Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Indian cassava mosaic virus
(Indian cassava mosaic)

Toolbox

Datasheet

Indian cassava mosaic virus (Indian cassava mosaic)

Summary

  • Last modified
  • 18 January 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Indian cassava mosaic virus
  • Preferred Common Name
  • Indian cassava mosaic
  • Taxonomic Tree
  • Domain: Virus
  •   Unknown: "ssDNA viruses"
  •     Unknown: "DNA viruses"
  •       Family: Geminiviridae
  •         Genus: Begomovirus
  • Summary of Invasiveness
  • Other than their countries of origin, India and Sri Lanka for ICMV and SLCMV, respectively, SLCMV has also been reported in India (...

  • Principal Source
  • Draft datasheet under review.

  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    Compendia
    CAB International
    Wallingford
    Oxfordshire
    OX10 8DE
    UK
    compend@cabi.org
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Identity

Top of page

Preferred Scientific Name

  • Indian cassava mosaic virus

Preferred Common Name

  • Indian cassava mosaic

International Common Names

  • Spanish: mosaico africano de la yuca
  • French: mosaïque africaine du manioc

English acronym

  • ICMV

EPPO code

  • ICMV00

Summary of Invasiveness

Top of page

Other than their countries of origin, India and Sri Lanka for ICMV and SLCMV, respectively, SLCMV has also been reported in India (Dutt et al., 2005; Jose et al., 2011) and Cambodia (Wang et al., 2016) while new strains of ICMV have been identified as causative agents of Jatropha curcas mosaic disease in Jatropha curcas from India (Snehi et al., 2012), Nigeria (Kashina et al., 2013) and Singapore (Wang et al., 2014). The primary means of spread of both viruses is via movement of infected cassava cuttings while secondary spread is facilitated by members of the Bemisia tabaci complex. Both ICMV and SLCMV are not on the IUCN or ISSG alert list.

Taxonomic Tree

Top of page
  • Domain: Virus
  •     Unknown: "ssDNA viruses"
  •         Unknown: "DNA viruses"
  •             Family: Geminiviridae
  •                 Genus: Begomovirus
  •                     Species: Indian cassava mosaic virus

Notes on Taxonomy and Nomenclature

Top of page

Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) are members of the genus Begomovirus (family Geminiviridae). Like other cassava mosaic geminiviruses (CMGs) such as African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV), both ICMV and SLCMV posses bipartite ssDNA genomes and are transmitted by whiteflies of the Bemisia tabaci complex. Cassava is also the primary host plant of ICMV and SLCMV but both viruses can experimentally infect Nicotiana spp. In addition, an infectious clone of SLCMV was infective in Arabidopsis inducing symptoms similar to those described on cassava including stunting, leaf deformation and developmental abnormalities (Mittal et al., 2008). Historical accounts attributed the first observation of cassava mosaic disease in India to Abraham (1956) and its official report and description to Alagianagalingam and Ramakrishnan (1966). Subsequent studies documented CMD prevalence (Matthew, 1989) and associated losses (Narasimhan and Arjunan, 1976; Thankappan and Chacko, 1976; Nair and Malathi, 1987; Jeeva, 1997) in India. Ultrastructural abnormalities in Nicotiana benthamiana due to ICMV infection have also been documented (Roberts et al., 1989).

The first empirical evidence for the association of geminivirus particles with CMD-affected cassava in India was recorded by Malathi and Sreenivasan (1983), followed by a demonstration of its serological relatedness to ACMV (Bock and Woods, 1983). It was later shown that CMGs present in CMD-affected cassava in India and Sri Lanka (named as Group C isolates) are distinct from those from Africa based on tests conducted with a panel of monoclonal antibodies and thus named as ICMV (Harrison et al., 1991). Following microscopic and serological characterization of ICMV virions (Matthew and Muniyappa, 1992), the nucleotide sequences of its genome components were determined and shown to be distinct enough from those of ACMV and EACMV to warrant species designation (Hong et al., 1993). By 2002, SLCMV was characterized from CMD-affected cassava in Sri Lanka with its DNA A showing biological similarity to those of monopartite begomoviruses by nature and its recombinant DNA B component acquired from ICMV DNA B (Saunders et al., 2002).

