood.org - CC BY 3.0 US

Identity

Top of page

Preferred Scientific Name

  • Spodoptera frugiperda J.E. Smith

Preferred Common Name

  • fall armyworm

Other Scientific Names

  • Caradrina frugiperda
  • Laphygma frugiperda Guenee, 1852
  • Laphygma inepta Walker, 1856
  • Laphygma macra Guenee, 1852
  • Noctua frugiperda J.E. Smith
  • Phalaena frugiperda Smith & Abbot, 1797
  • Prodenia autumnalis Riley, 1870
  • Prodenia plagiata Walker, 1856
  • Prodenia signifera Walker, 1856
  • Trigonophora frugiperda Geyer, 1832

International Common Names

  • English: alfalfa worm; armyworm, fall; buckworm; budworm; corn budworm; corn leafworm; cotton leaf worm; daggy's corn worm; grass caterpillar; grass worm; maize budworm; overflow worm; rice caterpillar; southern armyworm; southern grassworm; wheat cutworm; whorlworm
  • Spanish: cogollero del maíz; grillo cogollero; gusano cogollero; gusano cogollero del maíz; gusano de la hierba; oruga del cogollo del maíz; oruga militar; oruga militar del maíz; oruga negra; oruga peladora de los pastos; palomilla del maíz
  • French: légionnaire d'automne

Local Common Names

  • Argentina: isoca militar tardia
  • Brazil: curuquere dos capinzais; curuquere dos milharais; lagarta do cartucho do milho; lagarta militar
  • Germany: Heerwurm
  • Mexico: gusano cogollero del maiz

English acronym

  • FAW

EPPO code

  • LAPHFR (Spodoptera frugiperda)

Summary of Invasiveness

Top of page

The fall armyworm, Spodoptera frugiperda, is a lepidopteran pest that feeds in large numbers on the leaves, stems and reproductive parts of more than 350 plant species, causing major damage to economically important cultivated grasses such as maize, rice, sorghum, sugarcane and wheat but also other vegetable crops and cotton. Native to the Americas, it has been repeatedly intercepted at quarantine in Europe and was first reported from Africa in 2016 where it caused significant damage to maize crops. In 2018, S. frugiperda was first reported from the Indian subcontinent (Ganiger et al., 2018; Sharanabasappa Kalleshwaraswamy et al., 2018). It has since invaded Bangladesh, Thailand, Myanmar, China and Sri Lanka (IPPC, 2018b, 2019; FAO, 2019c). The ideal climatic conditions for fall armyworm present in many parts of Africa and Asia, and the abundance of suitable host plants suggests the pest can produce several generations in a single season, and is likely to lead to the pest becoming endemic.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Lepidoptera
  •                         Family: Noctuidae
  •                             Genus: Spodoptera
  •                                 Species: Spodoptera frugiperda

Description

Top of page

Egg

The eggs are 0.4 mm in diameter and 0.3 mm in height; they are pale yellow or creamish at the time of oviposition and become light brown prior to eclosion. Egg maturity takes 2-3 days (20-30°C). Eggs are usually laid in masses of approximately 150-200 eggs which are laid in two to four layers deep on the surface of the leaf. The egg mass is usually covered with a protective, felt-like layer of grey-pink scales (setae) from the female abdomen. Up to 1000 eggs may be laid by each female. Eggs masses may be laid on the underside of the leaves, or on top of the leaves. In a few cases, particularly on very young crops, eggs may be laid on the stem.

Larva

Larvae are a light green to dark brown with longitudinal stripes. In the sixth instar, larvae can reach 4.5 cm long. Larvae have eight prolegs and a pair of prolegs on the last adbominal segment. On hatching they are green with black lines and spots, and as they grow they either remain green or become buff-brown and have black dorsal and spiracular lines. If crowded (by a high population density and food shortage) the final instar can be almost black in its armyworm phase. Large larvae are characterized by an inverted Y-shape in yellow on the head, black dorsal pinaculae with long primary setae (two each side of each segment within the pale dorsal zone) and four black spots arranged in a square on the last abdominal segment. There are usually six larval instars, occasionally five. A full description of the larvae is given in Crumb (1956). Levy and Habeck (1976) give diagnostic features, and colour plates are provided by King and Saunders (1984) and CIMMYT (2018).

Pupa

Pupae are shorter than mature larvae (1.3-1.5 cm in males and 1.6-1.7 cm in females in Mexico), and are shiny brown. Pupation normally occurs in the soil, but could also occur in reproductive parts such as mature maize ears. If the soil is too hard, larvae may web together leaf debris and other material to form a cocoon on the soil surface. Duration of the pupal stage is about 8 to 9 days during the summer, but reaches 20 to 30 days during cooler weather.

Adult Male

Male body length is 1.6 cm and wingspan 3.7 cm. The forewing is mottled (light brown, grey, straw) with a discal cell containing straw colour on three quarters of the area and dark brown on one quarter of the area with triangular white spots at the tip and near the centre of the wing.

Adult Female

Female body length is 1.7 cm and wingspan 3.8 cm. The forewings of females are less distinctly marked, ranging from a uniform greyish brown to a fine mottling of grey and brown. Hindwings are straw colour with a dark-brown margin. Adults are nocturnal, and are most active during warm, humid evenings. After a preoviposition period of 3 to 4 days, the female moth normally deposits most of her eggs during the first 4 to 5 days of life, but some oviposition occurs for up to 3 weeks. Duration of adult life is estimated to average about 10 days, with a range of about 7 to 21 days (Luginbill, 1928; Sparks, 1979).

Distribution

Top of page

S. frugiperda is native to tropical and subtropical regions of the Americas. In 2016 it was reported for the first time from the African continent, in Nigeria, Sao Tomé, Benin and Togo (Goergen et al., 2016; IPPC, 2016). It has now been confirmed in more than 30 African countries (FAO, 2018). For further information on S. frugiperda in Africa, see CABI's Fall armyworm portal.

In 2018, S. frugiperda was reported from the Indian subcontinent (Ganiger et al., 2018IITA, 2018; Sharanabasappa Kalleshwaraswamy et al., 2018), in Karnataka (ICAR-NBAIR, 2018a) and Andhra Pradesh (EPPO, 2018). The pest has also been reported in Bihar, Chhattisgarh, Gujarat, Maharashtra, Odisha, Tamil Nadu, Telangana and West Bengal (ICAR-NBAIR, 2018b; EPPO, 2019). A live tracking tool for fall armyworm in India has been developed by PEAT, CABI and ICRISAT: https://plantix.net/en/live/fall-armyworm. S. frugiperda has also been reported in Myanmar (IPPC, 2019a), Sri Lanka (FAO, 2019a), China (IPPC, 2019), Bangladesh (FAO, 2019c), Thailand (IPPC, 2018b) and Korea Republic (IPPC, 2019b). There is a preliminary report of fall armyworm in Japan (IPPC, 2019d).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

BangladeshPresentFAO, 2019c
ChinaPresentFAO, 2019b; FAO, 2019c; IPPC, 2019
-YunnanPresentFAO, 2019b
IndiaRestricted distributionIntroducedICAR-NBAIR, 2018a; EPPO, 2018; Ganiger et al., 2018; Sharanabasappa et al., 2018
-Andhra PradeshRestricted distributionIntroduced2018ICAR-NBAIR, 2018b; EPPO, 2018; Swamy et al., 2018
-BiharPresentEPPO, 2019
-ChhattisgarhPresentEPPO, 2019
-GujaratPresentEPPO, 2019
-KarnatakaRestricted distributionIntroduced2018ICAR-NBAIR, 2018a; ICAR-NBAIR, 2018b; EPPO, 2018; Ganiger et al., 2018; IITA, 2018; Sharanabasappa and Kalleshwara swamy, 2018; Sharanabasappa et al., 2018
-Madhya PradeshPresentIntroducedSwamy et al., 2018
-MaharashtraPresentIntroduced2018ICAR-NBAIR, 2018b; EPPO, 2018; Swamy et al., 2018
-OdishaPresentEPPO, 2019
-Tamil NaduPresentIntroduced2018ICAR-NBAIR, 2018b; EPPO, 2018; Swamy et al., 2018
-West BengalPresentEPPO, 2019
IndonesiaRestricted distributionIPPC, 2019eSumatra, Java, Kalimantan
JapanTransient: actionable, under eradicationIPPC, 2019dPreliminary report. Minamikyushu-City, Kagoshima-Prefecture
Korea, Republic ofTransient: actionable, under eradicationIPPC, 2019b
LaosPresentFAO, 2019d
MalaysiaPresentFAO, 2019d
MyanmarPresentFAO, 2019c; IPPC, 2019aPresent: subject to official control
NepalRestricted distributionIntroduced2019 Invasive IPPC, 2019fMid-Inner terai and the mid hill of Nepal
Sri LankaPresentIntroducedFAO, 2019a; FAO, 2019c
ThailandPresentIntroduced2018IPPC, 2018b; IPPC, 2019cPresent: subject to official control.
VietnamPresentFAO, 2019d
YemenPresentFAO, 2018c; IPPC, 2019h

