Cookies on Invasive Species Compendium

Like most websites we use cookies. This is to ensure that we give you the best experience possible.


Continuing to use  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

New! Try our Horizon Scanning Tool (beta) – prioritizing invasive species threats

To help us improve this tool, please provide feedback in our survey


Lantana camara (lantana)


  • Last modified
  • 03 January 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Host Plant
  • Preferred Scientific Name
  • Lantana camara
  • Preferred Common Name
  • lantana
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • L. camara is a highly variable ornamental shrub, native of the neotropics. It has been introduced to most of the tropics and subtropics as a hedge plant and has since been reported as extremely weedy and invasive...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Lantana camara (lantana); flowers.
CaptionLantana camara (lantana); flowers.
Copyright©CABI/Arne Witt
Lantana camara (lantana); flowers.
FlowersLantana camara (lantana); flowers.©CABI/Arne Witt
Lantana camara (lantana); flowers.
CaptionLantana camara (lantana); flowers.
Copyright©CABI/Arne Witt
Lantana camara (lantana); flowers.
FlowersLantana camara (lantana); flowers.©CABI/Arne Witt
Lantana camara (lantana); habit, showing flowers and foliage, as well as the thorny stems.
CaptionLantana camara (lantana); habit, showing flowers and foliage, as well as the thorny stems.
Copyright©CABI/Arne Witt
Lantana camara (lantana); habit, showing flowers and foliage, as well as the thorny stems.
HabitLantana camara (lantana); habit, showing flowers and foliage, as well as the thorny stems.©CABI/Arne Witt
Lantana camara (lantana); invasive habit. Ethiopia. July 2014.
TitleInvasive habit
CaptionLantana camara (lantana); invasive habit. Ethiopia. July 2014.
Copyright©CABI/Arne Witt
Lantana camara (lantana); invasive habit. Ethiopia. July 2014.
Invasive habitLantana camara (lantana); invasive habit. Ethiopia. July 2014.©CABI/Arne Witt
Lantana camara (lantana); invasive habit, on the edge of the Queen Elizabeth National Park, Uganda. January 2005.
TitleInvasive habit.
CaptionLantana camara (lantana); invasive habit, on the edge of the Queen Elizabeth National Park, Uganda. January 2005.
Copyright©CABI/Arne Witt
Lantana camara (lantana); invasive habit, on the edge of the Queen Elizabeth National Park, Uganda. January 2005.
Invasive habit.Lantana camara (lantana); invasive habit, on the edge of the Queen Elizabeth National Park, Uganda. January 2005.©CABI/Arne Witt


Top of page

Preferred Scientific Name

  • Lantana camara L.

Preferred Common Name

  • lantana

Other Scientific Names

  • Camara vulgaris Benth.
  • Lantana antidotalis Thonning (1827)
  • Lantana camara var. aculeata
  • Lantana crocea Jacq.
  • Lantana glandulosissima Hayek
  • Lantana mexicana Turner
  • Lantana mixta Medik.
  • Lantana moritziana Otto & A.Dietr.
  • Lantana sanguinea Medik.
  • Lantana scabrida Ait.
  • Lantana spinosa L. ex Le Cointe
  • Lantana undulata Raf.
  • Lantana urticifolia Mill.
  • Lantana x aculeata f. crocea (Jacq.) Voss

International Common Names

  • English: arch man; common lantana; large leaf lantana; pink-flowered lantana; prickly lantana; red sage; red-flowered sage; shrub verbena; tickberry; white sage; wild sage; yellow sage
  • Spanish: camar; cariaquillo; cinco cincos; cinco negritos; comida de paloma; corroncho; cuasquito; filigrana; frutilla; jaral; jarrila; mora de caballo; morita; palo del diablo; santo negrito; soterre; venturosa
  • French: corbeille d’or; galabert; lantanier; mille fleurs; vieille fille
  • Chinese: ma ying dan

Local Common Names

  • Brazil: camara; cambara de espinho
  • Cambodia: ach mann
  • Cook Islands: ranatana; tataramoa
  • Costa Rica: cinco negritos; flor de duende; tres colores
  • El Salvador: bandera española
  • Fiji: kauboica
  • French Polynesia: tatara moa
  • Germany: wandelroeschen
  • Guinea: boulé kogno; kogno porto
  • Haiti: bonbonier; herbe à plomb; herbe au diable; herbe bourrique
  • India: bands; nagaairi; phullaki; putus; tantbi
  • India/Assam: guphul
  • Indonesia: boenga pagar; chente; kembang satik; kembang telek; oblo; puchengan; puyengan; saliara; saliyere; sliyara; tahi agam; tai hayam; tai kotok; telekan; tembelek; tembelekan; teterapan; waung; wileran
  • Japan: shichihenge
  • Japan/Ryukyu Archipelago: shichi-henge
  • Kiribati: te kaibuaka
  • Lesser Antilles: measle bush; rangoat leaf; sauge; scrubby tree
  • Madagascar: fankatavinakoho; fotatra; mandadrieko; radredreka; rajejeka; ramity
  • Malaysia: bunga asam senyur; bunga pagar; bunga tahi anjing; bunga tahi asu; bunga tahi ayam; bunga tahi ayam busok; tahi ayam munai
  • Mauritius: vieille fille
  • Mexico: alantana; alfombrilla hedionda (Michoacán); carrasposa; confite; confituria; confiturilla (Sonora-Chihuahua); confiturio (Baja California); flor de San Cayetano; lampana; matizadilla; pasaruin; scrubby cap; sonora roja (Sinaloa); uña de gato (Morelia)
  • Micronesia, Federated states of: randana (Pohnpei)
  • Nicaragua: cuasquito
  • Philippines: bahug-bahug; sapinit
  • Portugal: cambará
  • Puerto Rico: cariaquillo
  • Saint Helena: wild currant
  • Samoa: Lantana; latana
  • South Africa: boesmandruiwe; cherry-pie; common lantana; gewone lantana; gomdagga; sumba; voelbrandewyn; wild lantana; wilderoosmaryn; yellow sage
  • Spain: bandera; banderita; espuela de galán
  • Sri Lanka: ganda-pana; garda-pana; genda-pana; katu-hinguru; rata-guru; ton-kinna
  • Thailand: kamkung; paka krawng; pha-ka-krong
  • Tonga: Talamoa; talatala
  • USA/Hawaii: lakana; lanakana; mikinolia hihiu; mikinolia kuku
  • Venezuela: cariaquillo; cariaquito
  • Vietnam: thom oi
  • Zimbabwe: chiponiwe

EPPO code

  • LANCA (Lantana camara)

Summary of Invasiveness

Top of page

L. camara is a highly variable ornamental shrub, native of the neotropics. It has been introduced to most of the tropics and subtropics as a hedge plant and has since been reported as extremely weedy and invasive in many countries. It is generally deleterious to biodiversity and has been reported as an agricultural weed resulting in large economic losses in a number of countries. In addition to this, it increases the risk of fire, is poisonous to livestock and is a host for numerous pests and diseases. L. camara is difficult to control. In Australia, India and South Africa aggressive measures to eradicate L. camara over the last two centuries have been largely unsuccessful, and the invasion trajectory has continued upwards despite control measures. This species has been the target of biological control programmes for over a century, with successful control only being reported in a few instances. 

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Lamiales
  •                         Family: Verbenaceae
  •                             Genus: Lantana
  •                                 Species: Lantana camara

Notes on Taxonomy and Nomenclature

Top of page

L. camara is a highly variable species which has been widely cultivated for over 300 years. Hundreds of cultivars and hybrids exist (Howard, 1969) and most of them belong to the L. camara complex (Stirton, 1979). Cultivars can be distinguished morphologically (flower size, shape and colour; leaf size, hairiness and colour; stem thorniness; height and branch architecture), physiologically (growth rates, toxicity to livestock) and by their chromosome number and DNA content (Stirton, 1979; Gujral and Vasudevan, 1983; Scott et al., 1997). Two groups are often recognised: one with few or no spines commonly found in the neotropics and one with spines in other parts of the world where the species is troublesome (Howard, 1970; Swarbrick, 1986). In the Pacific Islands the most common variety is the prickly L. camara var. aculeata (Thaman, 1974).


Top of page

L. camara is a medium-sized perennial aromatic shrub, 2-5 m tall, with quadrangular stems, sometimes having prickles. The posture may be sub-erect, scrambling, or occasionally clambering (ascending into shrubs or low trees, clinging to points of contact by means of prickles, branches, and leaves). Frequently, multiple stems arise from ground level. The leaves are generally oval or broadly lance-shaped, 2-12 cm in length, and 2-6 cm broad, having a rough surface and a yellow-green to green colour. The flat-topped inflorescence may be yellow, orange, white, pale violet, pink, or red. Flowers are small, multicoloured, in stalked, dense, flat-topped clusters to 4 cm across. Fruit is a round, fleshy, 2 seeded drupe, about 5 mm wide, green turning purple then blue-black (similar in appearance to a blackberry).