Description

Top of page

ICMV and SLCMV each possess bipartite circular, ss(+)DNA genomes that are encapsidated in twin (geminate), small, quasi-isometric particles measuring 20 x 30 nm. Both the DNA A and DNA B genome components are needed for efficient transmission of the virus to healthy cassava plants (Liu et al., 1997). Each species is named after its country of first discovery/characterization although the use of country names in geminivirus nomenclature has been discouraged (Brown et al., 2015). Pseudo-recombination, wherein trans-replication of ICMV DNA B by SLCMV DNA A occurred in co-agroinoculated tobacco plants, has been reported (Karthikeyan et al., 2016). However, these plants showed lower infectivity rate compared to plants inoculated with cognate virus DNA component pairs (Karthikeyan et al., 2016). Studies on virus genetic variability in India report conflicting results with one documenting high variability among isolates of ICMV and SLCMV (Patil et al., 2005) while the other reported low level of genetic variability for SLCMV isolates (Kushawaha et al., 2018).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

CambodiaPresentIntroducedWang et al., 2015Only SLCMV currently reported
IndiaPresentNativeMatthew, 1989
-Andhra PradeshPresentNativeMatthew, 1989Matthew (1989) cited in Thottappilly et al. (2003)
-KarnatakaPresentNativeMatthew, 1989Matthew (1989) cited in Thottappilly et al. (2003)
-KeralaPresentNativeMatthew, 1989; Jose et al., 2011Matthew (1989) cited in Thottappilly et al. (2003)
-Madhya PradeshPresentNativeSnehi et al., 2017SLCMV reported on Chaya (Cnidoscolus acontifolia) based on analysis of coat protein gene sequences.
-Tamil NaduPresentNativeMatthew, 1989Matthew (1989) cited in Thottappilly et al. (2003)
Sri LankaPresentNativeSaunders et al., 2002

History of Introduction and Spread

Top of page

Cassava is native to South America and was introduced into India during the seventeenth century by the Portuguese (Edison, 2000). Like other CMGs, ICMV and SLCMV have not been reported in the Americas. Likewise, reports of both viruses have so far been confined to few countries in Asia. Therefore, it is plausible to conclude that both ICMV and SLCMV are native to Asia, possibly originating from yet-to-be identified plant hosts and making the jump onto the preferred cassava host post-introduction via whitefly-mediated transmission.

Risk of Introduction

Top of page

As with other CMGs, the major pathways for the introduction of ICMV and SLCMV to new areas are through movement of infected planting materials and by the naturally transmitting whitefly vector. Infected cassava vegetative cuttings contribute to both long and short distance spread of both viruses while whitefly-mediated spread generally occurs over short distances. With increased interest in cassava cultivation for industrial purposes across Asia, the risk of inadvertent spread of CMD to new areas is significant. For instance, the recent report of SLCMV in Cambodia in locations close to Thailand puts neighbouring cassava-growing countries at risk, thus prompting region-wide survey efforts in Thailand, Laos and Myanmar.

Hosts/Species Affected

Top of page

Like the other CMGs, ICMV and SLCMV are primarily borne in cassava vegetative cuttings. Emerging leaves from such cuttings may manifest CMD symptoms and serve as sources of virus inoculum for secondary spread within and across fields by the whitefly vector. CMGs are not known to been borne on true cassava seeds (Dubern, 1994). Depending on the mode of infection, symptoms appear in the first emerging leaves for cutting infection and 12-20 days after inoculation by viruliferous whiteflies (Storey and Nichols, 1938) usually determined by varietal characteristics.

Growth Stages

Top of page Flowering stage, Seedling stage, Vegetative growing stage

Symptoms

Top of page

Cassava plants infected by ICMV, SLCMV and other CMGs display diverse foliar symptoms, the type and severity of which are determined by a number of factors. Broadly, symptoms include yellow or green mosaic, mottling, and misshapen and twisted leaves that may be reduced in size. Although these symptoms are characteristic of all CMGs, they may differ in distribution in the fields, from plant to plant, and even on the same plant. Symptom-based field diagnosis of ICMV, SLCMV and other CMGs is impracticable due to similarities of induced symptoms in infected plants regardless of the causative virus. Consequently, it is imperative to confirm virus presence using PCR and/or ELISA methods with species-specific oligonucleotides and discriminating antibodies, respectively. PCR diagnosis is the method of choice due to a considerably high serological relationship among CMGs and cross reactivity of their antibodies.