Africa

AngolaPresentIntroduced2017 Invasive FAO, 2017a; EPPO, 2018
BeninPresentIntroduced2016 Invasive IITA, 2016; EPPO, 2018
BotswanaPresentIntroduced2017 Invasive FAO, 2017a; EPPO, 2018
Burkina FasoWidespreadIntroduced2017 Invasive IPPC, 2017f; EPPO, 2018
BurundiPresentIntroduced2017 Invasive FAO, 2017a; EPPO, 2018
CameroonRestricted distributionIntroduced2017 Invasive IPPC, 2017e; Abraham et al., 2017; EPPO, 2018
Cape VerdePresentIntroduced2017 Invasive FAO, 2017b; EPPO, 2018
Central African RepublicPresentIntroduced2017 Invasive FAO, 2018a; EPPO, 2018
ChadPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018
CongoPresentIntroduced2017 Invasive FAO, 2018a; Abrahams et al., 2017; EPPO, 2018Detected awaiting official reporting
Congo Democratic RepublicPresentIntroduced2017 Invasive Abrahams et al., 2017; IPAPEL-FAO, 2017; EPPO, 2018
Côte d'IvoirePresentFAO, 2018b; EPPO, 2018
EgyptRestricted distributionIPPC, 2019c
Equatorial GuineaAbsent, unreliable recordFAO, 2018a; EPPO, 2018
EritreaPresentMinistry of Agriculture of the State of Eritrea, 2018
EthiopiaPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018
GabonWidespreadIntroduced Invasive FAO, 2018a; IPPC, 2019g
GambiaPresentIntroduced Invasive FAO, 2017b
GhanaWidespreadIntroduced2017 Invasive IPPC, 2018a; Abrahams et al., 2017; CABI, 2017; Cock et al., 2017; EPPO, 2018
GuineaPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018
Guinea-BissauPresentIntroduced2017 Invasive FAO, 2017b; EPPO, 2018
KenyaPresentIntroduced2017 Invasive Abrahams et al., 2017; Republic and of Kenya Ministry of Agriculture, Livestock & Fisheries, 2017; EPPO, 2018
LiberiaPresentIntroduced Invasive FAO, 2018a; EPPO, 2018
MadagascarPresentIntroduced2017 Invasive FAO, 2017b; Chinwada, 2018; EPPO, 2018
MalawiPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018
MaliPresentIntroduced Invasive FAO, 2017b; EPPO, 2018
MayotteRestricted distributionIntroduced2018EPPO, 2018
MozambiquePresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018
NamibiaPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018
NigerPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018
NigeriaPresentIntroduced2016 Invasive IITA, 2016; Abrahams et al., 2017; EPPO, 2018First reported in Jan. 2016 in the southwest, within a few months, also in northern Nigeria, Edo and additional southwest areas
RéunionRestricted distributionIntroduced2018EPPO, 2018
RwandaPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018; Uzayisenga et al., 2018
Sao Tome and PrincipeWidespreadIntroduced2016 Invasive IPPC, 2016; Abrahams et al., 2017; EPPO, 2018
SenegalPresentIntroduced2017 Invasive FAO, 2017b; EPPO, 2018
SeychellesPresentIntroduced2017 Invasive FAO, 2017b; EPPO, 2018
Sierra LeonePresentIntroduced2017 Invasive FAO, 2017a; EPPO, 2018
SomaliaPresentIntroduced2017 Invasive FAO, 2017b; EPPO, 2018
South AfricaPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018; Jacobs et al., 2018
South SudanPresentFAO, 2017b; EPPO, 2018
SudanPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018South Sudan
SwazilandRestricted distributionIntroduced2017 Invasive IPPC, 2017b; Abrahams et al., 2017; EPPO, 2018
TanzaniaPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018
TogoPresentIntroduced2016 Invasive IITA, 2016; Abrahams et al., 2017; EPPO, 2018Kara and Plateau regions
UgandaPresentIntroduced2017 Invasive Abrahams et al., 2017; EPPO, 2018; Otim et al., 2018
ZambiaPresentIntroduced2017 Invasive IPPC, 2017d; Abrahams et al., 2017; EPPO, 2018Preliminary report. CABI barcoded specimens.
ZimbabwePresentIntroduced2017 Invasive Abrahams et al., 2017; FAO, 2017; EPPO, 2018

North America

BermudaPresentEPPO, 2018
CanadaRestricted distributionEPPO, 2018
-ManitobaPresentEPPO, 2018
-New BrunswickPresentEPPO, 2018
-Nova ScotiaPresentEPPO, 2018
-OntarioPresentStarratt and McLeod, 1982; EPPO, 2018
-Prince Edward IslandPresentEPPO, 2018
-QuebecPresentMartel et al., 1980; EPPO, 2018
MexicoWidespreadSifuentes, 1978; EPPO, 2018; Gurrola-Pérez et al., 2018
USAPresentGreathead and Greathead, 1992; EPPO, 2018
-AlabamaPresentEPPO, 2018
-ArizonaPresentEPPO, 2018
-ArkansasPresentEPPO, 2018
-CaliforniaPresentEPPO, 2018
-ColoradoPresentEPPO, 2018
-ConnecticutPresentEPPO, 2018
-DelawarePresentEPPO, 2018
-FloridaPresentEPPO, 2018
-GeorgiaPresentEPPO, 2018
-IllinoisPresentEPPO, 2018
-IndianaPresentEPPO, 2018
-IowaPresentEPPO, 2018
-KansasPresentEPPO, 2018
-KentuckyPresentEPPO, 2018
-LouisianaPresentEPPO, 2018
-MainePresentEPPO, 2018
-MarylandPresentEPPO, 2018
-MassachusettsPresentEPPO, 2018
-MichiganPresentEPPO, 2018
-MinnesotaPresentEPPO, 2018
-MississippiPresentEPPO, 2018
-MissouriPresentEPPO, 2018
-MontanaPresentEPPO, 2018
-NebraskaPresentEPPO, 2018
-New HampshirePresentEPPO, 2018
-New JerseyPresentEPPO, 2018
-New MexicoPresentEPPO, 2018
-New YorkPresentEPPO, 2018
-North CarolinaPresentEPPO, 2018
-North DakotaPresentEPPO, 2018
-OhioPresentEPPO, 2018
-OklahomaPresentEPPO, 2018
-PennsylvaniaPresentEPPO, 2018
-Rhode IslandPresentEPPO, 2018
-South CarolinaPresentEPPO, 2018
-South DakotaPresentEPPO, 2018
-TennesseePresentEPPO, 2018
-TexasPresentEPPO, 2018
-VirginiaPresentEPPO, 2018
-West VirginiaPresentEPPO, 2018
-WisconsinPresentEPPO, 2018
-WyomingPresentEPPO, 2018

Central America and Caribbean

AnguillaPresentEPPO, 2018
Antigua and BarbudaPresentEPPO, 2018
BahamasPresentEPPO, 2018
BarbadosPresentEPPO, 2018
BelizePresentEPPO, 2018
British Virgin IslandsPresentEPPO, 2018
Cayman IslandsPresentEPPO, 2018
Costa RicaPresentEPPO, 2018
CubaPresentEPPO, 2018
DominicaPresentEPPO, 2018
Dominican RepublicPresentEPPO, 2018
El SalvadorPresentEPPO, 2018
GrenadaPresentEPPO, 2018
GuadeloupePresentEPPO, 2018
GuatemalaPresentEPPO, 2018
HaitiPresent, few occurrencesEPPO, 2018
HondurasPresentEPPO, 2018
JamaicaPresentEPPO, 2018
MartiniqueWidespreadEPPO, 2018
MontserratPresentEPPO, 2018
NicaraguaPresentVan Huis, 1981; EPPO, 2018
PanamaPresentEPPO, 2018
Puerto RicoPresentEPPO, 2018
Saint Kitts and NevisPresentEPPO, 2018
Saint LuciaPresentEPPO, 2018
Saint Vincent and the GrenadinesPresentEPPO, 2018
Trinidad and TobagoPresentEPPO, 2018
United States Virgin IslandsPresentEPPO, 2018

South America

ArgentinaPresentEPPO, 2018
BoliviaPresentEPPO, 2018
BrazilPresentEPPO, 2018
-AmapaPresentEPPO, 2018
-AmazonasPresentEPPO, 2018
-BahiaPresentSoares and Silva, 2003; EPPO, 2018
-CearaPresentEPPO, 2018
-Espirito SantoPresentPratissoli et al., 2007; EPPO, 2018
-GoiasPresentEPPO, 2018
-MaranhaoPresentEPPO, 2018
-Mato GrossoPresentEPPO, 2018
-Mato Grosso do SulPresentEPPO, 2018
-Minas GeraisPresentEPPO, 2018
-ParaPresentEPPO, 2018
-ParaibaPresentEPPO, 2018
-ParanaPresentEPPO, 2018
-PernambucoPresentEPPO, 2018
-Rio de JaneiroPresentEPPO, 2018
-Rio Grande do NortePresentSilva et al., 2000
-Rio Grande do SulPresentEPPO, 2018
-RoraimaPresentEPPO, 2018
-Santa CatarinaPresentEPPO, 2018
-Sao PauloPresentEPPO, 2018
-TocantinsPresentDidonet et al., 2001
ChileRestricted distributionEPPO, 2018
ColombiaPresentEPPO, 2018
EcuadorWidespreadEPPO, 2018
French GuianaPresentEPPO, 2018
GuyanaPresentRambajan, 1981; EPPO, 2018
ParaguayPresentEPPO, 2018
PeruPresentEPPO, 2018
SurinamePresentEPPO, 2018
UruguayWidespreadEPPO, 2018
VenezuelaPresentSolano et al., 2015; EPPO, 2018Western

Europe

GermanyEradicatedEPPO, 2018
NetherlandsAbsent, confirmed by surveyNPPO of the Netherlands, 2013; EPPO, 2018Based on long-term annual surveys, 362 survey observations in 2012.
SloveniaAbsent, no pest recordEPPO, 2018

Risk of Introduction

Top of page

S. frugiperda is on the EPPO A1 list of quarantine pests and is intercepted occasionally in Europe on imported plant material (Seymour et al., 1985). From Africa alone, in 2017, two consignments containing fall armyworm were intercepted in Europe, and 17 interceptions were made in the first 8 months of 2018 from wide-ranging crops including Capsicum, Coriandrum, Eryngium, Eustoma, Pisum, Rosa, Solanum and Zea mays (EUROPHYT).

Phytosanitary Measures

Plants for planting should come from a place of production inspected and found free from the pest during the previous months. Directive 2000/29/EC listed FAW as a harmful organism whose introduction into and spread within all EU member states was banned, it not being present in any member state. Jeger et al. (2017) conducted a pest categorisation of fall armyworm, and concluded that it could be regarded as a 'Union quarantine pest'.