Plant Type

Top of page Perennial
Seed propagated
Vine / climber


Top of page

L. camara is native to Central and South America but its original distribution is unclear due to the introduction of a number of ornamental varieties. The species has also been poorly investigated in its native range, where it is not usually considered to be a serious pest, and the extent of its original native range is unclear. In the West Indies it is found in dry thickets (Adams, 1976). The weed is noted to be present in the Galapagos Islands of Ecuador (Cruz et al., 1986). This species has been widely promoted as an ornamental since the early 1800s and it is widely naturalized throughout the Neotropics. It is present on all continents expect Antartica. It has become very widespread in Australia, India and South Africa, infesting millions of hectares of land (Bhagwat et al., 2012).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


BangladeshPresentIntroduced Invasive Islam et al., 2001
Brunei DarussalamPresentIntroduced Invasive Holm et al., 1979; Waterhouse, 1993
CambodiaPresentIntroduced Invasive Waterhouse, 1993
Chagos ArchipelagoPresentIntroduced Invasive PIER, 2013
ChinaPresentIntroduced Invasive Holm et al., 1979; Corlett, 1992
-FujianPresentIntroduced Invasive Flora of China Editorial Committee, 2012Naturalized
-GuangdongPresentIntroduced Invasive Flora of China Editorial Committee, 2012Naturalized
-GuangxiPresentIntroduced Invasive Flora of China Editorial Committee, 2012Naturalized
-HainanPresentIntroduced Invasive Flora of China Editorial Committee, 2012Naturalized
-Hong KongPresent, few occurrencesIntroducedca 1851 Invasive Holm et al., 1979
East TimorWidespreadIntroduced Invasive McWilliam, 2000
IndiaPresentIntroduced1809 Invasive Burkill, 1935
-Andhra PradeshPresentIntroduced Invasive Rawat, 1997
-AssamWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-BiharWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-DelhiWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-Himachal PradeshWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-Indian PunjabWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-Jammu and KashmirWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-KarnatakaWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-Madhya PradeshWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-MaharashtraPresentIntroduced Invasive Sinha and Sharma, 1984
-OdishaPresentIntroduced Invasive Sinha and Sharma, 1984
-RajasthanWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-Tamil NaduWidespreadIntroduced Invasive Nair and Henry, 1983
-Uttar PradeshWidespreadIntroduced Invasive Gujral and Vasudevan, 1983
-West BengalPresentIntroduced Invasive Sinha and Sharma, 1984
IndonesiaPresentIntroduced Invasive Waterhouse, 1993
-JavaWidespreadIntroduced Invasive Smiet, 1992
-KalimantanWidespreadIntroduced Invasive Holm et al., 1979
-SulawesiWidespreadIntroduced Invasive Whitten et al., 2002
IsraelPresent, few occurrencesIntroducedHolm et al., 1979
JapanPresentPresent based on regional distribution.
-Ryukyu ArchipelagoRestricted distributionIntroduced Invasive Walker, 1976
MalaysiaRestricted distributionIntroduced Invasive Holm et al., 1979; Waterhouse, 1993
MaldivesPresentIntroduced Invasive PIER, 2013
MyanmarPresentIntroduced Invasive Waterhouse, 1993
NepalPresentIntroduced Invasive Holm et al., 1979
PakistanPresentIntroduced Invasive Khan et al., 2010
PhilippinesWidespreadIntroducedca 1840 Invasive Burkill, 1935; Holm et al., 1979; Waterhouse, 1993
Saudi ArabiaPresentIntroducedDay et al., 2003
SingaporePresentIntroduced Invasive Baretto et al., 1995; Waterhouse, 1993
Sri LankaWidespreadIntroducedca 1826 Invasive Morton, 1994; Evans, 1999
TaiwanWidespreadIntroduced Invasive Xie Yan et al., 2001
ThailandPresentIntroduced Invasive Holm et al., 1979; Waterhouse, 1993
TurkeyWidespreadIntroduced Invasive Holm et al., 1979
VietnamPresentIntroduced Invasive Holm et al., 1979; Waterhouse, 1993


AngolaPresentIntroduced Invasive Day et al., 2003
Cape VerdePresentIntroducedca 1851 Invasive Chevalier, 1935
ComorosWidespreadIntroduced Invasive Roby and Dossar, 2000
Congo Democratic RepublicPresentIntroduced Invasive Day et al., 2003
Côte d'IvoirePresentIntroduced Invasive Holm et al., 1979
EthiopiaWidespreadIntroduced Invasive Binggeli & Desalegn Dessissa, 2002
GabonPresentIntroduced Invasive Barreto et al., 1995
GambiaPresentIntroduced Invasive Robinson, 2001
GhanaWidespreadIntroduced Invasive Holm et al., 1979
GuineaPresentIntroduced Invasive Schnell, 1950
KenyaWidespreadIntroduced1950s Invasive Holm et al., 1979; IPPC-Secretariat, 2005
LiberiaPresentIntroduced Invasive Holm et al., 1979
MadagascarWidespreadIntroduced Invasive Holm et al., 1979; Binggeli, 2003
MauritiusWidespreadIntroduced Invasive Macdonald et al., 1991
MayottePresentIntroduced Invasive PIER, 2013
MozambiqueWidespread Invasive Holm et al., 1979
NamibiaPresentIntroduced Invasive Bromilow, 1995
NigeriaWidespreadIntroduced Invasive Holm et al., 1979
RéunionPresentIntroduced Invasive PIER, 2013
Rodriguez IslandPresentIntroduced Invasive PIER, 2013
Saint HelenaWidespreadIntroduced Invasive Cronk, 1989
SenegalPresentIntroduced Invasive Holm et al., 1979
SeychellesPresentIntroduced Invasive Gerlach, 1993
South AfricaWidespreadIntroduced Invasive Erasmus et al., 1993
-Canary IslandsPresentIntroduced Invasive DAISIE, 2013
SudanPresentIntroduced Invasive Barreto et al., 1995
SwazilandPresentIntroduced Invasive Robertson et al., 2001
TanzaniaWidespreadIntroduced Invasive Holm et al., 1979
UgandaWidespreadIntroduced Invasive Holm et al., 1979
ZambiaPresentIntroduced Invasive Holm et al., 1979
ZimbabweWidespreadIntroduced Invasive Holm et al., 1979

North America

MexicoPresentNativeCONABIO, 2009Weed
USAPresentPresent based on regional distribution.
-AlabamaPresentIntroducedDoren et al., 2002
-ArizonaPresentIntroducedUSDA-NRCS, 2013
-CaliforniaPresentIntroducedMorton, 1994
-FloridaPresentIntroduced Invasive USDA-NRCS, 2013Invasive Category I
-GeorgiaPresentIntroducedDoren et al., 2002
-HawaiiWidespreadIntroduced1859 Invasive Davis et al., 1992
-LouisianaPresentIntroducedDoren et al., 2002
-MississippiPresentIntroducedDoren et al., 2002
-North CarolinaPresentIntroducedMorton, 1994
-OklahomaPresentIntroducedDoren et al., 2002
-South CarolinaPresentIntroducedDoren et al., 2002
-TexasPresentIntroducedMorton, 1994
-UtahPresentIntroducedDoren et al., 2002

Central America and Caribbean

Antigua and BarbudaPresentNativeFrancis et al., 1994
ArubaPresentNativeGovaerts, 2013
BahamasPresent Invasive Govaerts, 2013
BarbadosWidespreadNative Invasive Gooding et al., 1965; Morton, 1994; Kairo et al., 2003
BelizePresentNativeGovaerts, 2013
Cayman IslandsPresentNativeGovaerts, 2013
Costa RicaWidespreadNativeSchemske, 1983Invasive in pastures and regarded as a problematic weed
CubaPresentNativeSharma et al., 1988
DominicaWidespreadNativeBroome et al., 2007
Dominican RepublicPresentNativeBarreto et al., 1995; Kairo et al., 2003
El SalvadorPresentNativeDay et al., 2003
GrenadaWidespreadNativeBroome et al., 2007
GuadeloupeWidespreadNativeBroome et al., 2007
GuatemalaPresentNativeHolm et al., 1979
HaitiPresentNativeDay et al., 2003; Kairo et al., 2003
HondurasPresentNativeHolm et al., 1979
JamaicaWidespreadNativeAdams, 1976
MartiniqueWidespreadNativeBroome et al., 2007
MontserratPresentNativeBroome et al., 2007
Netherlands AntillesWidespreadNativeBroome et al., 2007Saba, St Eustatius, St Barthelemy
NicaraguaWidespreadNativeHolm et al., 1979
PanamaPresentNativeHolm et al., 1979
Puerto RicoRestricted distributionNative Invasive Holm et al., 1979
Saint Kitts and NevisWidespreadNativeBroome et al., 2007
Saint LuciaPresentNativeBroome et al., 2007; Graveson, 2012
Saint Vincent and the GrenadinesWidespreadNativeBroome et al., 2007
Trinidad and TobagoWidespreadNativeHolm et al., 1979
Turks and Caicos IslandsPresent Invasive Govaerts, 2013
United States Virgin IslandsPresentNative Invasive Morton, 1994

South America

ArgentinaPresentNative Invasive Morton, 1994Weed in pasture and agricultural lands
BoliviaPresentNativeHolm et al., 1979
BrazilPresentPresent based on regional distribution.
-AlagoasPresentNativeLorenzi, 1983
-AmazonasPresentNativeBarreto et al., 1995
-BahiaPresentNativeBarreto et al., 1995
-CearaPresentNativeLorenzi, 1983
-Espirito SantoPresentNativeLorenzi, 1983
-GoiasPresentNativeLorenzi, 1983
-MaranhaoPresentNativeLorenzi, 1983
-Mato GrossoPresentNativeSharma et al., 1988
-Mato Grosso do SulPresentNativeLorenzo, 1983
-Minas GeraisPresentNativeLorenzi, 1983
-ParaPresentNativeLorenzi, 1983
-ParaibaPresentNativeLorenzi, 1983
-ParanaPresentNativeLorenzi, 1983
-PernambucoPresentNativeLorenzi, 1983
-PiauiPresentNativeLorenzi, 1983
-Rio de JaneiroPresentNativeBarreto et al., 1995
-Rio Grande do NortePresentNativeLorenzi, 1983
-Rio Grande do SulPresentNativeLorenzi, 1983
-Santa CatarinaPresentNativeLorenzi, 1983
-Sao PauloPresentNativeLorenzi, 1983
-SergipePresentNativeLorenzi, 1983
ChilePresentIntroduced Invasive PIER, 2013Invasive on Juan Fernández Island
-Easter IslandPresentIntroduced Invasive PIER, 2013
ColombiaPresentNativeMorton, 1994
EcuadorPresentNativeBarreto et al., 1995
-Galapagos IslandsWidespreadIntroduced Invasive Cruz et al., 1986
French GuianaPresentNativeFunk et al., 2007
GuyanaPresentNativeFunk et al., 2007
ParaguayPresentNative Invasive Zuloaga et al., 2008
PeruPresentNativeMorton, 1994
SurinamePresentNativeFunk et al., 2007
UruguayPresentNativeZuloaga et al., 2008
VenezuelaPresentNativeMorton, 1994