List of Symptoms/Signs

Top of page
SignLife StagesType
Growing point / dwarfing; stunting
Leaves / abnormal colours
Leaves / abnormal forms
Leaves / abnormal patterns
Roots / reduced root system
Whole plant / distortion; rosetting
Whole plant / dwarfing

Means of Movement and Dispersal

Top of page

As with other CMGs, the dispersal of ICMV and SLCMV occurs via movement of infected planting materials (mainly stem cuttings) from field to field and across regions; and via movement of the whitefly vector. The whitefly, B. tabaci complex, has been documented as a vector of CMGs since 1936 (Storey and Nichols, 1938). Following the identification of cassava and sweet potato strains (biotypes) of the B. tabaci complex and the demonstration that individuals belonging to each crop-specific strain are only able to breed and develop on the respective crop hosts in addition to having aubergine and tobacco as their common hosts (Lisha et al., 2003), it was shown that only the cassava-strain whiteflies were able to successfully transmit ICMV from infected to healthy cassava seedlings (Antony et al., 2006). Working with the cassava-adapted individuals of the B. tabaci complex, Duraisamy et al. (2013) confirmed their transmission of both ICMV and SLCMV. The circulative mode of ICMV by the transmission cassava-strain whiteflies was demonstrated via detection of the virus in the insect stylet, salivary gland and digestive tract (Antony et al., 2009).

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Yes Pest or symptoms usually invisible
Yes Pest or symptoms usually invisible

Vectors and Intermediate Hosts

Top of page
VectorSourceReferenceGroupDistribution
Bemisia tabaciEFSA Panel on Plant Health, 2013. Insect

Impact Summary

Top of page
CategoryImpact
Negative

Economic Impact

Top of page

Cassava tuber yield losses due to cassava mosaic disease in India have been reported to vary from negligible to 84% (Thottappilly et al., 2003) but the magnitude of the loss may depend on cultivar type and time of infection (Narasimhan and Arjuan, 1976; Thankappan and Chacko, 1976; Malathi et al., 1985; Nair and Malathi, 1987; Jeeva, 1997). However, it is unclear whether the recorded losses are due to ICMV or SLCMV, or both viruses, in mixed infected plants because most of the yield loss studies relied on natural infections under field conditions.

Social Impact

Top of page

The role of cassava in India and other Asian countries has metamorphosed from a food to an industrial crop (Edison, 2000) hence the social impact of CMD will be indirect in terms of the negative impact of significant yield loss due to the disease on household income.

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
Impact outcomes
  • Host damage
  • Negatively impacts agriculture

Diagnosis

Top of page

Various forms of enzyme-linked immunosorbent assay (ELISA) including double- (DAS) and triple- (TAS) antibody sandwich ELISAs are capable of detecting ICMV and SLCMV in leaf extracts. Distinguishing between both viruses via ELISA could occur using discriminating monoclonal antibodies (Thomas et al., 1986; Harrison and Robinson, 1988; Ogbe et al., 1997). The different forms of ELISA are versatile and can be used to screen large field samples. However, the recombinant nature of CMGs poses a challenge for accurate species-specific detection of CMGs using ELISA (Thottapilly et al., 2003). PCR-based assays with species specific oligonucleotides that target different genes encoded in the DNA A component of CMGs are routinely used for accurate and reliable detection of ICMV and SLCMV (Ogbe et al., 2001; Jose et al., 2008, 2011).

Detection and Inspection

Top of page

Symptoms caused by ICMV, SLCMV and other CMGs are not distinguishable from each other by visual inspection. However, mosaic patterns on cassava leaves indicate the presence of one or more of the CMD causal viruses which can be discriminated using serological and molecular diagnostic tools and assays.

Similarities to Other Species/Conditions

Top of page

CMD symptoms in cassava due to ICMV and SLCMV are indistinguishable from each other, and from other CMGs. Both viruses can be distinguished from each other and from other CMGs using molecular diagnostics with virus-specific oligonucleotides.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Management of CMD, caused by ICMV and/or SLCMV, follows the same approach as in other viral diseases on crops other than cassava. Vector control via use of insecticides is cost prohibitive and environmentally unsustainable. Therefore, the main approaches to CMD management are phytosanitation through selection and propagation of disease-free cuttings and breeding/cultivation of CMD-resistant cassava cultivars (Thresh and Otim-Nape, 1994). The combined use of both strategies is expected to result in a more reliable control strategy. According to Calvert and Thresh (2002), not much attention has been devoted to the use of these strategies for CMD management in India primarily due to the fact that the disease is largely ignored by farmers and minimal CMD-associated losses recorded due to implementation of more intensive production practices in Asia compared to their African counterparts.