Hosts/Species Affected

Top of page

S. frugiperda is a polyphagous pest which shows a definite preference for the Poaceae (Casmuz et al., 2010). It is most commonly recorded from wild and cultivated grasses; from maize, rice, sorghum and sugarcane. However, Montezano et al. (2018) have recently reported 353 host plant species based on a thorough literature review, and additional surveys in Brazil, from 76 plant families, principally Poaceae (106), Asteraceae (31) and Fabaceae (31).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Abelmoschus esculentus (okra)MalvaceaeOther
Acalypha (Copperleaf)EuphorbiaceaeOther
Agrostis (bentgrasses)PoaceaeWild host
Agrostis gigantea (black bent)PoaceaeOther
Agrostis stolonifera (creeping bentgrass)PoaceaeOther
Alcea rosea (Hollyhock)MalvaceaeOther
AlliumLiliaceaeMain
Allium cepa (onion)LiliaceaeOther
Allium sativum (garlic)LiliaceaeOther
Amaranthus (amaranth)AmaranthaceaeOther
Amaranthus quitensisAmaranthaceaeOther
Amaranthus spinosus (spiny amaranth)AmaranthaceaeOther
Andropogon virginicus (broomsedge)PoaceaeWild host
Arachis hypogaea (groundnut)FabaceaeMain
Asclepias (Silkweed)AsclepiadaceaeOther
Asparagus officinalis (asparagus)LiliaceaeOther
Asplenium nidus (bird's nest fern)AspleniaceaeOther
Atropa belladonna (deadly nightshade)SolanaceaeWild host
Avena sativa (oats)PoaceaeOther
Avena strigosa (black oat)PoaceaeOther
BetaChenopodiaceaeOther
Beta vulgaris (beetroot)ChenopodiaceaeOther
Beta vulgaris var. ciclaChenopodiaceaeOther
Beta vulgaris var. saccharifera (sugarbeet)ChenopodiaceaeMain
Brassica napus var. napus (rape)BrassicaceaeOther
Brassica oleracea (cabbages, cauliflowers)BrassicaceaeMain
Brassica oleracea var. botrytis (cauliflower)BrassicaceaeOther
Brassica oleracea var. capitata (cabbage)BrassicaceaeOther
Brassica oleracea var. viridis (collards)BrassicaceaeOther
Brassica rapaBrassicaceaeOther
Brassica rapa subsp. oleifera (turnip rape)BrassicaceaeOther
Brassica rapa subsp. rapa (turnip)BrassicaceaeMain
Brassicaceae (cruciferous crops)BrassicaceaeMain
Cajanus cajan (pigeon pea)FabaceaeOther
Capsicum (peppers)SolanaceaeOther
Capsicum annuum (bell pepper)SolanaceaeMain
Capsicum frutescens (chilli)SolanaceaeOther
Carduus (thistle)AsteraceaeOther
Carex (sedges)CyperaceaeWild host
Carica papaya (pawpaw)CaricaceaeOther
Carya (hickories)JuglandaceaeOther
Carya illinoinensis (pecan)JuglandaceaeOther
Cenchrus incertus (Spiny burrgrass)PoaceaeWild host
Chenopodium album (fat hen)ChenopodiaceaeWild host
Chenopodium quinoa (quinoa)ChenopodiaceaeOther
Chloris gayana (rhodes grass)PoaceaeOther
Chrysanthemum (daisy)AsteraceaeOther
Chrysanthemum morifolium (chrysanthemum (florists'))AsteraceaeMain
Cicer arietinum (chickpea)FabaceaeOther
Cichorium intybus (chicory)AsteraceaeOther
Citrullus lanatus (watermelon)CucurbitaceaeOther
Citrus aurantium (sour orange)RutaceaeOther
Citrus limon (lemon)RutaceaeOther
Citrus reticulata (mandarin)RutaceaeOther
Citrus sinensis (navel orange)RutaceaeOther
Codiaeum variegatum (croton)EuphorbiaceaeOther
Coffea arabica (arabica coffee)RubiaceaeOther
Convolvulus (morning glory)ConvolvulaceaeWild host
Convolvulus arvensis (bindweed)ConvolvulaceaeWild host
Cucumis melo (melon)CucurbitaceaeOther
Cucumis sativus (cucumber)CucurbitaceaeMain
Cucurbita argyrosperma (silver-seed gourd)CucurbitaceaeOther
Cucurbita maxima (giant pumpkin)CucurbitaceaeOther
Cucurbitaceae (cucurbits)CucurbitaceaeMain
Cydonia oblonga (quince)RosaceaeOther
Cynara cardunculus (cardoon)AsteraceaeOther
Cynodon dactylon (Bermuda grass)PoaceaeWild host
Cyperus rotundus (purple nutsedge)CyperaceaeWild host
Dactyloctenium aegyptium (crowfoot grass)PoaceaeWild host
Dahlia pinnata (garden dahlia)AsteraceaeOther
Dianthus caryophyllus (carnation)CaryophyllaceaeMain
Digitaria (crabgrass)PoaceaeWild host
Digitaria sanguinalis (large crabgrass)PoaceaeWild host
Echinochloa colona (junglerice)PoaceaeOther
Echinochloa crus-galli (barnyard grass)PoaceaeWild host
Eleusine indica (goose grass)PoaceaeWild host
Elymus repens (quackgrass)PoaceaeWild host
Eremochloa ophiuroides (centipedegrass)PoaceaeOther
Eriochloa punctataPoaceaeWild host
Eryngium foetidumApiaceaeOther
EucalyptusMyrtaceaeOther
Eucalyptus camaldulensis (red gum)MyrtaceaeOther
Eucalyptus urophylla (Timor mountain gum)MyrtaceaeOther
Fagopyrum esculentum (buckwheat)Other
Festuca arundinacea (tall fescue)PoaceaeOther
FicusMoraceaeOther
Fragaria ananassa (strawberry)RosaceaeOther
Fragaria chiloensis (Chilean strawberry)RosaceaeOther
Fragaria vesca (wild strawberry)RosaceaeOther
Gladiolus (sword lily)IridaceaeOther
Gladiolus hybrids (sword lily)IridaceaeOther
Glycine max (soyabean)FabaceaeMain
Gossypium (cotton)MalvaceaeMain
Gossypium herbaceum (short staple cotton)MalvaceaeOther
Gossypium hirsutum (Bourbon cotton)MalvaceaeOther
Helianthus annuus (sunflower)AsteraceaeOther
Hevea brasiliensis (rubber)EuphorbiaceaeOther
Hibiscus cannabinus (kenaf)MalvaceaeOther
Hordeum vulgare (barley)PoaceaeOther
Ipomoea (morning glory)ConvolvulaceaeOther
Ipomoea batatas (sweet potato)ConvolvulaceaeMain
Ipomoea purpurea (tall morning glory)ConvolvulaceaeWild host
Lactuca sativa (lettuce)AsteraceaeOther
Lespedeza bicolor (bicolor lespedeza)FabaceaeOther
Linum usitatissimum (flax)Other
Lolium multiflorum (Italian ryegrass)PoaceaeOther
Malpighia glabra (acerola)MalpighiaceaeOther
Malus domestica (apple)RosaceaeOther
Mangifera indica (mango)AnacardiaceaeOther
Maranta (arrowroot)MarantaceaeOther
Medicago sativa (lucerne)FabaceaeMain
Megathyrsus maximus (Guinea grass)PoaceaeOther
Melilotus albus (honey clover)FabaceaeOther
Miscanthus × giganteusPoaceaeOther
Mucuna pruriens (velvet bean)FabaceaeOther
Mucuna pruriens (velvet bean)FabaceaeOther
Musa (banana)MusaceaeMain
Musa x paradisiaca (plantain)MusaceaeOther
Nicotiana tabacum (tobacco)SolanaceaeMain
Oryza sativa (rice)PoaceaeMain
Panicum (millets)PoaceaeOther
Panicum miliaceum (millet)PoaceaeOther
Panicum virgatumPoaceaeOther
PaspalumPoaceaeOther
Paspalum dilatatum (dallisgrass)PoaceaeOther
Paspalum distichum (knotgrass)PoaceaeOther
Paspalum fimbriatumPoaceaeOther
Paspalum notatum (bahiagrass)PoaceaeOther
Paspalum urvillei (Vasey grass)PoaceaeOther
Passiflora (passionflower)PassifloraceaeOther
Passiflora laurifoliaPassifloraceaeOther
Pelargonium (pelargoniums)GeraniaceaeMain
Pennisetum clandestinum (Kikuyu grass)PoaceaeOther
Pennisetum glaucum (pearl millet)PoaceaeOther
Phalaris canariensis (Canarygrass)PoaceaeOther
Phaseolus (beans)FabaceaeMain
Phaseolus lunatus (lima bean)FabaceaeOther
Phaseolus vulgaris (common bean)FabaceaeMain
Phleum pratense (timothy grass)PoaceaeOther
Pinus (pines)PinaceaeOther
Pinus caribaea (Caribbean pine)PinaceaeOther
Piper (pepper)PiperaceaeOther
Pisum sativum (pea)FabaceaeOther
Platanus occidentalis (sycamore)PlatanaceaeOther
Plumeria (frangipani)ApocynaceaeOther
Plumeria rubra (red frangipani)ApocynaceaeOther
Poa annua (annual meadowgrass)PoaceaeOther
Poa pratensis (smooth meadow-grass)PoaceaeOther
Poaceae (grasses)PoaceaeMain
Portulaca oleracea (purslane)PortulacaceaeWild host
Prunus persica (peach)RosaceaeOther
Psidium guajava (guava)MyrtaceaeOther
Pueraria montana var. lobata (kudzu)FabaceaeOther
Pyrus communis (European pear)RosaceaeOther
Raphanus sativus (radish)BrassicaceaeOther
Ricinus communis (castor bean)EuphorbiaceaeOther
Rosa (roses)RosaceaeOther
Saccharum officinarum (sugarcane)PoaceaeMain
Schlumbergera truncata (christmas cactus)CactaceaeOther
Secale cereale (rye)PoaceaeOther
Sesamum indicum (sesame)PedaliaceaeOther
Setaria italica (foxtail millet)PoaceaeOther
Setaria parviflora (knotroot foxtail)PoaceaeOther
Setaria viridis (green foxtail)PoaceaeOther
Solanum (nightshade)SolanaceaeWild host
Solanum lycopersicum (tomato)SolanaceaeMain
Solanum melongena (aubergine)SolanaceaeMain
Solanum tuberosum (potato)SolanaceaeMain
SorghumPoaceaeOther
Sorghum bicolor (sorghum)PoaceaeMain
Sorghum caffrorumPoaceaeOther
Sorghum halepense (Johnson grass)PoaceaeOther
Sorghum sudanense (Sudan grass)PoaceaeOther
Spinacia oleracea (spinach)ChenopodiaceaeMain
Tanacetum cinerariifolium (Pyrethrum)Other
Taraxacum officinale complex (dandelion)AsteraceaeWild host
Terminalia catappa (Singapore almond)CombretaceaeOther
Trifolium (clovers)FabaceaeMain
Trifolium incarnatum (Crimson clover)FabaceaeOther
Trifolium pratense (red clover)FabaceaeOther
Trifolium repens (white clover)FabaceaeOther
Triticum (wheat)PoaceaeOther
Triticum aestivum (wheat)PoaceaeOther
turfgrassesOther
UrochloaPoaceaeWild host
Urochloa decumbens (signal grass)PoaceaeWild host
Urochloa mutica (para grass)PoaceaeWild host
Urochloa ramosa (browntop millet)PoaceaeWild host
Urochloa texanaPoaceaeWild host
Vaccinium (blueberries)EricaceaeOther
Vaccinium corymbosum (blueberry)EricaceaeOther
Vicia faba (faba bean)FabaceaeOther
Vigna unguiculata (cowpea)FabaceaeOther
Vigna unguiculata subsp. unguiculataFabaceaeOther
Viola (violet)ViolaceaeOther
Vitis (grape)VitaceaeOther
Vitis vinifera (grapevine)VitaceaeOther
Wisteria sinensis (Chinese wisteria)FabaceaeOther
Xanthium strumarium (common cocklebur)AsteraceaeWild host
Zea mays (maize)PoaceaeMain
Zea mays subsp. mays (sweetcorn)PoaceaeMain
Zea mays subsp. mexicana (teosinte)PoaceaeOther
Zingiber officinale (ginger)ZingiberaceaeMain
ZoysiaPoaceaeOther