CyprusPresentIntroduced Invasive DAISIE, 2013
FrancePresentPresent based on regional distribution.
-CorsicaPresentIntroduced Invasive DAISIE, 2013
GreecePresentIntroduced Invasive DAISIE, 2013
ItalyPresentIntroducedTutin et al., 1972
-SardiniaPresentIntroduced Invasive DAISIE, 2013
-SicilyPresentIntroduced Invasive DAISIE, 2013
PortugalPresentIntroduced Invasive DAISIE, 2013
-AzoresRestricted distributionIntroducedTutin et al., 1972; DAISIE, 2013
-MadeiraRestricted distributionIntroduced Invasive Press and Short, 1994; DAISIE, 2013
SpainRestricted distributionIntroduced Not invasive Sobrino et al., 2002; DAISIE, 2013
-Balearic IslandsPresentIntroduced Invasive DAISIE, 2013


American SamoaWidespreadIntroduced Invasive Thaman, 1974
AustraliaWidespreadIntroduced1841 Invasive Swarbrick, 1986
-Australian Northern TerritoryRestricted distributionIntroduced Invasive Swarbrick, 1986
-New South WalesWidespreadIntroduced Invasive Swarbrick, 1986; Anon, 2008
-QueenslandWidespreadIntroduced Invasive Swarbrick, 1986
-South AustraliaRestricted distributionIntroduced Not invasive Swarbrick, 1986
-VictoriaRestricted distributionIntroduced Not invasive Swarbrick, 1986
-Western AustraliaRestricted distributionIntroduced Invasive Swarbrick, 1986
Cook IslandsWidespreadIntroduced Invasive Thaman, 1974
FijiWidespreadIntroduced Invasive Mune and Parham, 1967
French PolynesiaWidespreadIntroduced1843 Invasive Meyer, 2000
GuamRestricted distributionIntroduced Invasive Thaman, 1974
KiribatiPresentIntroduced Invasive PIER, 2013
Marshall IslandsPresentIntroduced Invasive PIER, 2013
Micronesia, Federated states ofPresentIntroduced Invasive Meyer, 2000; Englberger, 2009Pohnpei, Yap and Chuuk. Not widespread on Pohnpei, but remains a serious pest
NauruWidespreadIntroduced Invasive Meyer, 2000
New CaledoniaWidespreadIntroducedca 1883 Invasive Heckel, 1911
New ZealandWidespreadIntroduced Invasive Holm et al., 1979; Waipara et al., 2009
NiueWidespreadIntroduced Invasive Meyer, 2000
Norfolk IslandWidespreadIntroduced Invasive Swarbrick, 1986
Northern Mariana IslandsWidespreadIntroduced Invasive Meyer, 2000
PalauWidespreadIntroduced Invasive Meyer, 2000
Papua New GuineaWidespreadIntroduced Invasive Holm et al., 1979
Pitcairn IslandWidespreadIntroduced Invasive Florence et al., 1995
SamoaWidespreadIntroduced Invasive Thaman, 1974
Solomon IslandsPresentIntroduced Invasive Swarbrick, 1986
TongaWidespreadIntroduced Invasive Thaman, 1974
TuvaluPresentIntroducedPIER, 2013
VanuatuWidespreadIntroduced Invasive Mullen et al., 1993
Wallis and Futuna IslandsPresentIntroducedPIER, 2013

History of Introduction and Spread

Top of page

L. camara has been introduced throughout the tropics and subtropics, often used as a hedge plant, and is commonly grown in the temperate zone. Although first cultivated in Europe during the late seventeenth century, reaching Calcutta in 1809 (Burkill, 1935), it was mostly introduced throughout the tropics during the later part of the nineteenth century and a number of cultivars and forms were subsequently disseminated (Howard, 1970). In many tropical regions the thorny forms have invaded huge areas of natural pasture land. In Singapore L. camara became for some time quite abundant but by around 1900 it became less noticeable (Burkill, 1935) and a similar phenomenon has been reported for East Timor (McWilliam, 2000).

Risk of Introduction

Top of page

The main spread of L. camara into new countries is via the horticultural trade, spreading numerous different varieties of this species. Once introduced into an area the seeds of L. camara are readily dispersed into new areas by birds. L. camara has already spread widely, but there is potential for its range to expand further under future climate change. In Australia it is found in almost all the climatically suitable habitat, but under future climate change it could expand into new areas in Victoria, South Australia and Tasmania (Taylor et al., 2012; Taylor and Kumar, 2013).


Top of page

L. camara has a wide environmental tolerance and occurs in a variety of habitats. These include wastelands, rainforest edges and beachfronts (ISSG, 2015). It also grows well in disturbed areas such as roads, railways and areas recovering from fire or logging (ISSG, 2015). This species can tolerate some shade but grows best in open unshaded regions. It cannot directly colonise intact forests but instead grows at forest edges and spreads when gaps are created (ISSG, 2015).

Habitat List

Top of page
Coastal dunes Present, no further details Harmful (pest or invasive)
Cultivated / agricultural land Present, no further details Harmful (pest or invasive)
Disturbed areas Present, no further details Harmful (pest or invasive)
Managed forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Managed grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Rail / roadsides Present, no further details Harmful (pest or invasive)
Natural forests Present, no further details Harmful (pest or invasive)
Natural grasslands Present, no further details Harmful (pest or invasive)

Hosts/Species Affected

Top of page

L. camara is an agricultural weed that can cause dramatic losses in yields. In Australia, it was reported that L. camara infested 4 million ha of pasture (Parsons and Cuthbertson, 1992). A number of plants affected by L. camara are listed in the "Host Plants/Plants Affected" table below.

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Ananas comosus (pineapple)BromeliaceaeMain
Camellia sinensis (tea)TheaceaeMain
Cocos nucifera (coconut)ArecaceaeMain
Coffea (coffee)RubiaceaeMain
Durio zibethinus (durian)BombacaceaeMain
Elaeis guineensis (African oil palm)ArecaceaeMain
Gossypium (cotton)MalvaceaeMain
Hevea brasiliensis (rubber)EuphorbiaceaeMain
Musa x paradisiaca (plantain)MusaceaeMain
Oryza sativa (rice)PoaceaeMain
Poaceae (grasses)PoaceaeMain
Saccharum officinarum (sugarcane)PoaceaeMain
Santalum album (Indian sandalwood)SantalaceaeMain
Shorea robusta (sal)DipterocarpaceaeMain

Biology and Ecology

Top of page


The known chromosome numbers of L. camara are 2n = 22, 33, 44, 55, but most invasive varieties appear to be tetraploids (Day et al., 2003). Besides variation in chromosome number there is much variation in DNA content, growth rates and toxicity to livestock (Stirton, 1979; Gujral and Vasudevan, 1983; Scott et al., 1997). In the Tamil Nadu region of India there are differences in toxicity of L. camara, with the red flowered variety being more toxic than the pink flowered form (Thirunavukkarasu et al., 2001).

Physiology and Phenology

Flowering and fruiting take place throughout the year with a peak during the first two months of the rainy season.

In the highlands of western Kenya an investigation of leaf decomposition found that after seven days it had decreased to just under a third of the original mass and by the 77th day the leaves had totally decomposed. The percentage of the initial amount of phosphorus and nitrogen remaining in the leaf material after a week was 42 and 54%, respectively. After 21 days 90% of the phosphorus had been released (Kwabiah et al., 2001).

Reproductive Biology

The flowers of L. camara, when yellow, produce nectar and are pollinated by butterflies and thrips. The species is an obligate outcrosser and it is unclear whether apomixis occurs. Fruits mature rapidly and change colour from dark green to black. A number of bird species, and also sheep and goats disperse the seeds, sometimes over long distances, but natural dispersal between oceanic islands has never been demonstrated. Heavy fruit crops are produced yearly, but the thornless forms produce few, if any, seeds. Seeds germinate when sufficient moisture is available, usually at the start of a rainy season. In Australia, Broughton (1999) found that 57-80% of green and ripe fruits tested had one or two viable seeds whereas 12-34% had none, and between 64 and 90% of dried (older) fruits had two nonviable embryos, suggesting that fruit development stage affects germination. She found no difference in viability within sites or between cultivars investigated. Projections of seed survival indicate that L. camara seeds could survive for up to 11 years under natural rainfall conditions in Australia (Vivian-Smith and Panetta, 2009).

In addition to spread by seed, L. camara is able to produce adventitious shoots, especially shallow lateral roots, following mechanical damage. Hence, it is also able to spread and establish dense thickets by vegetative means. The capacity of the species to spread vegetatively and to inhibit both the growth of other vegetation and seed germination, in conjunction with heavy and regular fruiting, is the main reason why L. camara forms long-lasting permanent thickets. In areas where natural fires occur they stimulate thicker regrowth.

For further information, see Mathur and Mohan Ram (1978), Schemske (1983), Sinha and Sharma (1984) and Thaman (1974).

Environmental Requirements

L. camara can grow between the latitudes 45°N and 45°S and an altitude of up to 1,400 m.

The rapid spread of L. camara throughout the tropics is associated with human-induced disturbances. It forms extensive, dense and impenetrable thickets in forestry plantations, orchards, pasture land, waste land and in natural areas. L. camara thrives in open and disturbed areas as well as in open natural vegetation. Being somewhat shade-tolerant it can become the dominant understorey shrub in open forests, but is absent from closed forests. L. camara grows under a wide range of climatic conditions. In Australia it tolerates a mean annual rainfall from 4000 to less than 1000 mm, and as low as 200 mm per annum elsewhere (Gujral and Vasudevan, 1983). It is found between sea level and nearly 1000 m on Hawaii and higher in East Africa, the upper altitudinal limit being determined by frost, which the plant is susceptible to. In Hong Kong, temperature in the range 3-5°C injured L. camara (Corlett, 1992). It tolerates salt spray. Its distribution is affected by soil type. It has a low tolerance for boggy and saline soils but grows well on poor soils. Studies undertaken by Muvengwi and Ndagurwa (2015) on soil seed bank dynamics and soil nutrient concentrations in the wetlands of New Gada in Zimbabwe, suggest that L. camara-invaded soil had significantly higher levels of calcium, magnesium, sodium and ammonium and lower levels nitrate than non-invaded soils. 