References

Top of page

Abraham, A., 1956. Tapioca cultivation in India. Farm Bulletin, No. 17. Indian Council of Agricultural Research, New Delhi, India, 20 pp

Alagianagalingam, M. N., Ramakrishnan, K., 1966. Cassava mosaic disease in India. South Indian Horticulture 14, 71-72

Antony, B., Lisha, V. S., Palaniswami, M. S., 2009. Evidences for transmission of Indian cassava mosaic virus through Bemisia tabaci - cassava biotype. Archives of Phytopathology and Plant Protection, 42(10), 922-929. doi: 10.1080/03235400701541321

Antony, B., Lisha, V. S., Palaniswami, M. S., Sugunan, V. S., Makeshkumar, T., Henneberry, T. J., 2006. Bemisia tabaci (Homoptera: Aleyrodidae) and Indian cassava mosaic virus transmission. International Journal of Tropical Insect Science, 26(3), 176-182. http://journals.cambridge.org/download.php?file=%2FJTI%2FJTI26_03%2FS1742758407183430a.pdf&code=d28614e77cd6386d5eecd461067b11c3

Bock KR, Woods RD, 1983. Etiology of African cassava mosaic disease. Plant Disease, 67(9):994-995

Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos Sobrinho, R., Silva, J. C. F., Fiallo-Olivé, E., Briddon, R. W., Hernández-Zepeda, C., Ali Idris, Malathi, V. G., Martin, D. P., Rivera-Bustamante, R., Ueda, S., Varsani, A., 2015. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 160(6), 1593-1619. http://link.springer.com/article/10.1007%2Fs00705-015-2398-y doi: 10.1007/s00705-015-2398-y

Böttcher, B., Unseld, S., Ceulemans, H., Russell, R. B., Jeske, H., 2004. Geminate structures of African cassava mosaic virus. Journal of Virology, 78(13), 6758-6765. http://jvi.asm.org/cgi/content/abstract/78/13/6758 doi: 10.1128/JVI.78.13.6758-6765.2004

Calvert, L. A., Thresh, J. M., 2001. The viruses and virus diseases of cassava. In: Cassava: biology, production and utilization, [ed. by Hillocks, R. J., Thresh, J. M.]. Wallingford, UK: CABI. 237-260. http://www.cabi.org/cabebooks/ebook/20073012665 doi: 10.1079/9780851995243.0237

Chockalingam Karthikeyan, Patil, B. L., Borah, B. K., Resmi, T. R., Turco, S., Pooggin, M. M., Hohn, T., Karuppannan Veluthambi, 2016. Emergence of a latent Indian cassava mosaic virus from cassava which recovered from infection by a non-persistent Sri Lankan cassava mosaic virus. Viruses, 8(10), 264. http://www.mdpi.com/1999-4915/8/10/264/htm doi: 10.3390/v8100264

Dheeraj Mittal, Borah, B. K., Indranil Dasgupta, 2008. Agroinfection of cloned Sri Lankan cassava mosaic virus DNA to Arabidopsis thaliana, Nicotiana tabacum and cassava. Archives of Virology, 153(11), 2149-2155. http://springerlink.metapress.com/content/007528630353r071/?p=b626ccdce00f49bd8d6edea119659fb3&pi=22 doi: 10.1007/s00705-008-0238-z

Dubern, J., 1994. Transmission of African cassava mosaic geminivirus by the whitefly (Bemisia tabaci). Tropical Science, 34(1), 82-91.