Growth Stages

Top of page Flowering stage, Fruiting stage, Seedling stage, Vegetative growing stage

Symptoms

Top of page

Seedlings are fed upon within the whorl. Larger larvae can cut the base of the plant. Mature plants suffer attack on reproductive structures. On tomato plants, buds and growing points may be eaten and fruits pierced. Maize leaves are eaten and the whorl (funnel) may be a mass of holes, ragged edges and larval frass. Young larvae skeletonize the leaf lamina in a typical 'window-pane' damage. 'Window-paning' is the most common damage symptom at early whorl; however, this is sometimes indistinguishable from damage that is due to other stem borers. Usually many young larvae will be present on the same plant, but normally one or two older larvae may be found on a single plant, as others will migrate and feed on neighbouring plants. Later larval instars make larger holes, causing ragged whorl leaves, and produce sawdust-like larval droppings, while fresh feeding produces big lumps. Badly infested fields may look as if they have been hit by a severe hailstorm. Fall armyworm can also destroy silks and developing tassels, thereby limiting fertilization of the ear. Maize plants may have the cobs attacked by larvae boring through the kernels. Damage to cobs may lead to fungal infection and aflatoxins, and loss of grain quality. At high densities, large larvae may act as armyworms and disperse in swarms, but they often remain in the locality on wild grasses, if available.

List of Symptoms/Signs

Top of page
SignLife StagesType
Fruit / external feeding
Fruit / internal feeding
Growing point / external feeding
Growing point / internal feeding; boring
Inflorescence / external feeding
Leaves / external feeding
Stems / external feeding
Whole plant / cut at stem base

Biology and Ecology

Top of page

Eggs are laid at night on the leaves of the host, stuck to the lower surface of the lower part of the lower leaves, in tight clusters of 100-300 and sometimes in two layers, usually covered with a protective layer of abdominal bristles. When moth populations are high, the eggs may be laid higher up the plants, on top of the leaves or on nearby vegetation. Some reports suggest that heavy rains are important in breaking the life-cycle of fall armyworm, by washing off the eggs from the leaves onto the ground where they may be predated upon or if they hatched, they are unlikely to move on the soil to a nearby a food source. Hatching requires 2-10 days (usually 3-5). The mortality rate following emergence may be high in some cases due to climatic factors and attack by predators, parasitoids and pathogens. The young larvae migrate to the whorl; the first two instars feed gregariously on the underside or the top of the young leaves causing a characteristic skeletonizing or 'windowing' effect. In the second and third instar stages, larvae are often cannibalistic and thus one or two larvae per whorl is usual. The rate of larval development through the six instars is controlled by a combination of diet and temperature conditions, and usually takes 14-21 days. Larger larvae are nocturnal unless they enter the armyworm phase when they swarm and disperse, seeking other food sources. Pupation takes place inside a loose cocoon in an earthen cell but has also been observed in the kernels of the maize cob, or rarely between leaves on the host plant, and 9-13 days are required for development. Adults emerge at night, and they typically use their natural pre-oviposition period of 3-4 days to fly for many kilometres before they settle to oviposit, sometimes migrating for long distances. In the migratory habit, moths can migrate over 500 km (300 miles) before oviposition. The female normally deposits most of her eggs during the first 4-5 days of life, but some oviposition continues to occur for up to 3 weeks. On average, adults live for 12-14 days.

A threshold temperature of 10.9°C and 559 day-degrees C is required for development. Sandy-clay or clay-sand soils are suitable for pupation and adult emergence. Emergence in sandy-clay and clay-sand soils was directly proportional to temperature and inversely proportional to humidity. Above 30°C the wings of adults tend to be deformed. Pupae require a threshold temperature of 14.6°C and 138 day-degrees C to complete their development (Ramirez-Garcia et al., 1987).

S. frugiperda is a tropical species adapted to the warmer parts of the New World; the optimum temperature for larval development is reported to be 28°C, but it is lower for both oviposition and pupation. In the tropics, breeding can be continuous with four to six generations per year, but in northern regions only one or two generations develop; at lower temperatures, activity and development cease, and when freezing occurs all stages are usually killed. In the USA, S. frugiperda usually overwinters only in southern Texas and Florida. In mild winters, pupae survive in more northerly locations.

Genetic differentiation of fall armyworm

Fall armyworm occurs in two races: a ‘rice strain’ (R strain) and a ‘corn strain’ (C strain) (Lu and Adang, 1996; Lewter et al., 2006; Nagoshi et al., 2007); the former is thought to preferentially feed on rice and various pasture grasses and the latter on maize, cotton and sorghum. The strains are morphologically identical, but can be distinguished by molecular techniques. Recent evidence shows that the diversity of fall armyworm that invaded Africa is greater than previously thought, including a haplotype that has not yet been observed in the Western Hemisphere (Nagoshi et al., 2018). Analyses of South African specimens indicate corn and rice strains are both present (Jacobs et al., 2018). In Uganda, fall armyworm populations were found to consist of two sympatric sister species of maize-preferred and rice-preferred strains (Otim et al., 2018). There have been some attempts to establish the origin of these strains, and evidence from Ghana (Cock et al., 2017) and Togo (Nagoshi et al., 2018) suggests that the populations are most similar to that found in the Caribbean region and the eastern coast of the USA.

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Agelaius phoeniceus Predator
Alabagrus stigma Parasite Larvae
Aleiodes laphygmae Parasite Larvae Honduras
Alveoplectrus corumbae Parasite
Archytas apicifer Parasite Larvae
Archytas incertus Parasite Larvae Brazil; Sao Paulo maize
Archytas marmoratus Parasite Larvae/Pupae Honduras maize; sorghum
Bacillus cereus Pathogen Larvae
Bacillus thuringiensis Pathogen Larvae
Bacillus thuringiensis alesti Pathogen Larvae
Bacillus thuringiensis darmstadiensis Pathogen Larvae
Bacillus thuringiensis galleriae Pathogen Larvae
Bacillus thuringiensis kurstaki Pathogen Larvae
Bacillus thuringiensis thuringiensis Pathogen Larvae
Bacillus thuringiensis tolworthi Pathogen Larvae
Baculovirus spodoptera Pathogen
Balaustium putmani Predator
Beauveria bassiana Pathogen Eggs/Larvae Komivi et al., 2019 Kenya
Brachymeria ovata Parasite Pupae
Calleida decora Predator Larvae
Calosoma alternans Predator Larvae
Calosoma sayi Predator Larvae
Campoletis chlorideae Parasite Shylesha et al., 2018 Barbados, India maize
Campoletis flavicincta Parasite Larvae Silva et al., 2012 Brazil; Sao Paulo maize
Campoletis grioti Parasite
Campoletis oxylus
Campoletis sonorensis Parasite Honduras maize; sorghum
Carabidae Predator Larvae/Pupae
Charops ater Parasite Larvae Sisay et al., 2018 Kenya, Tanzania maize
Chelonus curvimaculatus Parasite Eggs/Larvae Kenya
Chelonus formosanus Parasite Larvae Barbados; Trinidad and Tobago maize
Chelonus insularis Parasite Eggs/Larvae Brazil; Sao Paulo; Honduras maize; sorghum
Coccygidium luteum Parasite Larvae Sisay et al., 2018 Kenya; Tanzania maize
Cotesia icipe Parasite Larvae Sisay et al., 2018 Ethiopia; Kenya
Cotesia marginiventris Parasite Larvae Barbados; Brazil; Sao Paulo; Honduras; Trinidad maize
Cotesia ruficrus Parasite Larvae Trinidad and Tobago
Cryptus albitarsis Parasite
Diapetimorpha introita Parasite
Doru luteipes Predator
Doru taeniatum Predator
Ectatomma ruidum Predator
Eiphosoma vitticolle Parasite Brazil; Sao Paulo; Honduras maize
Entomophaga aulicae Pathogen
Erynia radicans Pathogen Venezuela maize
Euplectrus comstockii Parasite
Euplectrus platyhypenae Parasite Larvae Guyana; St Kitts Nevis
Forficula Predator Larvae Shylesha et al., 2018 India
Geocoris punctipes Predator
Glabromicroplitis croceipes Parasite Larvae
Glyptapanteles creatonoti Parasite Larvae Shylesha et al., 2018 India
Granulosis virus Pathogen Larvae
Hyposoter annulipes Parasite
Labidura riparia Predator
Lespesia affinis Parasite Larvae
Lespesia archippivora Parasite Larvae Brazil; Sao Paulo; Honduras maize; sorghum
Limonethe spodopterae Parasite
Lixophaga diatraeae Parasite Larvae
Metarhizium anisopliae Pathogen Eggs/Larvae Kenya
Meteorus autographae Parasite Larvae
Meteorus laphygmae Parasite Larvae
Microchelonus heliopae Parasite Eggs/Larvae Barbados maize
Microplitis manilae Parasite Larvae
Microplitis rufiventris Parasite Larvae
Nabis capsiformis Predator
Noctuidonema guyanense Parasite
Nomuraea rileyi Pathogen Larvae Nicaragua; Venezuela, India maize
Nucleopolyhedrosis virus Pathogen Larvae
Ophion flavidus Parasite Brazil; Sao Paulo; Honduras maize; sorghum
Orius insidiosus Predator
Paecilomyces fumosoroseus Pathogen
Palexorista zonata Parasite Larvae Sisay et al., 2018 Ethiopia; Kenya maize
Podisus connexivus Predator
Podisus maculiventris Predator
Solenopsis invicta Predator
Spilochalcis chapadae Parasite
Spodoptera frugiperda multiple nucleopolyhedrovirus Pathogen Larvae Behle and Popham, 2012
Steinernema carpocapsae Parasite Larvae
Steinernema feltiae Parasite
Steinernema riobravis Parasite
Stelopolybia pallipes Predator
Sycanus indagator Predator
Telenomus remus Parasite Eggs Barbados; Benin; Bermuda; Côte d'Ivoire; Florida; Guyana; Kenya; Niger; South Africa; Suriname; Trinidad and Tobago; Venezuela maize; vegetables
Temelucha difficilis Parasite
Trichogramma achaeae Parasite Eggs Barbados maize
Trichogramma chilotraeae Parasite Eggs Barbados maize
Trichogramma pretiosum Parasite Eggs
Trichogramma rojasi Parasite Eggs Camera et al., 2010
Trichospilus pupivora Parasite Barbados maize
Vairimorpha necatrix Pathogen
Winthemia rufiventris Parasite Larvae

Notes on Natural Enemies

Top of page

Efforts were made to introduce the egg parasitoid, Telenomus remus, into countries where it had not already been found. These introductions have been credited with reducing the numbers of this and other pest Spodoptera occuring alongside it (Cock, 1985).