L. camara has a marked ability to compensate for herbivory as plants survived experimental defoliation for two years (Broughton, 2000).


L. camara often occurs in pure stands but can be mingled with a variety of species but emergent shrubs and trees in particular.

Air Temperature

Top of page
Parameter Lower limit Upper limit
Absolute minimum temperature (ºC) 0
Mean annual temperature (ºC) 13


Top of page
ParameterLower limitUpper limitDescription
Mean annual rainfall2004000mm; lower/upper limits

Rainfall Regime

Top of page Bimodal

Soil Tolerances

Top of page

Soil drainage

  • free

Soil reaction

  • acid
  • neutral

Soil texture

  • heavy
  • medium

Special soil tolerances

  • infertile

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Aceria lantanae Herbivore Inflorescence/Leaves
Aconophora compressa Herbivore Leaves Taylor et al., 2008 Australia
Aecidium lantanae Pathogen Leaves Barreto et al., 1995
Aerenicopsis championi Herbivore Stems
Alagoasa prob. quadrilineata Herbivore Leaves
Anhellia lantanae Pathogen Leaves Barreto et al., 1995
Anoncia diveni Herbivore Leaves
Autoplusia illustrata Herbivore Leaves
Calycomyza lantanae Herbivore Leaves
Ceratobasidium cornigerum Pathogen Leaves Barreto et al., 1995
Charidotis pygmaea Herbivore Leaves
Coelocephalapion Herbivore Inflorescence/Leaves
Cremastobombycia lantanella Herbivore Leaves
Crocidosema lantana Herbivore Micronesia
Dendryphiella aspera Pathogen Leaves Barreto et al., 1995
Diastema tigris Herbivore Leaves
Ectaga garcia Herbivore Leaves
Eutreta xanthochaeta Herbivore Fruits/pods
Falconia intermedia Herbivore Leaves Taylor et al., 2008 Australia
Geraeus nr. curvispinis Herbivore Inflorescence
Hepialus sp. Herbivore Stems
Hypena laceratalis Herbivore Leaves
Hypena strigatus Herbivore South Africa
Langsdorfia franckii Herbivore Roots
Leptobyrsa decora Herbivore Leaves
Longitarsus sp. Herbivore Leaves
Micropustulomyces aspera Pathogen Leaves
Micropustulomyces mucilaginosus Pathogen Leaves
Mycovellosiella lantanae var. lantanae Pathogen Leaves Barreto et al., 1995
Neogalea sunia Herbivore Leaves
Octotoma championi Herbivore Leaves
Octotoma pliculata Herbivore Leaves
Octotoma scabripennis Herbivore Leaves New Caledonia; South Africa
Omophoita albicollis Herbivore Inflorescence/Leaves
Ophiomyia camarae Herbivore Leaves Taylor et al., 2008 South Africa, Australia
Ophiomyia lantanae Herbivore Fruits/pods/Inflorescence Asia; Micronesia; South Africa
Perisporiopsis lantanae Pathogen Barreto et al., 1995
Plagiohammus spinipennis Herbivore Stems
Platyptilia pussilidactyla Herbivore
Prospodium tuberculatum Pathogen Leaves to species Anon, 2015; Barreto et al., 1995; Tomley and Riding, 2002 Australia, New Zealand
Pseudocercospora guianensis Pathogen Barreto et al., 1995
Pseudopyrausta acutangularis Herbivore Leaves
Puccinia lantanae Pathogen Leaves/Stems to species Anon, 2015; Barreto et al., 1995 New Zealand
Salbia haemorrhoidalis Herbivore Leaves South Africa
Septoria Pathogen Leaves
Strymon bazochii Herbivore Leaves
Strymon bazochii Herbivore Fruits/pods/Inflorescence
Teleonemia elata Herbivore Leaves
Teleonemia harleyi Herbivore Leaves
Teleonemia prolixa Herbivore Leaves
Teleonemia scrupulosa Herbivore Leaves Micronesia; South Africa
Teleonemia validicornis Herbivore Leaves
Thecla sp. Herbivore Leaves
Uroplata girardi Herbivore Leaves Micronesia; New Caledonia; South Africa
Uroplata lantanae Herbivore Leaves

Notes on Natural Enemies

Top of page

The alkaloid-rich leaves of L. camara make it virtually immune to grazing by livestock, although several hundred phytophagous insects have been recorded on it. In the New World, flowers, flower stalks, leaves, shoots and roots are attacked by many insect species and pathogens although their impact on shrub vigour and seed set is poorly understood. The polyphagous pest Phenacoccus parvus severely damages stands of L. camara in Australia and is not, as commonly reported, a pest of potato and aubergine (Solanum melongena), although it has the potential to attack a variety of plant species inclusive of some crops (Marohasy, 1994). In Mexico a stem sap-sucking membracid bug, Aconophora compressa, causes considerable dieback of stems (Swarbrick et al. 1995).

The following fungi have been found attacking the leaves of L. camara: Dendryphiella aspera, Micropustulomyces mucilaginosus, Mycovellosiella lantanae var. lantanae, Septoria sp., Ceratobasidium lantanae, Prospodium tuberculatum and Puccinia lantanae. For further information on fungal natural enemies of L. camara, see Barreto et al. (1995), Breeÿen et al. (2000), Thomas and Ellison (2000), Trujillo and Norman (1995).


Means of Movement and Dispersal

Top of page

Natural Dispersal

Occasionally abiotic seed dispersal may occur. Flash floods in South Africa, caused by cyclone Demoina in 1983, transported seeds and deposited them on the flood plain of the Ndumu game reserve (Bromilow, 1995). In the Kruger National Park, South Africa, L. camara has primarily spread along rivers (Vardien et al. 2012).

Vector Transmission

The seeds of L. camara are dispersed by native or invasive species of birds. In Hong Kong, L. camara is dispersed by 15 species of native birds (Corlett, 1998), whereas in Hawaii, it is mainly dispersed by exotics such as the Indian myna, Acridotheres tristis (Atkinson and Atkinson, 2000). In the Galapagos Islands it is one of the most dispersed alien plants, being mainly dispersed by two lizard species, and to a minor extent by the birds Myiarchus magnirostris and Mimus melanotis (Heleno et al., 2013). There are also reports of seeds being dispersed by sheep and goats.

Accidental Introduction

Accidental introduction of L. camara via contaminated soil is possible but has not been documented.

Intentional Introduction

As L. camara is such a key ornamental plant, new varieties, some of which have invasive potential, can readily be bought and introduced throughout the tropics.

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Hedges and windbreaks Yes Yes
Horticulture Yes Yes
Ornamental purposes Yes Yes

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Host and vector organismsBirds, occasionally sheep and goats Yes
Mail Yes
Soil, sand and gravel Yes Yes
WaterFlash floods Yes

Impact Summary

Top of page
Animal/plant collections None
Animal/plant products None
Biodiversity (generally) Negative
Crop production Positive
Environment (generally) Negative
Fisheries / aquaculture None
Forestry production Negative
Human health Negative
Livestock production Negative
Native fauna Negative
Native flora Negative
Rare/protected species None
Tourism Negative
Trade/international relations None
Transport/travel Negative

Economic Impact

Top of page

In Central America L. camara is common in pastures, waste areas and roadsides; it is also a weed in a number of crops (Schemske, 1983), although infestations are unlikely to be composed of native biotypes, but rather re-introduced cultivars that have become invasive (Stirton, 1977).

In many countries L. camara encroaches on agricultural land, reduces the carrying capacity of pastures and is a weed in many agricultural crops. In Australia, L. camara has infested about 4 million ha of pasture (Parsons and Cuthbertson, 1992). In the early 1980s this resulted in economic losses of A$7.7 m (Swarbrick et al., 1995). In Fiji it is a major weed of coconut plantations, pastures, neglected arable land and waste places (Mune and Parham, 1967). Holm et al. (1977) reported that in some areas of India the invasion of cultivated lands by this weed led to the shifting of several villages. In forestry it tends to over-run young plantations, prevent access to older ones and increase fire hazards. In Indian sandalwood forests the shrub competes with sandalwood trees and also favours the spread of the sandal spike disease. In Kenya, L. camara is poisonous to livestock and also a habitat for tsetse flies (IPPC-Secretariat, 2005). 

Environmental Impact

Top of page

Impact on Habitat

In natural and semi-natural vegetation L. camara is a major conservation problem. It may smother vegetation and increase fire intensity (due to an increase in dry biomass), thus displacing native scrub communities (Heckel, 1911). Its extensive seed production favours rat populations.

In contrast to the widely held view that L. camara is detrimental, Timorese farmers have considered the plant as highly beneficial as it enhanced soil fertility and soil conditioning. This resulted in a reduction in fallow periods under L. camara from 15 to 5-6 years. Another benefit was the supply of firewood (McWilliam, 2000). The idea that L. camara enhances soil fertility has yet to be demonstrated and Binggeli (2001) has postulated that the Pitcairners' selection of sites with thriving L. camara stands for home gardens reflects the species predilection for fertile sites rather than its ability to increase fertility. There are many unsubstantiated statements suggesting that L. camara slows erosion (Ashmole and Ashmole 2000), but it is likely that this may be the case when the plant becomes established on bare ground but not when it displaces native vegetation. It can grow through the pestiferous grass Imperata cylindrica and suppress it in South-East Asia and thus may have some potential in forest restoration (Burkill, 1935).