Dutt, N., Briddon, R. W., Dasgupta, I., 2005. Identification of a second begomovirus, Sri Lankan cassava mosaic virus, causing cassava mosaic disease in India. Archives of Virology, 150(10), 2101-2108. http://springerlink.metapress.com/link.asp?id=100423 doi: 10.1007/s00705-005-0579-9

Edison, S., 2000. Present situation and future potential of cassava in India. In: Howeler RH, Tan SL, eds. Cassava’s Potential in Asia in the 21st Century: Present Situation and Future Research and Development Needs. Proc. 6th Regional Workshop, held in Ho Chi Minh city, Vietnam. Feb. 21-25, 2000

EFSA Panel on Plant Health, 2013. Scientific Opinion on the risks to plant health posed by Bemisia tabaci species complex and viruses it transmits for the EU territory. EFSA Journal, 11(4). 3162. http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/3162.pdf

Harrison BD, Robinson DJ, 1988. Molecular variation in vector-borne plant viruses: epidemiological significance. The epidemiology and ecology of infectious disease agents. Proceedings of a Royal Society discussion meeting, held on 17 and 18 February 1988 [edited by Anderson, R. M.; Thresh, J. M.] London, UK; Royal Society, 121-136

Harrison, B. D., Swanson, M. M., McGrath, P. F., Fargette, D., 1991. Patterns of antigenic variation in whitefly-transmitted geminiviruses. Report of Scottish Crop Research Institute 1990, Dundee, 88-90

Hong YG, Robinson DJ, Harrison BD, 1993. Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted geminiviruses in cassava. Journal of General Virology, 74(11):2437-2443

Jeeva, M. L., 1997. Effect of secondary infection of cassava mosaic disease on growth and tuber yield of cassava. Journal of Mycology and Plant Pathology, 27(1), 78-80.

Jose A, Makeshkumar T, Edison S, 2008. Host range of Sri Lankan cassava mosaic virus. Journal of Root Crops, 34(1), 21-25.

Jose, A., Makeshkumar, T., Edison, S., 2011. Survey of cassava mosaic disease in Kerala. Journal of Root Crops, 37(1), 41-47.

Kashina, B. D., Alegbejo, M. D., Banwo, O. O., Nielsen, S. L., Nicolaisen, M., 2013. Molecular identification of a new begomovirus associated with mosaic disease of Jatropha curcas L. in Nigeria. Archives of Virology, 158(2), 511-514. http://rd.springer.com/article/10.1007/s00705-012-1512-7 doi: 10.1007/s00705-012-1512-7

Kushawaha, A. K., Ramalingam Rabindran, Indranil Dasgupta, 2018. Rolling circle amplification-based analysis of Sri Lankan cassava mosaic virus isolates from Tamil Nadu, India, suggests a low level of genetic variability. VirusDisease, 29(1), 61-67. https://link.springer.com/article/10.1007/s13337-018-0432-x doi: 10.1007/s13337-018-0432-x

Lisha, V. S., Antony, B., Palaniswami, M. S., Henneberry, T. J., 2003. Bemisia tabaci (Homoptera: Aleyrodidae) biotypes in India. Journal of Economic Entomology, 96(2), 322-327. doi: 10.1603/0022-0493-96.2.322

Liu SiJun, Bedford, I. D., Briddon, R. W., Markham, P. G., 1997. Efficient whitefly transmission of African cassava mosaic geminivirus requires sequences from both genomic components. Journal of General Virology, 78(7), 1791-1794.

Malathi, V. G., Nair, N. G., Shanta, P., 1985. Cassava mosaic disease. Technical Bulletin Series-5, Central Tuber Crops Research Institute, Trivandrum, pp.18

Malathi, V. G., Sreenivasan, M. A., 1983. Association of Gemini particles with cassava mosaic disease in India. J. Root Crops, 9, 69-73.

Mathew, A. V., Muniyappa, V., 1992. Purification and characterization of Indian cassava mosaic virus. Journal of Phytopathology, 135(4), 299-308. doi: 10.1111/j.1439-0434.1992.tb04315.x

Matthew, A. V., 1989. Studies on Indian cassava mosaic virus disease. PhD Thesis, University of Agricultural Sciences, Bangalore, 237 pp

Nair, N. G., Malathi, V. G., 1987. Disease severity and yield loss in cassava (Manihot esculenta Crantz) due to Indian cassava mosaic disease. Journal of Root Crops, 13(1), 91-94.

Narasimhan, V., Arjunan, G., 1976. Mosaic disease of cassava - loss in yield and tuber splitting. Indian Phytopathology, 29(4), 428-429.