Means of Movement and Dispersal

Top of page

S. frugiperda is a regular annual migrant in the Americas, dispersing throughout the USA and flying into southern Canada virtually every summer. It is suggested that, in this species, migration has evolved as a major component in the life history strategy. The use of the pre-oviposition (maturation) period for widespread dispersal seems to be very effective. In the USA, adult moths have been recorded using a low-level jet stream, which took them from Mississippi to Canada in 30 h.

Larvae frequently act as armyworms in late summer or early autumn and local dispersal is thus effected successfully, which helps to reduce larval mortality.

In most years larvae arrive in Europe carried by air-freight on vegetables or fruit from the New World; sometimes they are also intercepted on herbaceous ornamentals (Seymour et al., 1985). A useful review of this topic was produced by Johnson (1987).

The rapid spread of fall armyworm where it has recently invaded in Africa has been attributed to the strong flight capacity of the insect. The rapid spread to the Indian Ocean Islands and to Asia is harder to explain by natural flight, so it is possible that the frequent flights to those countries could have played a part. Cock et al. (2017) concluded that potential pathways of spread included unaided dispersal by wind-assisted flight, as contaminants of traded commodities, and as stowaways on or in aircraft. Wind-assisted flight alone might not have been sufficient for fall armyworm to cross the Atlantic or the Indian Ocean, but once it arrived, all the pathways listed could have occurred. It is still not clear whether there were multiple introduction events, or a single event involving multiple individuals.

Economic Impact

Top of page

S. frugiperda is found widely throughout the warmer parts of the New World. Damage results from leaf-eating and healthy plants usually recover quite quickly, but a large pest population can cause defoliation and resulting yield losses; the larvae then migrate to adjacent areas in true armyworm fashion.

Left unmanaged, or in the absence of natural biological control, fall armyworm can cause significant yield loss in maize and other crops. There are many variables to consider in determining the potential yield loss due to fall armyworm infestation. In general, how the crop responds to fall armyworm infestation is highly dependent on the population level of the pest and the timing of infestation, natural enemies and pathogen levels that can help to naturally regulate the populations, and the health and vigour of the maize plant (nutritional and moisture status). Baudron et al. (2019) have reported maize infestation of between 26.4 and 55.9% and impact on yield of 11.57%. Other authors have reported leaf, silk and tassel damage levels ranging between 25 and 50% and grain yield decrease of 58% (Chimweta et al., 2019). In Nicaragua, van Huis (1981) found a 33% increase in maize yield when plants were protected with insecticide. Infestations during the mid- to late-whorl stage of maize development caused yield losses of 15-73% when 55-100% of the plants were infested with S. frugiperda (Hruska and Gould, 1997). Caterpillars of S. frugiperda appear to be much more damaging to maize in West and Central Africa than most other African Spodoptera species (IITA, 2016).

Detection and Inspection

Top of page Detection is facilitated by searching fields for leaf feeding damage and by pheromone traps.

Similarities to Other Species/Conditions

Top of page

Larvae of S. frugiperda are distinct in their aggressive feeding behaviour and dark coloration.

Adults of S. frugiperda can be confused with those of S. exempta and S. littoralis. In S. frugiperda the veins of the hindwing are brown and distinct, and in the male forewing the pale orbicular stigma has a pronounced pale 'tail'; distally. In the male genitalia the valve is almost rectangular and there is no marginal notch at the position of the tip of the harpe; the female bursa lacks a signum. In Africa it can also be confused with S. exigua (IITA, 2016). An EPPO standard provides guidance for the identification of S. littoralis, S. litura, S. frugiperda and S. eridania (OEPP/EPPO, 2015); Brown and Dewhurst (1975) give details of the African species of Spodoptera, and Todd and Poole (1980) give keys to moths of the genus Spodoptera in the Western Hemisphere.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Introduction

The literature on this pest is extensive (Ashley et al., 1989). This is in part due to the importance of maize, the importance of lepidopteran pests, the quest for alternative control methods following the development of insect resistance to pesticides, and the development of host-plant resistance breeding programmes. On maize, if 5% of seedlings are cut or 20% of whorls of small plants (during the first 30 days) are infested, it is recommended that an insecticide be applied (King and Saunders, 1984); on sorghum the pest threshold level is regarded as one (or two) larvae per leaf whorl and two per head (Pitre, 1985).

Cultural Control

Control is largely achieved in the northern range through a winter kill by exposing larvae and pupae within the upper soil surface. Freezing temperatures cause high larval mortality. Therefore, clean cultivation and weeding are recommended. Some locally adaptable methods have also been tried such as soil, charcoal, ash, detergents, paraffin and engine oil. Various plant extracts are often included, such as chilli, neem, Tephrosia, Tithonia, Lantana and garlic. Handpicking egg masses and caterpillars has been tried in Africa. The efficacy of these methods is not well documented.

Agro-ecological options

Harrison et al. (2019) have reviewed evidence for the efficacy of potential agro-ecological measures for controlling fall armyworm. These include (i) sustainable soil fertility management, especially measures that maintain or restore soil organic carbon; (ii) intercropping with appropriately selected companion plants; and (iii) diversifying the farm environment through management of (semi)natural habitats at multiple spatial scales. The 'push-pull' system has been shown to reduce fall armyworm damage due to various pests in maize (Midega et al., 2018). A study in Uganda showed that intercropping maize with food legume crops can reduce fall armyworm damage levels by 30% with bean, 21% with soyabean and 31% with groundnut (Hailu et al., 2018).

Biological Control

A large number of parasitic Hymenoptera, acting as larval parasitoids, have been reared from S. frugiperda, and many predators are recorded including recent work by Molina-Ochoa et al. (2003), Hay-Roe et al. (2016), Meagher et al. (2016), Birhanu Sisay et al. (2018), Shylesha et al. (2018) and Kenis et al. (2019); it appears that natural controls are of considerable importance. Natural levels of larval parasitism are often very high (20-70%), mostly by braconid wasps. Some 10-15% of larvae are often killed by pathogens.

The compound N-(17-hydroxylinolenoyl)-L-glutamine called volicitin was isolated from oral secretions of Spodoptera exigua larvae. When applied to damaged leaves of maize seedlings, volicitin induced the seedlings to emit volatile compounds that attracted females of the parasitoid Cotesia marginiventris. Mechanical damage of the leaves, without application of this compound, did not trigger release of the same blend of volatiles. Volicitin appears to regulate tritrophic interactions among plants, insect herbivores and natural enemies of S. exigua (Alborn et al., 1997).

Biopesticides

Virus-based insecticides, which are mostly in the Baculovirus group, such as the multiple nucleopolyhedrovirus (SfMNPV) have potential for use in the management of fall armyworm (Behle and Popham, 2012; Gómez et al., 2013; Haase et al., 2015). They are highly host specific, non-pathogenic to beneficial insects and other non-target organisms, and are attractive candidates for integrated pest management. SfMNPV is specific to only fall armyworm. The pest is infected by ingesting the baculovirus. The symptoms of Baculovirus infection include appearance of blemishes, yellowing of the skin, and decline in feeding.

Metarhizium anisopliae and Beauveria bassiana have also shown efficacy against eggs and second-instar larvae of fall armyworm (Komivi et al., 2019). B. bassiana caused moderate mortality of 30% to second-instar larvae. M. anisopliae caused egg mortalities of 79.5-87.0% under laboratory conditions. Cumulative mortality of eggs and neonates with M. anisopliae reached as high as 96% with some fungal isolates. Bateman et al. (2018) reviewed products registered in 30 countries, 11 in the fall armyworm native range and 19 in Africa, and 50 biopesticide active ingredients were identified for use on this pest.

Botanicals

Azadirachtin (neem) is effective against fall armyworm. Oxymatrine and matrine (found in Sophora spp.) are reported to be effective against fall armyworm in the field and laboratory bioassays, respectively, in the Americas. Pyrethrins (from Chrysanthemum cinerariaefolium, formerly Pyrethrum) are effective against fall armyworm and registered in many countries, but have non-target risks that require mitigation. In Mexico, recent studies have shown that extracts of Couroupita guianensis and Myrtillocactus geometrizans could be good candidates for the control of Spodoptera due to their larvicidal activity. Also, extracts from Synedrella nodiflora and Lupinus stipulatus have shown to have biological effects on mature insects of the genus Spodoptera.

Host-Plant Resistance

Spodoptera spp. resistance breeding programmes have developed field crop varieties with improved resistance, one example being maize (Mihm et al., 1988). One resistance mechanism that appears to be operating in maize is increased leaf toughness vis-à-vis a thicker epidermis (Davis et al., 1995).

Transgenic maize containing genes encoding delta-endotoxins from Bacillus thuringiensis kurstaki have been commercialized in the USA and Brazil. Vegetative insecticidal proteins (vip) have been isolated from Bacillus thuringiensis (Bt) during the vegetative phase of growth which show a wide spectrum of activities against lepidopteran pests, especially Spodoptera spp. (Estruch et al., 1996). Spodoptera spp. appear to be controlled by these toxins, but the development of resistance is a concern (Moar et al., 1995). Field-evolved resistance to the Bt maize expressing the Cry1Ab protein is reducing it efficacy in Brazil  (Omoto et al., 2016). Fatoretto et al. (2017) reported that most Bt maize hybrids lost their ability to control fall armyworm within 3 years of introduction in Brazil.