Impact on Biodiversity

L. camara can readily hybridise with other Lantana species; for example, in Florida it hybridizes with the endangered endemic L. depressa (Langeland and Burks, 2000). The impact on native vegetation is mainly viewed as negative, i.e. reducing species diversity, threatening endemics (Cruz et al., 1986) and leading species to extinction. In Australia, L. camara causes allelopathic suppression of two indigenous tree species (Gentle and Duggin, 1997). It is also generally considered to hinder the regeneration of native tree species (e.g. Islam et al., 2001; Gooden et al., 2009) but there are some occasional references to regeneration of some tree species under its canopy (e.g. Burkill, 1935). Turner and Downey (2010) used L. camara as a case study for their methodology to identify the native biodiversity threatened by an invasive plant. They identified 275 and native plants and 24 native animals requiring protection from L. camara invasions in Australia. The spread of L. camara on the Galapagos Islands is seen as a threat to bird breeding populations (Cruz et al., 1986).

The impact of L. camara on biodiversity is mostly negative but a few instances of a positive impact have been reported. It is often said that it provides habitat for some birds and thus provides refuge for wildlife (Mullen et al., 1993). More specifically, in Kenya thickets of L. camara have been reported to harbour a threatened bird species, Hinde's Babbler, Turdoides hinduei. It provides shelter to the bird that is not now readily available in a human-dominated countryside (Njoroge and Bennun, 2000). The plant plays a minor role in the feeding ecology of some species of conservation interest such as the lion-tailed macaque, Macaca silenus, which feeds extensively on the fruits in southern India (Umapathy and Kumar, 2000).

As it is such a variable species, including variability in stature, specific varieties or forms can be expected to have different impacts on native biodiversity, as well as cropping systems and other human activities; however, no information is available regarding these potential differences.

For more information see Holm et al. (1977), Morton (1994), Schemske (1983), Sharma et al. (1988), Sinha and Sharma (1984) and Thaman (1974).

Social Impact

Top of page

Stands of L. camara and of the prickly variety in particular, hinder human's access to invaded habitats. In Tanzania and Uganda, L. camara can be considered a serious health hazard, as its thickets provide breeding grounds for tsetse flies, vectors of trypanosomiasis (Leak, 1999). L. camara thickets are potential breeding places for rats, wild pigs, insect pests and plant diseases. When ingested by cattle and sheep it may cause photosensitive reactions, diarrhoea, jaundice, hepatitis and poisoning. Children have been known to die after eating unripe berries and stems have been used as for toothbrushes (Burkill, 1935; Morton, 1994; Swarbrick et al., 1995).

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
Impact outcomes
  • Negatively impacts human health
  • Negatively impacts animal health
Impact mechanisms
  • Produces spines, thorns or burrs
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Highly likely to be transported internationally deliberately
  • Difficult to identify/detect as a commodity contaminant


Top of page

Since the 19th century L. camara has been one of the main tropical and subtropical garden ornamentals. Under temperate climes it has been, and still is, widely used as a glasshouse ornamental and a pot plant. Apart from its ornamental value, L. camara has few redeeming features. In some mountainous areas (e.g. in Tanzania and India) the presence of L. camara was once considered a good ground cover preventing erosion. In parts of East Africa, in locations where it is not weedy, it has effectively been used as a live fence (Howes, 1946). However, in parts of Ethiopia where the idea of establishing a live fence of L. camara to protect crops from domestic animals was taken up by local villagers in the 1990s but this quickly led to the loss of rough grazing land through the rapid spread of this species (Binggeli and Desalegn Desissa, 2002).

A number of minor uses of L. camara include using the seeds as a source of food for lambs, using straw from L. camara mixed with dung for biogas production and using the twigs as fuel. There is some evidence, although conflicting in nature, that extracts from L. camara may have value as biocides (Ahmed and Agnihotri, 1977). In addition, essential oils from the flowers and leaves may have some value to the perfume industry and as beneficial drugs (Ahmad et al., 1962). In parts of its native range, L. camara is used as a source of medicinal cures, for example, in Ecuador the leaves are ingested to treat stomach disorders (Ellison and Evans, 1996). It is viewed in many regions as an important honey plant (Fichtl and Admasu Adi, 1994). Leaf extracts have strong insecticidal and antimicrobial activity, for example, storing potatoes, Solanum tuberosum, with leaves of L. camara almost eliminates damage by the potato tuber moth Phthorimaea operculella (Lal, 1987).

Uses List

Top of page

Animal feed, fodder, forage

  • Fodder/animal feed


  • Boundary, barrier or support
  • Erosion control or dune stabilization


  • Biofuels
  • Fuelwood


  • Ornamental

Human food and beverage

  • Honey/honey flora


  • Pesticide
  • Poisonous to mammals

Medicinal, pharmaceutical

  • Traditional/folklore

Detection and Inspection

Top of page

L. camara is conspicuous due to its attractive and multicoloured floral displays and is a well-known species throughout the tropics.

Similarities to Other Species/Conditions

Top of page

Although large stands of weedy varieties of L. camara are easily recognised, it is in fact a variable polyploid complex of interbreeding taxa resulting from hybridisation with species in the other complexes, such as L. urticifolia (Day et al., 2003). In Florida, USA, it may be confused with the endangered endemic native, L. depressa, with which it has extensively hybridised (Langeland and Burks, 2000).

Prevention and Control

Top of page

Cultural Control

Being poisonous to livestock means that the species can not be controlled using large herbivores. In fact, intense grazing by goats and donkeys will favour L. camara infestations by suppressing competition from palatable species (Ashmole and Ashmole, 2000).

Osunkoya et al. (2013) suggest from studies and simulation models in Queensland, Australia that periodic burning could control the weed in forests within 4-10 years if fire frequency is at least every two years. On farms, site-specific control may be achieved by 15 years if the biennial fire frequency is tempered with increased burning intensity.

Mechanical Control

Mechanical control can be effective, particularly where land is cleared, but requires continual follow-up treatment to remove roots and seedlings of L. camara. Slashing and burning stimulate suckering. Both chemical and mechanical control methods are expensive and labour intensive and are only effective in the short term. Cleared areas are rapidly colonised via seeds originating from distant parents or from sprouting roots. Dohn et al. (2013) recommend hand pulling for creating firebreaks or where minimizing damage to native species is paramount.

Chemical Control

The Australian experience in controlling L. camara, reviewed by Swarbrick et al. (1995), indicates that some herbicides are more effective on particular forms of L. camara. The most effective herbicides belong to the phenoxy acid (2,4-D, dichloroprop and MCPA), benzoic acid (dicamba) and pyridine groups. Glyphosate, sulfonylureas (metsulfuron methyl) and imidazolinones (imazapyr) also show good activity. Photosynthetic herbicides (triazine and urea) are not effective. A number of factors affect the effectiveness of the chemical treatment and they include: plant size, time of application, mode of application, and the use of surfactant. Use of herbicide in uncut stands may not be effective in preventing eventual regrowth. Combination of mechanical and chemical control may be the best. The seasonal response of L. camara to applications of fluroxypyr, metsulfuron-methyl, glyphosate and dichlorprop has been reported by Hannan-Jones (1998).

Work carried out in the South African Kruger National Park by Erasmus et al. (1993) showed that chemical control was cheaper and caused less disturbance resulting in higher biodiversity than mechanical control. Chemical control consisted in an application of imazapyr on freshly cut stems and a follow-up operation by spot-spray application of glyphosate. The initial control required 25 man-days per ha and that of the follow-up control 6.8 man-days per ha. Control costs will vary from site to site and will depend on L. camara stem density and cover. Latest South African recommendations are provided by Vermeulen et al. (1996).

In India, eradication of L. camara from sub-watersheds in the Markanda catchment, Himachal Pradesh, was effective and economical using glyphosate sprayed on to regenerated growth, cut four months previously (Rana and Singh, 1999).

In Queensland, Dohn et al. (2013) suggest that foliar spraying with a glyphosate-based herbicide is the most efficient treatment for combating large infestations of L. camara. In Florida, Ferrell et al. (2011) report that this species can be effectively controlled by two applications of fluroxypyr, two applications of fluroxypyr+aminopyralid, or a single application of aminocyclopyrachlor. 

L. camara is resistant to triclopyr, a widely used herbicide for woody weed control (Goodall and Naude, 1998).

Biological Control

Worldwide, well over 200 releases of biocontrol agents have been made (39 different natural enemies have been released in 29 countries), however, in the majority of cases the control agent either failed to become established or became established without achieving control. Despite this limited success, classical biological control is still considered to be the only viable, long-term control option, since it offers a safe, economic and environmentally benign method of suppressing the weed. Most of the releases have been carried out in the Pacific, South Africa and Australia (for historical details see Taylor 1989; Cilliers and Neser, 1991; Denton et al., 1991; Davis et al., 1992; Swarbrick et al., 1995). The most widely established species include Ophiomyia lantanae, Uroplata girardi and Octoma scabripennis. Day et al. (2003) have produced a detailed review of 48 of these control agents.

In Hawaii, Neogalea sunia and Epinotia lantanae contribute to the control of L. camara across the islands. In addition, a combination of Hypena strigata, Octotoma scabripennis, Salbia haemorrhoidalis, Teleonemia scrupulosa and Uroplata girardi provide partial to substantial control in drier areas <1270 mm rainfall), and in wetter areas Plagiohammus spinipennis provides partial control (Julien and Griffiths, 1998).

The release in 1993 of U. girardi on an island of the Russell Island group (Solomon Islands) resulted in the successful control of the 'Hawaiian Pink' form (Swarbrick et al., 1995). U. girardi has proved to be one of the more successful agents and is credited with providing some check on the spread of L. camara in Australia, South Africa and some islands in the Pacific Ocean. In Micronesia seven out of 13 introduced insect species became established and have resulted in acceptable levels of control for current agricultural practices (Denton et al., 1991). As elsewhere the effectiveness of the insect species varied between islands and between varieties of L. camara. Greater success appears to have been achieved in drier areas.

In Uganda, the introduction of T. scrupulosa, which had been widely released after its successful introduction into Hawaii in 1902, was very successful in the area around Serere Research Station in Teso District but it also attacked one of the cultivars of Sesamum indicum grown on the Research Station (Davies and Greathead, 1967). Fortunately, it was unable to breed on that crop and attacks subsided after the L. camara had been controlled. Subsequently other agents for L. camara control were tested on Sesamum and it was found that other Tingidae and the chrysomelid leaf miners would also feed on this crop (Greathead, 1973).