Ogbe, F. O., Atiri, G. I., Thottappilly, G., Dixon, A. G. O., Mignouna, H. D., Quin, F. M., 2001. Evidence of double infection and random occurrence of cassava begomoviruses in sub-Saharan Africa. In: Akoroda MO, Ngeve JM, eds. Root Crops in the 21st Century. Proc. Seventh Triennial Symp. International Society for Tropical Root Crops African Branch (ISTRC-AB), Cotonou, Benin Republic, 524-529

Ogbe, F. O., Thottappilly, G., Quin, F. M., 1997. Implementation in Africa of serological diagnostic test for cassava mosaic geminiviruses. African Journal of Root and Tuber Crops, 2(1/2), 33-36.

Patil, B. L., Rajasubramaniam, S., Bagchi, C., Dasgupta, I., 2005. Both Indian cassava mosaic virus and Sri Lankan cassava mosaic virus are found in India and exhibit high variability as assessed by PCR-RFLP. Archives of Virology, 150(2), 389-397. http://link.springer.de/link/service/journals/00705/ doi: 10.1007/s00705-004-0399-3

Raghu Duraisamy, Senthil Natesan, Raveendran Muthurajan, Karthikayan Gandhi, Pugalendhi Lakshmanan, Nageswari Karuppusamy, Mohan Chokkappan, 2013. Molecular studies on the transmission of Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) in cassava by Bemisia tabaci and cloning of ICMV and SLCMV replicase gene from cassava. Molecular Biotechnology, 53(2), 150-158. http://rd.springer.com/article/10.1007/s12033-012-9503-1 doi: 10.1007/s12033-012-9503-1

Roberts, I. M., 1989. Indian cassava mosaic virus: ultrastructure of infected cells. Journal of General Virology, 70(10), 2729-2739. doi: 10.1099/0022-1317-70-10-2729

Saunders, K., Nazeera Salim, Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G., Stanley, J., 2002. Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology , 293(1), 63-74. doi: 10.1006/viro.2001.1251

Snehi, S. K., Purvia, A. S., Gupta, G., Parihar, S. S., Singh, V., 2017. Molecular Detection of a Begomovirus Species on Chaya (Cnidoscolus acontifolia) from Madhya Pradesh, India which is Distantly Related to Sri Lankan Cassava Mosaic Virus. Virol-mycol, 6, 164. doi: 10.4172/2161-0517.1000164

Snehi, S. K., Ashish Srivastava, Raj, S. K., 2012. Biological characterization and complete genome sequence of a possible strain of Indian cassava mosaic virus from Jatropha curcas in India. Journal of Phytopathology, 160(10), 547-553. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1439-0434 doi: 10.1111/j.1439-0434.2012.01948.x

Storey HH, Nichols RFW, 1938. Studies of the mosaic diseases of cassava. Annals of Applied Biology, 25:790-806

Thankappan, M., Chacko, C. I., 1976. Effect of cassava mosaic on the different plant parts and tuber yield in cassava. Journal of Root Crops, 2(2), 45-47.

Thomas, J. E., Massalski, P. R., Harrison, B. D., 1986. Production of monoclonal antibodies to African cassava mosaic virus and differences in their reactivities with other whitefly-transmitted geminiviruses. Journal of General Virology, 67, 2739-2748.

Thottapilly, G., Thresh, J., Calvert, L. A., Winter, S., 2003. Cassava. In: Virus and virus-like diseases of major crops in developing countries, [ed. by Loebenstein, G., Thottapilly, G.]. Dordrecht, Netherlands: Kluwer Academic Publishers. 107-165.

Thresh JM, Otim-Nape GW, 1994. Strategies for controlling African cassava mosaic geminivirus. Advances in Disease Vector Research, 10:215-236

Wang Gang, Sun YanWei, Xu RuiRui, Qu Jing, Tee ChuanSia, Jiang XiYuan, Ye Jian, 2014. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana. Virus Genes, 48(2), 402-405. http://link.springer.com/article/10.1007%2Fs11262-014-1034-3 doi: 10.1007/s11262-014-1034-3

Wang, H. L., Cui, X. Y., Wang, X. W., Liu, S. S., Zhang, Z. H., Zhou, X. P., 2016. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Disease, 100(5), 1029. http://apsjournals.apsnet.org/loi/pdis doi: 10.1094/PDIS-10-15-1228-PDN

Principal Source

Top of page

Draft datasheet under review.

Contributors

Top of page

07/03/18 Original text by:

Olufemi J Alabi, Department of Plant Pathology & Microbiology, Texas A&M University AgriLife Research & Extension Center, Weslaco, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map