Chemical Control

In some areas resistance to insecticides may be widespread and control can be difficult (Pitre, 1985). Recommended insecticides for Spodoptera spp. include esfenvalerate, carbaryl, chlorpyrifos, malathion, permethrin, and lamba-cyhalothrin (Anon., 1997). Togola et al. (2018) showed that five insecticide compounds used against fall armyworm (cypermethrin, deltamethrin, lambda-cyhalothrin, permethrin, and chorpyrifos) remained in the soil.

Pheromonal Control

The sex pheromone for S. frugiperda contains (Z)-9-Tetradecenyl acetate (Z-9-14:OAca) which is common to Trichoplusia ni, Spodoptera exigua and Agrotis ipsilon exigua (Klun et al., 1996). Mating disruption my be possible given the successes observed for S. exigua in which (9Z,12E)-9,12-tetradecadienyl acetate released at high concentrations, caused mating disruption in tomato, lucerne and cotton fields (Shorey et al., 1994).

IPM Programmes

Integrated control of S. frugiperda has been facilitated through cultivation practices to destroy overwintering sites, improved varieties with resistance to leaf feeding through conventional mechanisms or the introduction of Bt crops. Biological controls are prevalent and should be encouraged through reduced spaying of insecticides. CIMMYT (2018) have published a technical guide for IPM of S. frugiperda in Africa. CABI has also produced a manual for the training on farmers on how to use IPM in the management of fall armyworm.

References

Top of page

Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Day, R., Early, R., Godwin, J., Gomez, J., Gonzalez Moreno, P., Murphy, S. T., Oppong-Mensah, B., Phiri, N., Pratt, C., Silvestri, S., Witt, A., 2017. Evidence Note, (2), September 2017. CABI, Wallingford, UK

Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH, 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science (Washington), 276(5314):945-949; 7 ref

Ankush Chormule, Naresh Shejawal, Sharanabasappa, Kalleshwaraswamy, C. M., Asokan, R., Mahadeva Swamy, H. M., 2019. First report of the fall Armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. Journal of Entomology and Zoology Studies, 7(1), 114-117.

Anon., 1997. Insect Control Guide. Ohio, USA: Meister Publishing Co., 442 pp.

Ashley TR, Wiseman BR, Davis FM, Andrews KL, 1989. The fall armyworm: a bibliography. Florida Entomologist, 72(1):152-202

Bateman, M. L., Day, R. K., Luke, B., Edgington, S., Kuhlmann, U., Cock, M. J. W., 2018. Assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda) in Africa. Journal of Applied Entomology, 142(9), 805-819. https://onlinelibrary.wiley.com/journal/14390418 doi: 10.1111/jen.12565

Baudron, F., Zaman-Allah, M. A., Chaipa, I., Chari, N., Chinwada, P. , 2019. Understanding the factors conditioning fall armyworm (Spodoptera frugiperda J.E. Smith) infestation in African smallholder maize fields and quantifying its impact on yield: a case study in Eastern Zimbabwe. Crop Protection, 120, 141-150.

Behle, R. W., Popham, H. J. R., 2012. Laboratory and field evaluations of the efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda. Journal of Invertebrate Pathology, 109(2), 194-200. http://www.sciencedirect.com/science/article/pii/S0022201111002400 doi: 10.1016/j.jip.2011.11.002

Birhanu Sisay, Simiyu, J., Malusi, P., Likhayo, P., Esayas Mendesil, Elibariki, N., Mulatu Wakgari, Gashawbeza Ayalew, Tadele Tefera, 2018. First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. Journal of Applied Entomology, 142(8), 800-804. https://onlinelibrary.wiley.com/journal/14390418

Brown ES, Dewhurst CF, 1975. The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bulletin of Entomological Research, 65(2):221-262

CABI/EPPO, 1998. Distribution maps of quarantine pests for Europe (edited by Smith IM, Charles LMF). Wallingford, UK: CAB International, xviii + 768 pp

Camera C, Dequech STB, Ribeiro Ldo P, Querino RB, 2010. First report of Trichogramma rojasi parasitizing eggs of Spodoptera frugiperda. (First report of Trichogramma rojasi parasitizing eggs of Spodoptera frugiperda.) Ciência Rural, 40(8):1828-1830. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-84782010000800025&lng=en&nrm=iso&tlng=pt

Casmuz, A., Juárez, M. L., Socías, M. G., Murúa, M. G., Prieto, S., Medina, S., Willink, E., Gastaminza, G., 2010. Revisión de los hospederos del gusano cogollero del maíz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista de la Socie- dad Entomológica Argentina, 69, 209-231.

Chimweta, M., Nyakudya, I. W., Jimu, L., Mashingaidze, A. B., 2019. Fall armyworm [Spodoptera frugiperda (J.E. Smith)] damage in maize: management options for flood-recession cropping smallholder farmers. International Journal of Pest Management, https://doi.org/10.1080/09670874.2019.1577514

Chinwada, P. , 2018. Fall Armyworm Prevalence Assessment in Madagascar. In: FAO Mission Report . 32 pp.

CIMMYT, 2018. Fall Armyworm in Africa: A Guide for Integrated Pest Management. First Edition, Prasanna, B. M., Huesing, J. E., Eddy, R., Peschke, V. M., eds. CIMMYT, Mexico, 109 pp.

Cock MJW (ed.), 1985. A review of biological control of pests in the Commonwealth Caribbean and Bermuda up to 1982. Farnham Royal, United Kingdom; Commonwealth Agricultural Bureaux, xii + 218 pp.

Cock, M. J. W., Beseh, P. K., Buddie, A. G., Cafá, G., Crozier, J., 2017. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific Reports, 7: 4103 doi: 10.1038/s41598-017-04238-y

Cortez-Mondaca E, Armenta-Cárdenas I, Bahena-Juárez F, 2010. Parasitoids and percent parasitism of the fall armyworm (Lepidoptera: Noctuidae) in southern Sonora, Mexico. (Parasitoides y porcentaje de parasitismo sobre el Gusano Cogollero (Lepidoptera: Noctuidae) en el sur de Sonora, México.) Southwestern Entomologist, 35(2):199-203. http://sswe.tamu.edu/

Crumb SE, 1956. The Larvae of the Phalaenidae. Technical Bulletin No. 1135. Washington DC, USA: United States Department of Agriculture

Davis FM, Baker GT, Williams WP, 1995. Anatomical characteristics of maize resistant to leaf feeding by southwestern corn borer (Lepidoptera: Pyralidae) and fall armyworm (Lepidoptera: Noctuidae). Journal of Agricultural Entomology, 12(1):55-65

Didonet J, Didonet APP, Erasmo EL, Santos GRdos, 2001. Incidence and population dynamics of pests and their natural enemies in upland rice in Gurupi, Tocantins. (Incidência e densidade populacional de pragas e inimigos naturais em arroz de terras altas, em Gurupi-TO.) Bioscience Journal, 17(1):67-76

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

EPPO, 2018. EPPO Global Database. EPPO Global Database, https://gd.eppo.int/ EPPO, Paris, France

EPPO, 2019. Spodoptera frugiperda continues to spread in Asia. In: EPPO Reporting Service , (No. 2019/053) . Paris, France: EPPO.https://gd.eppo.int/reporting/article-6483

Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG, 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 93(11):5389-5394; 23 refs

FAO, 2017a. FAO Advisory Note on Fall Armyworm (FAW) in Africa. FAO Advisory Note on Fall Armyworm (FAW) in Africa, 7 pp. 5 June 2017. FAO, Rome, Italy

FAO, 2017b. Briefing Note on FAP Actions on Fall Armyworm in Africa 15 December 2017. Briefing Note on FAP Actions on Fall Armyworm in Africa 15 December 2017, 7 pp. http://www.fao.org/fileadmin/templates/fcc/map/map_of_affected_areas/Fall_Armyworm_brief_-__15Dec2017_.pdf FAO, Rome, Italy

FAO, 2018. Briefing Note on FAO Actions on Fall Armyworm in Africa 31 January 2018. In: Briefing Note on FAO Actions on Fall Armyworm in Africa 31 January 2018 FAO, Rome, Italy, 6 pp

FAO, 2018b. Briefing note on fall armyworm (FAW) in Africa. 16 February 2018, 7 pp. http://www.fao.org/3/a-bt415e.pdf

FAO, 2018c. FAW Monitoring & Early Warning System (FAMEWS). Rome, Italy: FAO.https://app.powerbi.com/view?r=eyJrIjoiMmFlOWQxMjctZjIwYy00MTdlLWJmMDgtMGM1ZWQ5YmZmNDQwIiwidCI6IjJmMDYwNjMyLTg4MDgtNGM5ZS05M2NmLTNmY2JkMWM1YTUxYiIsImMiOjh9&refresh=1&pageName=ReportSection0901c9217ada50684ad0

FAO, 2019a. FAO Statement on Fall Armyworm in Sri Lanka. Rome, Italy: FAO. http://www.fao.org/srilanka/news/detail-events/en/c/1177796/

FAO, 2019b. First Detection of Fall Armyworm in China. Rome, Italy: FAO.https://www.ippc.int/fr/news/first-detection-of-fall-armyworm-in-china/

FAO, 2019c. Briefing note on FAO actions on fall armyworm. Rome, Italy: FAO.6 pp. http://www.fao.org/3/a-bs183e.pdf

FAO, 2019d. FAW Briefing Note July 2019. Rome, Italy: FAO.

Fatoretto, J. C., Michel, A. P., Silva Filho, M. C., Silva, N., 2017. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. Journal of Integrated Pest Management, 8(1), 17. https://academic.oup.com/jipm doi: 10.1093/jipm/pmx011

Ganiger, P. C., Yeshwanth, H. M., Muralimohan, K., Vinay, N., Kumar, A. R. V., Chandrashekara, K., 2018. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Current Science, 115(4), 621-623.

Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., Tamò, M., 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE, 11(10), e0165632. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165632 doi: 10.1371/journal.pone.0165632

Gómez, J., Guevara, J., Cuartas, P., Espinel, C., Villamizar, L., 2013. Microencapsulated Spodoptera frugiperda nucleopolyhedrovirus: insecticidal activity and effect on arthropod populations in maize. Biocontrol Science and Technology, 23(7), 829-846. http://www.tandfonline.com/loi/cbst20 doi: 10.1080/09583157.2013.802288

Greathead DJ, Greathead AH, 1992. Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News and Information, 13(4):61N-68N

Gurrola-Pérez, C. C., Álvarez-Zagoya, R., Hernández-Mendoza, J. L., Correa-Ramírez, M., Pérez-Santiago, G., 2018. Record of Lespesia archippivora, Lespesia postica, and Archytas marmoratus parasitizing larvae of Spodoptera frugiperda in Durango, Mexico. (Registro de Lespesia archippivora, Lespesia postica, y Archytas marmoratus Parasitando larvas de Spodoptera frugiperda en Durango, México). Southwestern Entomologist, 43(2), 505-510. http://www.bioone.org/loi/swen doi: 10.3958/059.043.0221

Haase, S., Sciocco-Cap, A., Romanowski, V., 2015. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses, 7(5), 2230-2267. http://www.mdpi.com/1999-4915/7/5/2230/htm

Hailu, G., Niassy, S., Khan Z. R., Ochatum, N., Subramanian, S., 2018. Maize-legume intercropping and Push-pull for management of fall armyworm, stemborers and striga in Uganda. Agronomy Journal, 110, 1-10. doi: 10.2134/agronj2018.02.0110

Harrison, R. D., Thierfelder, C., Baudron, F., Chinwada, P., Midega, C., Schaffner, U., van den Berg, J., 2019. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management, 243, 318-330. https://doi.org/10.1016/j.jenvman.2019.05.011

Hay-Roe, M. M., Meagher, R. L., Nagoshi, R. N., Newman, Y., 2016. Distributional patterns of fall armyworm parasitoids in a corn field and a pasture field in Florida. Biological Control, 96, 48-56. http://www.sciencedirect.com/science/article/pii/S1049964416300147 doi: 10.1016/j.biocontrol.2016.02.003

Hruska AJ, Gould F, 1997. Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): impact of larval population level and temporal occurrence on maize yield in Nicaragua. Journal of Economic Entomology, 90(2):611-622; 27 ref

Hruska, A. J., 2019. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Reviews, 14(043), 1-11. http://www.cabi.org/cabreviews/review/20193352460 doi: 10.1079/PAVSNNR201914043

Huis, A. van, 1981. Integrated pest management in the small farmer's maize crop in Nicaragua. Mededelingen Landbouwhogeschool Wageningen, 81(6):221 pp

ICAR-NBAIR, 2018a. PEST ALERT: 30th July, 2018. Spodoptera frugiperda (Smith, J.E.) (Insecta: Lepidoptera). http://www.nbair.res.in/recent_events/Pest%20Alert%2030th%20July%202018-new1.pdf

ICAR-NBAIR, 2018b. Spodoptera frugiperda (J. E. Smith). Insects in Indian Agrosystems. ICAR-National Bureau of Agricultural Insect Resources (NBAIR), India. http://www.nbair.res.in/insectpests/Spodoptera_frugiperda.php

IITA, 2016. First report of outbreaks of the "Fall Armyworm" on the African continent. IITA Bulletin, No. 2330. http://bulletin.iita.org/index.php/2016/06/18/first-report-of-outbreaks-of-the-fall-armyworm-on-the-african-continent/

IITA, 2018: Fall armyworm has reached the Indian subcontinent! Ibadan, Nigeria: IITA. http://www.iita.org/news-item/fall-armyworm-has-reached-the-indian-subcontinent/

IPPC, 2016. Les dégâts causés par spodoptera frugiperda. (The damage caused by Spodoptera frugiperda.) IPPC Official Pest Report. Rome, Italy: FAO. https://www.ippc.int/

IPPC, 2017a. IPPC Official Pest Report, (No. ZAF-33/1) . Rome, Italy, FAO.https://www.ippc.int/

IPPC, 2017b. IPPC Official Pest Report, (No. SWZ-02/1) . Rome, Italy, FAO.https://www.ippc.int/

IPPC, 2017c. IPPC Official Pest Report, (No. MOZ-06/1) . Rome, Italy, FAO.https://www.ippc.int/

IPPC, 2017d. IPPC Official Pest Report, (No. ZMB-02/2) . Rome, Italy, FAO.https://www.ippc.int/

IPPC, 2017e. IPPC Official Pest Report, (No. CMR-04/6) . Rome, Italy, FAO.https://www.ippc.int/

IPPC, 2017f. IPPC Official Pest Report, (No. BFA-01/1) . Rome, Italy, FAO.https://www.ippc.int/

IPPC, 2018. Report on Fall armyworm (Spodoptera frugiperda). In: Report on Fall armyworm (Spodoptera frugiperda) IPPC Official Pest Report, No. GHA-01/4. Rome, Italy: FAO. https://www.ippc.int/

IPPC, 2018b. First detection of Fall Army Worm on the border of Thailand. IPPC Official Pest Report , No. THA-03/1 . FAO: Rome, Italy. https://www.ippc.int/

IPPC, 2019a. First Detection Report of the Fall Armyworm Spodoptera frugiperda (Lepidoptra: Noctuidae) on Maize in Myanmar. IPPC Official Pest Report, No. MMR-19/2. Rome, Italy: FAO. https://www.ippc.int/

IPPC, 2019b. Report of first detection of Fall Armyworm(FAW) in Republic of Korea. IPPC Official Pest Report, No. KOR-08/2. FAO: Rome, Italy. https://www.ippc.int/

IPPC, 2019c. Report of first detection of Spodoptera frugiperda - Fall Armyworm (FAW) in Egypt. IPPC Official Pest Report, No. EGY-01/1. FAO: Rome, Italy. https://www.ippc.int/

IPPC, 2019d. Report of first detection of Spodoptera frugipedera – Fall Armyworm (FAW) in Japan. IPPC Official Pest Report, No. JPN-08/6. https://www.ippc.int/

IPPC, 2019e. The Occurence of Fall Armyworm (Spodoptera frugiperda) in Indonesia. IPPC Official Pest Report, No. IDN-04/1. Rome, Italy: FAO. https://www.ippc.int/

IPPC, 2019f. Spodoptera frugiperda (Fall Armyworm). IPPC Official Pest Report, No. NPL-04/3. https://www.ippc.int/

IPPC, 2019g. (Signalement de la chenille légionnaire d'automne (CLA) au Gabon). In: IPPC Official Pest Report , (No. GAB-03/2) Rome, Italy: FAO.https://www.ippc.int/

IPPC, 2019h. Reporting Fall Armyworm (Spodoptera frugiperda) in Yemen. In: IPPC Official Pest Report , (No. NRO-03/1) Rome, Italy: FAO.https://www.ippc.int/

Jacobs, A., van Vuuren, A., Rong, I. H., 2018. Characterisation of the fall armyworm (Spodoptera frugiperda J.E. Smith) (Lepidoptera: Noctuidae) from South Africa. African Entomology, 26(1), 45-49.

Jeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen-Schmutz, K., Gilioli, G., Gregoire, J. C., Miret, J. A. J., Navarro, M. N., Niere, B., Parnell, S., Potting, R., Rafoss, T., Rossi, V., Urek, G., Bruggen, A. van, Werf, W. van D., West, J., Winter, S., Gardi, C., Aukhojee, M., MacLeod, A., 2017. Pest categorisation of Spodoptera frugiperda. EFSA Journal, 15(7), e04927. http://onlinelibrary.wiley.com/wol1/doi/10.2903/j.efsa.2017.4927/full

Jeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehnen-Schmutz, K., Gilioli, G., Grégoire, J. C., Miret, J. A. J., Navarro, M. N., Niere, B., Parnell, S., Potting, R., Rafoss, T., Rossi, V., Urek, G., Bruggen, A. van, Werf, W. van der, West, J., Winter, S., Day, R., Early, R., Hruska, A., Nagoshi, R., Gardi, C., Mosbach-Schultz, O. (et al), 2018. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA Journal, 16(8), e05351. https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5351

Johnson SJ, 1987. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Insect Science and its Application, 8(4-6):543-549

Kenis, M., Plessis, H. du, Berg, J. van den, Ba, M. N., Goergen, G., Kwadjo, K. E., Baoua, I., Tadele Tefera, Buddie, A., Cafà, G., Offord, L., Rwomushana, I., Polaszek, A., 2019. Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent. Insects, 10(4), 92. https://www.mdpi.com/2075-4450/10/4/92/htm doi: 10.3390/insects10040092

King ABS, Saunders JL, 1984. The invertebrate pests of annual food crops in Central America. A guide to their recognition and control. London, UK: Overseas Development Administration

Klun JA, Potts WJE, Oliver JE, 1996. Four species of noctuid moths degrade sex pheromone by a common antennal metabolic pathway. Journal of Entomological Science, 31(4):404-413; 16 ref

Komivi, S. A., Kimemia, J. W., Ekesi, S., Khamis, F. M., Ombura, O. L., Subramanian, S. , 2019. Ovicidal effects of entomopathogenic fungal isolates on the invasive Fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Applied Entomology, doi: 10.1111/jen.12634

Levy R, Habeck DH, 1976. Descriptions of the larvae of Spodoptera sunia and S. latifascia with a key to the mature Spodoptera larvae of the eastern United States (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 69(4):585-588

Lewter, J. A., Szalanski, A. L., Nagoshi, R. N., Meagher, R. L., Jr., Owens, C. B., Luttrell, R. G., 2006. Genetic variation within and between strains of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomologist, 89(1), 63-68. http://www.fcla.edu/FlaEnt/fe89p63.pdf doi: 10.1653/0015-4040(2006)89[63:GVWABS]2.0.CO;2

Lu YangJiang, Adang, M. J., 1996. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker. Florida Entomologist, 79(1), 48-55. doi: 10.2307/3495753

Luginbill, P. , 1928. Technical Bulletin. United States Department of Agriculture, Washington, D.C (34), 91 pp.

Martel P, Hudon M, Ritchot C, 1980. The incidence of insect pests in certain crops in the south-west of Quebec in 1979. Annals of the Entomological Society of Quebec, 25(3):190-194

Meagher, R. L., Jr., Nuessly, G. S., Nagoshi, R. N., Hay-Roe, M. M., 2016. Parasitoids attacking fall armyworm (Lepidoptera: Noctuidae) in sweet corn habitats. Biological Control, 95, 66-72. http://www.sciencedirect.com/science/article/pii/S1049964416300068 doi: 10.1016/j.biocontrol.2016.01.006

Midega, C. A. O., Pittchar, J. O., Pickett, J. A., Hailu, G. W., Khan, Z. R., 2018. A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Protection, 105, 10-15. http://www.sciencedirect.com/science/journal/02612194 doi: 10.1016/j.cropro.2017.11.003

Mihm JA, Smith ME, Deutsch JA, 1988. Development of open-pollinated varieties, non-conventional hybrids and inbred lines of tropical maize with resistance to fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at CIMMYT. Florida Entomologist, 71(3):262-268

Ministerio de Agricultura y Ganadería Servicio Fitosanitario del Estado (Costa Rica), 2009. Listado de Plagas (insectos y ácaros) en cultivos de importancia económica en Costa Rica (C). http://www.protecnet.go.cr/laboratorios/plagcul/cultivoc.htm

Ministry of Agriculture of the State of Eritrea, 2018. Eritrea: Crops are safe from Fall Army Worm infestation. Fall Army Worm Newsletter, No. 3, August 2018. https://www.ippc.int/static/media/files/countrynews/2018/08/10/FAW_Newsletter_August.pdf

Moar WJ, Pusztai-Carey M, Faassen Hvan, Bosch D, Frutos R, Rang C, Luo K, Adang MJ, 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 61(6):2086-2092; 35 ref

Molina-Ochoa, J., Carpenter, J. E., Heinrichs, E. A., Foster, J. E., 2003. Parasitoids and parasites of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas and Caribbean Basin: an inventory. Florida Entomologist, 86(3), 254-289. http://www.fcla.edu/FlaEnt/ doi: 10.1653/0015-4040(2003)086[0254:PAPOSF]2.0.CO;2

Montezano, D. G., Specht, A., Sosa-Gómez, D. R., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V., Peterson, J. A., Hunt, T. E., 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26(2), 286–300.

Nagoshi, R. N., Silvie, P., Meagher, R. L., Lopez, J., Machado, V., 2007. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Annals of the Entomological Society of America, 100(3), 394-402. http://docserver.ingentaconnect.com/deliver/connect/esa/00138746/v100n3/s8.pdf?expires=1202119290&id=0000&titleid=10263&checksum=73980337A2767955F452EAF3BAB88E5B doi: 10.1603/0013-8746(2007)100[394:IACOFA]2.0.CO;2

Nagoshi,R. N., Goergen, G., Agbeko, K. T., Agboka, K., Koffi, D., Meagher, R. L., 2018. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Scientific Reports, 8, 3710. doi: doi:10.1038/s41598-018-21954-1

OEPP/EPPO, 2015. EPPO Standards PM 7/124(1) Diagnostic protocol for Spodoptera littoralis, Spodoptera litura, Spodoptera frugiperda, Spodoptera eridania. Bulletin OEPP/EPPO Bulletin, 34:257-270

Omoto C, Bernardi O, Salmeron E, Sorgatto RJ, Dourado PM, Crivellari A, Carvalho RA, Willse A, Martinelli S, Head GP, 2016. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Management Science, 72(9):1727-1736. http://onlinelibrary.wiley.com/doi/10.1002/ps.4201/abstract

Otim, M. H., Tay, W. T., Walsh, T. K., Kanyesigye, D., Adumo, S., Abongosi, J., Ochen, S., Sserumaga, J., Alibu, S., Abalo, G., Asea, G., Agona, A., 2018. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PLoS ONE, 13(4), e0194571. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194571 doi: 10.1371/journal.pone.0194571

Partha Sarathi Biswas, 2018. First case of fall armyworm infestation in state reported from Solapur district. The Indian Express, 27 September, 2018.

Pitre HN, 1985. Insect problems on sorghum in the USA. Proceedings of the international sorghum entomology workshop, 15-21 July 1984, Texas A & M University, College Station, Texas, USA. Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, 73-81

Pratissoli D, Polanczyk RA, Grecco ED, Ferreira RA, Holtz AM, 2007. Microbial toxicity of new Bacillus thuringiensis isolates in two populations of Spodoptera frugiperda originating from Minas Gerais and Espírito Santo. (Efeito entomotóxico de novos isolados de Bacillus thuringiensis em duas populações de Spodoptera frugiperda oriundas de Minas Gerais e do Espírito Santo.) Revista Brasileira de Milho e Sorgo, 6(2):140-148

Rambajan I, 1981. Major insect pests of paddy in Guyana. International Rice Research Newsletter, 6(6):16-17

Ramirez-Garcia L, Bravo Mojica H, Llanderal Cazares C, 1987. Development of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) under different conditions of temperature and humidity. Agrociencia, 67:161-171

Sarfaraz Ali, Zakkia Masroor, Mohammad Danish Masroor, 2018. First record of the fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae), an evil attack on paddy in Magadh, Bihar (India). International Journal of Emerging Technologies and Innovative Research (www.jetir.org), 5(12), 546-549. http://www.jetir.org/papers/JETIR1812380.pdf

Seymour PR, Roberts H, Davis ME (Compilers), 1985. Insects and other invertebrates found in plant material imported into England and Wales, 1984. Reference Book, Ministry of Agriculture, Fisheries and Food, UK, 442/84

Sharanabasappa, Kalleshwara swamy, C. M., 2018. Presence of fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an invasive pest on maize in university jurisdiction. Shivamogga, Karnataka, India: University of Agricultural and Horticultural Sciences, https://drive.google.com/file/d/1hEW58nhZViHPnRduCjRHVIfWhGASHLSH/view

Sharanabasappa, Kalleshwaraswamy, C. M., Asokan, R., Mahadeva Swamy, H. M., Maruthi, M. S., Pavithra, H. B., Kavita Hedge, Shivaray Navi, Prabhu, S. T., Goergen, G., 2018. First report of the Fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Management in Horticultural Ecosystems, 24(1): 23-29.

Shorey HH, Summers CG, Sisk CB, Gerber RG, 1994. Disruption of pheromone communication in Spodoptera exigua (Lepidoptera: Noctuidae) in tomatoes, alfalfa, and cotton. Environmental Entomology, 23(6):1529-1533

Shylesha, A. N., Jalali, S. K., Gupta, A., Varshney, R., Venkatesan, T., Shetty, P., Ojha, R., Ganiger, P. C., Navik, O., Subaharan, K., Bakthavatsalam, N., Ballal, C. R., 2018. Studies on new invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. Journal of Biological Control, 32(3), 2018.

Sifuentes A JA, 1978. Pests of maize in Mexico and some thoughts on their control. Folleto de Divulgacion, SARH, Instituto Nacional de Investigaciones Agricolas, 58

Silva PSLe, Diniz Filho ET, Granjeiro LC, Duarte SR, 2000. Effects of nitrogen rates and deltamethrin application on yields of green ears and grain yield of maize. (Efeitos de níveis de nitrogênio e da aplicação de deltametrina sobre os rendimentos de espigas verdes e de grãos de milho.) Revista Ceres, 47(269):75-87

Silva RBda, Cruz I, Figueiredo Mde LC, Bortoni MA, Pereira AG, Melo IFde, Camargo LF, Penteado-Dias AM, 2012. Record of new species of parasitoids on larvae of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and Dichomeris famulata Meyrick (Lepidoptera: Gelechiidae) in maize (Zea mays L.) in Brazil. Revista Brasileira de Milho e Sorgo, 11(1):125-129. http://rbms.cnpms.embrapa.br/index.php/ojs/article/view/398

Soares JJ, Silva MS, 2003. Effect of planting date on the production and the ocurrence of pests on cotton (Gossypium hirsutum). (Efeito da época de plantio na produção e na ocorrência de pragas em culturas do algodoeiro (Gossypium hirsutum).) Arquivos do Instituto Biológico (São Paulo), 70(3):295-302. http://www.biologico.sp.gov.br/ARQUIVOS/V70_3/soares.PDF

Solano Y, Sosa F, Pérez de Camacaro M, 2015. Record of noctuids (Lepidoptera: Noctuidae) associated with strawberry crop in western Venezuela. (Registros de noctuidos (Lepidoptera: Noctuidae) asociados al cultivo de fresa en el occidente de Venezuela.) Entomotropica, 30(19):193-200. http://www.entomotropica.org/index.php/entomotropica/article/view/488/616

Sparks, A. N., 1979. A review of the biology of the fall armyworm. Florida Entomologist, 62, 82-87. doi: 10.2307/3494083

Starratt AN, McLeod DGR, 1982. Monitoring fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), moth populations in southwestern Ontario with sex pheromone traps. Canadian Entomologist, 114(7):545-549

Swamy, H. M. M., Asokan, R., Kalleshwaraswamy, C. M., Sharanabasappa, Prasad, Y. G., Maruthi, M. S., Shashank, P. R., Devi, N. I., Anusha Surakasula, Adarsha, S., Srinivas, A., Srinivasa Rao, Vidyasekhar, Raju, M. S., Reddy, G. S. S., Nagesh, S. N., 2018. Prevalence of "R" strain and molecular diversity of fall army worm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in India. Indian Journal of Entomology, 80(3), 544-553. http://www.indianjournals.com/ijor.aspx?target=ijor:ije&type=home doi: 10.5958/0974-8172.2018.00239.0

Todd EL, Poole RW, 1980. Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera Guenee from the Western Hemisphere. Annals of the Entomological Society of America, 73(6):722-738

Togola, A., Meseka, S., Menkir, A., Badu-Apraku, B., Bouka, O., Tamò, M., Djouaka, R., 2018. Measurement of Pesticide Residues from Chemical Control of the Invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a Maize Experimental Field in Mokwa, Nigeria. Int. J. Environ. Res. Public Health, 15, 849. doi: 10.3390/ijerph15050849

Uzayisenga, B., Waweru, B., Kajuga, J., Karangwa, P., Uwumukiza, B., Edgington, S., Thompson, E., Offord, L., Cafá, G., Buddie, A., 2018. First Record of the Fall Armyworm, Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae), in Rwanda. African Entomology, 26(1), 244-246.

Contributors

Top of page

24/05/19 Review by:

Ivan Rwomushana, CABI Africa, Canary Bird, 673 Limuru Road, Muthaiga, Nairobi, Kenya.

Distribution Maps

Top of page
You can pan and zoom the map
Save map