Recent releases of arthropod biocontrol agents in Australia (Queensland and New South Wales) to control L. camara include the treehopper Aconophora compressa (first in 1995), the mirid Falconia intermedia (during 2000-2004), and the leaf miner Ophiomyia camarae (first in 2007). Weather conditions and other factors have resulted in poor establishment or low levels of damage so far (Taylor et al., 2008).

Hersula and Hill (2012) report that populations of F. intermedia released in South Africa to control L. camara had disappeared after initially building up to high densities. It is suggested that some L. camara varieties possess factors enabling them to resist feeding activities after the initial attack. Biological control of L. camara in South Africa is reviewed by Moran et al. (2011), who suggest that it plays a subsidiary role in support of mechanical and chemical control, but that cost benefits justify the continued development of new agents.

Broughton (2000) reviewed biological control programmes of L. camara worldwide and concluded that leaf-, flower- and fruit-feeding species were the most successful feeding groups, and the leaf-mining chrysomelid U. girardi was the most successful control agent. She identified the main factor preventing the establishment of control agents as the number of individuals released and noted that cultivar preferences, parasitism and predation, and climate reduced control. Broughton (2000) concluded that flower- and fruit-feeding species were unlikely to be effective because the seeds of L. camara are only viable for a short period of time and have a low germination, and that defoliating species were likely to be ineffective because of the ability of L. camara to withstand defoliation. Julien and Griffiths (1998) showed that different cultivars display differences in susceptibility to insect herbivores.

A potential pathogen of L. camara (spreading in Hawaii) was identified by Trujillo and Norman (1995) as a leaf-spot fungus, Septoria sp., from Ecuador. Various other pathogens with apparently excellent potential to control a wide range of cultivars have been identified by Barreto et al. (1995) and Thomas and Ellison (2000). In South Africa, permission was granted in 2001 to release the fungus Mycovellosiella lantanae var. lantanae, collected from Florida, USA (Breeÿen et al., 2000, Breeÿen, 2004). In 2001 the rust fungus Prospodium tuberculatum (ex Brazil) was the first pathogen to be released in Australia for biological control of L. camara (Tomley and Riding, 2002; Ellison et al., 2006; Thomas et al., 2006). Drought conditions affected its establishment and spread from the release sites in Queensland and New South Wales and incidence is generally low, although some leaf drop has been observed (Taylor et al., 2008).

In May 2015, the first release of P. lantanae was made on New Zealand’s North Island. The rust had previously been screened by CABI scientists in the UK for its host specificity before being transferred to Landcare’s Plant Pathogen Containment Facility in Auckland. The blister rust is able infect leaves, petioles and stems and can cause systemic infections that lead to stem dieback and defoliation.

In addition, a second rust, P. tuberculatum (the same isolate released in Australia in 2001) was released in New Zealand as part of the same initiative. The leaf rust pathogen causes leaf death and defoliation and as it is subtropical, it is expected to be less dependent on high humidity to compliment P. lantanae in different climatic conditions (Anon, 2015).


Top of page

Adams CD, 1976. Flowering plants of Jamaica. Mona: University of the West Indies.

Ahmad MN; Bhatty MK; Karimullah, 1962. Some essential oil sources from West Pakistan. Pakistan Journal of Science, 14:12-15.

Ahmed SR; Agnihotri JP, 1977. Antifungal activity of some plant extracts. Indian Journal of Mycology and Plant Pathology, 7(2):180-181

Anon, 2008. Review of the declaration of Lantana species in New South Wales. Review of the declaration of Lantana species in New South Wales:viii + 62 pp.

Anon, 2015. Pathogens against Lantana: New Zealand releases new agent. Biocontrol News and Information, 36(3):24.

Ashmole P; Ashmole M, 2000. St Helena and Ascension Island: a natural history. Oswestry, UK: A. Nelson.

Atkinson IAE; Atkinson; TJ, 2000. Land vertebrates as invasive species on the islands of the South Pacific Regional Environment Programme. In: Sherley G, ed. Invasive Species in the Pacific: A Technical Review and Draft Regional Strategy. Samoa, South Pacific Regional Environment Programme, 19-84.

Baars JR; Neser S, 1999. Past and present initiatives on the biological control of Lantana camara (Verbenaceae) in South Africa. African Entomology Memoir, 1 21-33

Barreto RW; Evans HC; Ellison CA, 1995. The mycobiota of the weed Lantana camara in Brazil, with particular reference to biological control. Mycological Research, 99(7):769-782

Bhagwat SA; Breman E; Thekaekara T; Thornton TF; Willis KJ, 2012. A battle lost? Report on two centuries of invasion and management of Lantana camara L. in Australia, India and South Africa. PLoS ONE, 7(3):e32407.

Binggeli P, 2001. The human dimensions of invasive woody plants. In: McNeilly J, ed. The Great reshuffling - Human Dimensions of Invasive Alien Species. Gland: IUCN, 145-159.

Binggeli P, 2003. Verbenaceae, Lantana camara, fankatavinakoho, fotatra, mandadrieko, rajejeka, radredreka, ramity. In: Goodman SM, Benstead JP, ed. The Natural History of Madagascar. Chicago, USA: University of Chicago Press, 415-417.

Binggeli P; Desalegn Desissa, 2002. Lantana camara - the invasive shrub that threatens to drive people out of their land. Newsletter of the Ethiopian Wildlife and Natural History Society, April-June 2002:4-6.

Breeÿen A den, 2004. Release strategies for the establishment of the leaf spot pathogen, Mycovellosiella lantanae var. lantanae, on Lantana camara in South Africa. In: Proceedings of the XI International Symposium on Biological Control of Weeds, Canberra, Australia, 27 April - 2 May, 2003 [ed. by Cullen, J. M.\Briese, D. T.\Kriticos, D. J.\Lonsdale, W. M.\Morin, L.\Scott, J. K.]. Canberra, Australia: CSIRO Entomology, 386-388.

Breeÿen A den; Morris MJ; Serdani M, 2000. Host specificity studies of the pathogen Mycovellosiella lantanae var. lantanae for the biological control of Lantana camara in South Africa. In: Spencer NR ed. Proceedings of the X International Symposium on Biological Control of Weeds, Montana State University, Bozeman, Montana, USA, p. 676 (abstract).

Bromilow C, 1995. Problem plants of South Africa. Briza Publications, Arcadia.

Broome R; Sabir K; Carrington S, 2007. Plants of the Eastern Caribbean. Online database. Barbados: University of the West Indies.

Broughton S, 1999. Impact of the seed-fly, Ophiomyia lantanae (Froggatt) (Diptera: Agromyzidae), on the viability of lantana fruit in south-east Queensland, Australia. Biological Control, 15(2):168-172; 28 ref.

Broughton S, 2000. Review and evaluation of lantana biocontrol programs. Biological Control, 17(3):272-286; 3 pp. of ref.

Burkill IH, 1935. A Dictionary of the Economic Products of the Malay Peninsula, Volumes 1 and 2. London, UK: Governments of the Straits Settlements and Federal Malay States, Crown Agents for the Colonies.

Chevalier A, 1935. Les Iles de Cap Vert - Geographie, biogeographie, agriculture - Flore de l'Archipel. Revue de Botanique Appliquée et d'Agriculture Tropicale, 15(170-1):732-1068.

Cilliers CJ; Neser S, 1991. Biological control of Lantana camara (Verbenaceae) in South Africa. Agriculture, Ecosystems and Environment, 37(1-3):57-75

CONABIO, 2009. The National Commission for the Knowledge and Use of Biodiversity. Mexico: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad.

Corlett RT, 1992. The naturalized flora of Hong Kong: a comparison with Singapore. Journal of Biogeography, 15:421-430.

Corlett RT, 1998. Frugivory and seed dispersal by vertebrates in the Oriental (Indomalayan) Region. Biological Reviews of the Cambridge Philosophical Society, 73(4):413-448; 9 pp. of ref.

Cronk QCB, 1989. The past and present vegetation of St Helena. Journal of Biogeography, 16:47-64.

Cruz F; Cruz J; Lawesson JE, 1986. Lantana camara L., a threat to native plants and animals. Noticias de Galapagos, 43:10-11.

DAISIE, 2013. Delivering Alien Invasive Species Inventories for Europe. DAISIE (online).

Davies CJ; Greathead DJ, 1967. Occurrence of Teleonemia scrupulosa on Sesamum indicum Linn. in Uganda. Nature, 213:102-103.

Davis CJ; Yoshioka E; Kageler D, 1992. Biological control of lantana, prickly pear, and Hamakua pamakani in Hawaii: a review and update. In: Stone CP, Smith CW, Tunison JT, eds. Alien plant invasions in native ecosystems of Hawaii: Management and Research. Honolulu, Hawaii, USA: University of Hawaii Press, 411-431.

Day MD, Wiley CJ. Playford J, Zalucki MP, 2003. Lantana: current management status and future prospects. Australia: ACIAR Monograph, 102.

Denton GRW; Muniappan R; Marutani M, 1991. Status and natural enemies of the weed, Lantana camara, in Micronesia. Tropical Pest Management, 37(4):338-344

Dohn J; Berry ZC; Curran TJ, 2013. A pilot project testing the effectiveness of three weed control methods on the removal of Lantana camara in Forty Mile Scrub National Park, Queensland, Australia. Ecological Management & Restoration, 14(1):74-77.

Doren RF; Ferriter A; Hastings H, 2002. Weeds won't wait! Part one: an assessment of invasive exotic plants in Florida. The South Florida Ecosystem Restoration Task Force And Working Group. http:\everglades/

Ellison CA; Evans HC, 1996. Amazon-ingly useful fungi - a biological control cornucopia?. Mycologist, 10(1):11-13; 4 ref.

Ellison CA; Pereira JM; Thomas SE; Barreto RW; Evans HC, 2006. Studies on the rust Prospodium tuberculatum, a new classical biological control agent released against the invasive alien weed Lantana camara in Australia. 1. Life-cycle and infection parameters. Australasian Plant Pathology, 35(3):309-319.

Englberger K, 2009. Invasive weeds of Pohnpei: A guide for identification and public awareness. Conservation Society of Pohnpei, 29 pp.

Erasmus DJ; Maggs KAR; Biggs HC; Zeller DA; Bell RS, 1993. Control of Lantana camara in the Kruger National Park, South Africa, and subsequent vegetation dynamics. Brighton crop protection conference, weeds. Proceedings of an international conference, Brighton, UK, 22-25 November 1993 Farnham, UK; British Crop Protection Council (BCPC), Vol. 1:399-404

Evans HC, 1999. Biological control of weed and insect pests using fungal pathogens, with particular reference to Sri Lanka. Biocontrol News and Information, 20(2):63N-68N.

Ferrell J; Sellers B; Macdonald G, 2011. Herbicidal control of Lantana camara. In: 23rd Asian-Pacific Weed Science Society Conference. Volume 1: weed management in a changing world, Cairns, Queensland, Australia, 26-29 September 2011. Cairns, Australia: Asian-Pacific Weed Science Society, 170-176.

Fichtl R; Admasu Adi, 1994. Honeybee Flora of Ethiopia. Weikersheim: Margraf Verlag.

Flora of China Editorial Committee, 2012. Flora of China Web. Cambridge, USA: Harvard University Herbaria.

Florence J; Waldren S; Chepstow-Lusty AJ, 1995. The flora of the Pitcairn Islands: a review. Biological Journal of the Linnean Society, 56(1/2):79-119

Francis JK; Rivera C; Figureroa J, 1994. Toward a woody plant list for Antigua and Barbuda: past and present. General Technical Report - Southern Forest Experiment Station, USDA Forest Service, SO-102:1-28.

Funk V; Hollowell T; Berry P; Kelloff C; Alexander SN, 2007. Checklist of the plants of the Guiana Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; Guyana, Surinam, French Guiana). Contributions from the United States National Herbarium, 584 pp.

Gentle CB; Duggin JA, 1997. Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecology, 132(1):85-95; 56 ref.

Gerlach J, 1993. The conservation of Silhouette Island, Seychelles. 1. Plants. Phelsuma, 1:18-29.

Goodall JM; Naudé DC, 1998. An ecosystem approach for planning sustainable management of environmental weeds in South Africa. Agriculture, Ecosystems & Environment, 68(1/2):109-123; 34 ref.

Gooden B; French K; Turner PJ, 2009. Invasion and management of a woody plant, Lantana camara L., alters vegetation diversity within wet sclerophyll forest in southeastern Australia. Forest Ecology and Management, 257(3):960-967.

Gooding EGB; Loveless AR; Proctor GR, 1965. Flora of Barbados. London, UK: Ministry of Overseas Development.

Govaerts R, 2013. World Checklist of Verbenaceae. Richmond, UK: Royal Botanic Gardens Kew.

Graveson R, 2012. The Plants of Saint Lucia (in the Lesser Antilles of the Caribbean). The Plants of Saint Lucia (in the Lesser Antilles of the Caribbean).

Greathead DJ, 1973. Progress in the biological control of Lantana camara in East Africa and discussion of problems raised by the unexpected reaction of some of the more promising insects to Sesamum indicum. In: Dunn PH, ed. Miscellaneous Publication, Commonwealth Institute of Biological Control, No. 6:89-92

Gujral GS; Vasudevan P, 1983. Lantana camara L., a problem weed. Journal of Scientific and Industrial Research, 42:281-286.

Hannan-Jones MA, 1998. The seasonal response of Lantana camara to selected herbicides. Weed Research (Oxford), 38(6):413-423; 21 ref.

Heckel E, 1911. Sur l'envahissement des forOts de Nouvelle Calédonie par le Lantana camara L. et les dangers que la plante fait courir à l'économie agricole et sylvicole de l'île. Bulletin de la Société d'Acclimatisation de France, 58:511-514.

Heleno RH; Olesen JM; Nogales M; Vargas P; Traveset A, 2013. Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proceedings of the Royal Society of London. Series B, Biological Sciences, 280(1750):20122112.

Heshula LUP; Hill MP, 2012. Effect of previous feeding by Falconia intermedia (Hemiptera: Miridae) on subsequent feeding activity on the invasive shrub Lantana camara (Verbenaceae). Biocontrol Science and Technology, 22(6):671-684.

Holm LG; Pancho JV; Herberger JP; Plucknett DL, 1979. A geographical atlas of world weeds. New York, USA: John Wiley and Sons, 391 pp.

Holm LG; Plucknett DL; Pancho JV; Herberger JP, 1977. The World's Worst Weeds. Distribution and Biology. Honolulu, Hawaii, USA: University Press of Hawaii.

Howard RA, 1969. A checklist of cultivar names in the genus Lantana. Arnoldia, 29(11):73-109.

Howard RA, 1970. Lantana camara - a prize and a peril. American Horticultural Magazine, 49:31-36.

Howes FN, 1946. Fence and barrier plants in warm climates. Kew Bulletin, 2:51-87.

IPPC-Secretariat, 2005. Identification of risks and management of invasive alien species using the IPPC framework. Proceedings of the workshop on invasive alien species and the International Plant Protection Convention, 22-26 September 2003. xii + 301 pp.

Islam KR; Ahmed MR; Bhuiyan MK; Badruddin A, 2001. Deforestation effects on vegetative regeneration and soil quality in tropical semi-evergreen degraded and protected forests of Bangladesh. Land Degradation and Development, 12:45-56.

ISSG, 2015. Global Invasive Species Database (GISD). Invasive Species Specialist Group of the IUCN Species Survival Commission.

Julien MH ed., 1992. Biological Control of Weeds. A World Catalogue of Agents and their Target Weeds, 3rd edition. Wallingford, UK: CAB International.

Julien MH; Griffiths MW, 1998. Biological control of weeds: a world catalogue of agents and their target weeds. Biological control of weeds: a world catalogue of agents and their target weeds., Ed. 4:x + 223 pp.

Kairo M; Ali B; Cheesman O; Haysom K; Murphy S, 2003. Invasive species threats in the Caribbean region. Report to the Nature Conservancy. Curepe, Trinidad and Tobago: CAB International, 132 pp.,%202003.pdf

Khan MA; Qureshi RA; Gillani SA; Ghufran MA; Batool A; Sultana KN, 2010. Invasive species of federal capital area Islamabad, Pakistan. Pakistan Journal of Botany, 42(3):1529-1534.

Kwabiah AB; Stoskopf NC; Voroney RP; Palm CA, 2001. Nitrogen and phosphorus release from decomposing leaves under sub-humid tropical conditions. Biotropica, 33: 229-240.

Lal L, 1987. Studies on natural repellents against potato tuber moth (Phthorimaea operculella Zeller) in country stores. Potato Research, 30(2):329-334; 8 ref.

Langeland KA; Burks KC; eds, 2000. Identification and biology of non-native plants in Florida's natural areas. Florida, USA: University of Florida.

Leak SGA, 1999. Tsetse biology and ecology, their role in the epidemiology and control of trypanosomosis. Wallingford, UK: CAB International.

Macdonald IAW; Thebaud C; Strahm WA; Strasberg D, 1991. Effects of alien plant invasions on native vegetation remnants on La Reunion (Mascarene Islands, Indian Ocean). Environmental Conservation, 18(1):51-61.

Marohasy J, 1994. The pest status of Phenacoccus parvus Morrison (Homoptera: Pseudococcidae). International Journal of Pest Management, 40:337-340.

Mathur G; Mohan Ram HY, 1978. Significance of petal colour in thrips-pollinated Lantana camara L. Annals of Botany, 42:1473-1476.

McWilliam A, 2000. A plague on your house? Some impacts of Chromolaena odorata on Timorese livelihoods. Human Ecology, 28(3):451-469; 29 ref.

Meyer J-Y, 2000. A preliminary review of the invasive plants in the Pacific Islands (SPREP Member Countries). In: Sherley G, ed. Invasive Species in the Pacific: A Technical Review and Draft Regional Strategy. Samoa: South Pacific Regional Environment Programme, 85-114.

Morton JF, 1994. Lantana, or red sage (Lantana camara L., [Verbenaceae]), notorious weed and popular garden flower; some cases of poisoning in Florida. Economic Botany, 48(3):259-270; 84 ref.

Mullen BF; Macfarlane DC; Evans TR, 1993. Weed identification and management in Vanuatu pastures, Second Edition. Vanuatu Pasture Improvement Project (VPIP) Technical Bulletin, No. 2.

Mune TL; Parham JW, 1967. The declared noxious weeds of Fiji and their control, 3rd edn. Fiji Department of Agriculture Bulletin, 48:1-87.

Munz PA, 1974. A Flora of Southern California. Berkeley, USA: University of California Press.

Muvengwi J; Ndagurwa HGT, 2015. Soil seed bank dynamics and fertility on a seasonal wetland invaded by Lantana camara in a savanna ecosystem. South African Journal of Botany, 100:190-194.

Nair NC; Henry AN, 1983. Flora of Tamil Nadu Ser. 1. Analysis. Coimbatore, India: Botanical Survey of India (Southern Circle).

Njoroge P; Bennun LA, 2000. Status and conservation of Hinde's Babbler Turdoides hinduei, a threatened species in an agricultural landscape. Ostrich, 71:69-72.

Osunkoya OO; Perrett C; Fernando C, 2010. Population viability analysis models for Lantana camara L. (Verbenaceae): a weed of national significance. In: 17th Australasian weeds conference. New frontiers in New Zealand: together we can beat the weeds. Christchurch, New Zealand, 26-30 September, 2010 [ed. by Zydenbos, S. M.]. Hastings, New Zealand: New Zealand Plant Protection Society, 99-102.

Osunkoya OO; Perrett C; Fernando C; Clark C; Raghu S, 2013. Modeling population growth and site specific control of the invasive Lantana camara L. (Verbenaceae) under differing fire regimes. Population Ecology, 55(2):291-303.

Palmer WA; Pullen KR, 1995. The phytophagous arthropods associated with Lantana camara, L. hirsuta, L. urticifolia, and L. urticoides (Verbenaceae) in North America. Biological Control, 5(1):54-72; 35 ref.

Palmer WA; Willson BW; Pullen KR, 2000. Introduction, rearing, and host range of Aerenicopsis championi Bates (Coleoptera: Cerambycidae) for the biological control of Lantana camara L. in Australia. Biological Control, 17(3):227-233; 17 ref.

Parsons WT; Cuthbertson EG, 1992. Noxious Weeds of Australia. Melbourne, Australia: Inkata Press, 692 pp.

PIER, 2013. Pacific Islands Ecosystems at Risk. Honolulu, Hawaii, USA: HEAR, University of Hawaii.

Press JR; Short MJ; ed, 1994. Flora of Madeira. London, UK: HMSO.

Rana RS; Singh LN, 1999. Eradication of Lantana camara and wasteland utilization in Kandi region of Himachal Pradesh. Indian Journal of Soil Conservation, 27(2):137-140; 1 ref.

Rawat GP, 1997. Conservation status of forests and wildlife in the Eastern Ghats, India. Environmental Conservation, 24:307-315.

Robertson MP; Caithness N; Villet MH, 2001. A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Diversity and Distributions, 7(1/2):15-27; 46 ref.

Robinson P, 2001. The Gambia. In: Fishpool LDC, Evans MI, eds. Important bird areas in Africa and associated islands. Newbury, UK: Pisces Publications and Cambridge, BirdLife International, 357-366.

Roby D; Dossar MB, 2000. Strategie nationale et plan d'action pour la conservation de la diversite biologique. Moroni, Comoros: Republique Federale Islamique des Comores.

Schemske DW, 1983. Lantana camara (Cinco Negritos, Lantana). In: Janzen DH, ed. Costa Rican Natural History. Chicago, USA: University of Chicago Press, 266-268.

Schnell R, 1950. Contribution préliminaire à l'étude botanique de la Basse-Guinée Française. Etudes Guinéennes, 6:31-75.

Scott L; Graham GC; Hannan-Jones M; Yeates DK, 1997. DNA profiling resolves the limited importance of flower colour in defining varieties of Lantana camara. Electrophoresis, 18:1560-1563.

Sharma GP; Raghubanshi AS, 2012. Invasive species: ecology and impact of Lantana camara invasions. In: Invasive alien plants: an ecological appraisal for the Indian subcontinent [ed. by Bhatt, J. R.\Singh, J. S.\Singh, S. P.\Tripathi, R. S.\Kohli, R. K.]. Wallingford, UK: CABI, 19-42.

Sharma OP; Makkar HPS; Dawra RK, 1988. A review of the noxious plant Lantana camara. Toxicon, 26(11):975-987

Sinha S; Sharma A, 1985. Lantana camara L. a review. Feddes Repertorium, 95(9/10):621-633

Smiet AC, 1992. Forest ecology on Java: human impact and vegetation of montane forest. Journal of Tropical Ecology, 8:129-152.

Sobrino E; Sanz-Elorza M; Dana ED; Gonzßlez-Moreno A, 2002. Invasibility of a coastal strip in NE Spain by alien plants. Journal of Vegetation Science, 13(4):585-594; many ref.

Stirton CH, 1977. Some thoughts on the polyploid complex Lantana camara L. (Verbenaceae). Proceedings of the Second National Weeds Conference of South Africa., 321-340

Stirton CH, 1979. Taxonomic problems associated with invasive alien trees and shrubs in South Africa. In: Proceedings of the 9th Plenary Meeting AETFAT (Association pour l'étude taxonomique de la flore d'Afrique tropicale, Brussells, Belgium), 218-219.

Strahm W, 1989. Plant Red Data Book for Rodrigues. Konigstein, Germany: Koeltz Scientific Books.

Swarbrick JT, 1986. History of the lantanas in Australia and origins of the weedy biotypes. Plant Protection Quarterly, 1(3):115-121

Swarbrick JT; Wison BW; Hannan-Jones MA, 1995. The biology of Australian weeds. 25. Lantana camara L. Plant Protection Quarterly, 10:82-95.

Taylor DBJ; Riding N; Chamberlain A; Clark A; Day MD, 2008. The establishment and spread of the latest biocontrol agents released against Lantana camara in Australia. In: Proceedings of the 16th Australian Weeds Conference, Cairns Convention Centre, North Queensland, Australia, 18-22 May, 2008. Queensland, Australia: Queensland Weed Society, 279.

Taylor EE, 1989. A history of biological control of Lantana camara in New South Wales. Plant Protection Quarterly, 4(2):61-65

Taylor S; Kumar L, 2013. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia. Journal of Environmental Management, 114:414-422.

Taylor S; Kumar L; Reid N, 2012. Impacts of climate change and land-use on the potential distribution of an invasive weed: a case study of Lantana camara in Australia. Weed Research (Oxford), 52(5):391-401.

Thaman RR, 1974. Lantana camara: its introduction, dispersal and impact on islands of the tropical Pacific Ocean. Micronesica, 10:17-39.

Thirunavukkarasu PS; Prathaban S; Dhanapalan P, 2001. Pathological studies of Lantana camara poisoning in experimental calves. Indian Veterinary Journal, 78:676-678.

Thomas SE; Ellison CA, 2000. A century of classical control of Lantana camara: can pathogens make a significant difference? In: Spencer NR, ed. Proceedings of the X International Symposium on Biological Control of Weeds, Montana State University, Bozeman, Montana, USA, 97-104.

Thomas SE; Ellison CA; Tomley AJ, 2006. Studies on the rust Prospodium tuberculatum, a new classical biological control agent released against the invasive alien weed Lantana camara in Australia. 2. Host range. Australasian Plant Pathology, 35(3):321-328.

Tomley AJ; Riding N, 2002. Prospodium tuberculatum, lantana rust, a new agent released for the biocontrol of the woody shrub Lantana camara. In: 13th Australian Weeds Conference: weeds "threats now and forever?", Sheraton Perth Hotel, Perth, Western Australia, 8-13 September 2002: papers and proceedings [ed. by Jacob, H. S.\Dodd, J.\Moore, J. H.]. Victoria Park, Australia: Plant Protection Society of Western Australia Inc, 389-390.

Trujillo EE; Norman DJ, 1995. Septoria leaf spot of lantana from Ecuador: a potential biological control for bush lantana in forests of Hawaii. Plant Disease, 79(8):819-821

Turner PJ; Downey PO, 2010. Ensuring invasive alien plant management delivers biodiversity conservation: insights from an assessment of Lantana camara in Australia. Plant Protection Quarterly, 25(3):102-110.

Tutin TG; Heywood VH; Burges NA; Moore DM; Valentine DH; Walters SM; Webb DA, 1972. Flora Europaea. Vol. 3. Diapensiaceae to Myoporaceae. London, Cambridge University Press., UK xxix+370pp.

Umapathy G; Kumar A, 2000. Impacts of the habitat fragmentation on time budget and feeding ecology of lion-tailed macaque (Macaca silenus) in rain forest fragments of Anamalai Hills, South India. Primate Report, 58:67-82.

Urban AJ; Simelane DO; Retief E; Heystek F; Williams HE; Madire LG, 2011. The invasive 'Lantana camara L.' hybrid complex (Verbenaceae): a review of research into its identity and biological control in South Africa. African Entomology, 19(2):315-348.

USDA-NRCS, 2013. The PLANTS Database. Baton Rouge, USA: National Plant Data Center.

Vardien W; Richardson DM; Foxcroft LC; Thompson GD; Wilson JRU; Roux JJle, 2012. Invasion dynamics of Lantana camara L. (sensu lato) in South Africa. South African Journal of Botany, 81:81-94.

Vermeulen JB; Dreyer M; Grobler H; van Zyl K, 1996. A guide to the use of herbicides. 15th edition. National Development of Agriculture. South Africa.

Vivian-Smith G; Panetta FD, 2009. Lantana (Lantana camara) seed bank dynamics: seedling emergence and seed survival. Invasive Plant Science and Management, 2(2):141-150.

Waipara NW; Winks CJ; Paynter Q; Riding N; Day MD, 2009. Prospects for the biological control of Lantana camara (Verbenaceae) in New Zealand. New Zealand Plant Protection [Proceedings of the New Zealand Plant Protection Society's Annual Conference, Otago Museum Conference Centre, Dunedin, New Zealand, 11-13 August 2009.], 62:50-55.

Walker EH, 1976. Flora of Okinawa and the Southern Ryukyu Islands. Washington DC, USA: Smithsonian Institution.

Waterhouse DF, 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. ACIAR Monograph No. 21. Canberra, Australia: Australian Centre for International Agricultural Research, 141 pp.

Whitten T; Henderson GS; Mustafa M, 2002. The ecology of Indonesia series. Volume 4. The Ecology of Sulawesi. Hong Kong: Periplus Editions.

Xie Yan; Li Zhenyu; Gregg WP; Li Dianmo, 2001. Invasive species in China - an overview. Biodiversity and Conservation, 10(8):1317-1341.

Zuloaga FO; Morrone O; Belgrano MJ, 2008. Catálogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Volumen 1: Pteridophyta, Gymnospermae y Monocotyledoneae (Catalogue of the vascular plants of the southern cone (Argentina, southern Brazil, Chile, Paraguay and Uruguay). Volume 1: Pteridophyta, Gymnospermae and Monocotyledoneae) [ed. by Zuloaga FO, Morrone O, Belgrano MJ]. St. Louis, USA: Missouri Botanical Garden Press, 983 pp.


Top of page

07/12/15 Updated by:

Sarah E. Thomas, CABI, UK

23/09/13 Updated by:

Julissa Rojas-Sandoval, Department of Botany-Smithsonian NMNH, Washington DC, USA

Pedro Acevedo-Rodríguez, Department of Botany-Smithsonian NMNH, Washington DC, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map
Download KML file Download CSV file
Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT