Hylurgops palliatus (lesser spruce shoot beetle)
Index
- Pictures
- Identity
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- History of Introduction and Spread
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Symptoms
- List of Symptoms/Signs
- Biology and Ecology
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Plant Trade
- Wood Packaging
- Impact Summary
- Impact
- Impact: Biodiversity
- Detection and Inspection
- Prevention and Control
- References
- Links to Websites
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Hylurgops palliatus (Gyllenhal, 1813)
Preferred Common Name
- lesser spruce shoot beetle
Other Scientific Names
- Hylesinus abietiperda (Bechstein, 1818)
- Hylesinus fuscus Duftschmid, 1825
- Hylesinus helferi (Villa, 1835)
- Hylesinus marginatus Duftschmid, 1825
- Hylesinus palliatus Gyllenhal, 1813
- Hylesinus piceus (Marsham, 1802)
- Hylesinus rufescens (Stephens, 1830)
- Hylesinus rufus (Marsham, 1802)
- Hylurgops parvus Eggers, 1933
- Hylurgus rufescens Stephens, 1830
- Ips piceus Marsham, 1802
- Ips rufus Marsham, 1802
International Common Names
- English: shoot beetle
- Russian: fioletovyi luboed; malyi elovyi luboed; malyi fioletovyi luboed
Local Common Names
- Denmark: barkbille, bleg
- Estonia: väike-kõduürask
- Finland: vaippaniluri
- Germany: brauner fichtenbastkäfer; gelbbrauner fichtenbastkäfer
- Latvia: violetais skujkoku luksngrauzis
- Lithuania: eglinis karnagrauzis; violetinis karnagrauzis
- Norway: barkbille, blek
- Sweden: bleka bastborren
EPPO code
- HYLUPA (Hylurgops palliatus)
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Metazoa
- Phylum: Arthropoda
- Subphylum: Uniramia
- Class: Insecta
- Order: Coleoptera
- Family: Scolytidae
- Genus: Hylurgops
- Species: Hylurgops palliatus
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageDistribution
Top of pageDistribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 17 Dec 2021Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Algeria | Present | Native | |||||
Asia |
|||||||
China | Present | Native | |||||
Georgia | Present | Native | |||||
Japan | Present | Native | |||||
North Korea | Present | Native | |||||
South Korea | Present | Native | |||||
Turkey | Present | Native | |||||
Europe |
|||||||
Austria | Present | Native | |||||
Belarus | Present, Widespread | Native | |||||
Belgium | Present | Native | |||||
Bulgaria | Present | Native | |||||
Czechia | Present | Native | |||||
Czechoslovakia | Present | Native | |||||
Federal Republic of Yugoslavia | Present | Native | |||||
Denmark | Present | Native | |||||
Estonia | Present, Widespread | Native | |||||
Finland | Present, Widespread | Native | |||||
France | Present | Native | |||||
Germany | Present | Native | |||||
Hungary | Present | Native | |||||
Ireland | Present | Native | |||||
Italy | Present | Native | |||||
Latvia | Present, Widespread | Native | |||||
Lithuania | Present, Widespread | Native | |||||
Netherlands | Present | Native | |||||
Norway | Present, Widespread | Native | |||||
Poland | Present | Native | |||||
Romania | Present | Native | |||||
Russia | Present | Present based on regional distribution. | |||||
-Central Russia | Present, Widespread | Native | |||||
-Eastern Siberia | Present | Native | |||||
-Northern Russia | Present, Widespread | Native | |||||
-Russian Far East | Present | Native | |||||
-Southern Russia | Present | Native | |||||
-Western Siberia | Present | Native | |||||
Slovakia | Present | Native | |||||
Slovenia | Present | ||||||
Spain | Present | Native | |||||
Sweden | Present, Widespread | Native | |||||
Switzerland | Present | Native | |||||
Ukraine | Present | Native | |||||
United Kingdom | Present | Native | |||||
North America |
|||||||
United States | Present | Introduced | Invasive | ||||
-New York | Present | ||||||
-Ohio | Present | ||||||
-Pennsylvania | Present |
History of Introduction and Spread
Top of pageHosts/Species Affected
Top of pageInsect attack on logs from trees of 22 exotic conifer species in the genera Picea, Abies, Larix and Pseudotsuga was studied in Sweden. H. palliatus was among the most frequently found insect species (Eidmann, 1987). In southern Bohemia, Czech Republic observations were made in 11 species of Picea, Abies, Pinus, Larix, Pseudotsuga and Juniperus. H. palliatus was determined in trap logs from P. abies, Picea pungens, P. sylvestris and Pinus jeffreyi (Zumr, 1992).
Host Plants and Other Plants Affected
Top of pageSymptoms
Top of pageBiology and Ecology
Top of pageThe phenology and life cycle of H. palliatus were studied in Finland and Denmark (Nuorteva, 1956; Subansence, 1971). Ozols (1975), Lekander et al. (1977) and Rudnev and Vasechko (1988) provide data on its development in different regions.
Trees are infested in early spring. Studies were carried out in two forest areas in Denmark (Zealand and South Jutland) to determine the emergence dates and flight periods of H. palliatus. It was shown that the overwintered adults began to fly in April, when the maximum temperature reached approximately 6°C, and the peak of activity occurred in late April when the maximum temperatures were approximately 15-25°C (Subansence, 1971). Flight activity declined in June. The adults of the new generation emerged between July and November/December, with a peak in August. These adults flew little and overwintered near the sites in which they had developed. There was only one generation a year.
In Latvia, the swarming starts in mid-April (Ozols, 1975). In Finland it takes place in early May and the first eggs were observed in the mid-May (Nuorteva, 1956). In general, all development stages have been observed during quite a long period in the summer.
Reproductive Biology
The biology and ecology of H. palliatus is briefly reviewed by Escherich (1923), Stark (1952), Postner (1974), Lekander et al. (1977), Rudnev and Vasechko (1988), and Ehnström and Axelsson (2002). Wood and Bright (1992) gave several references relating to the biology, habitats and taxonomy of H. palliatus.
H. palliatus is a monogamous species. In central Scandinavia, H. palliatus flies from the end of April to the beginning of May (Lekander et al., 1977). The immature beetles seek the under-side of timber and branches cut in the winter and preferably those that are lying directly in contact with the ground. They make irregular galleries in the bark. Some weeks later the now mature beetles leave these galleries and look for suitable material in which to breed. The larvae mine in all directions without any evident pattern and they eventually consume the entire phloem in localized areas of heavy infestation. They pupate in late July and the new generation emerges in August. Generally, H. palliatus hibernates in the bark in association with the gallery systems but more occasionally in stump roots or litter. Generally, there is one generation annually. In the Ukraine, a sister generation may be produced or a second generation occurs, and hibernation as a larva is also possible (Rudnev and Vasechko, 1988).
The egg galleries are usually longitudinal and 2-5 cm long. According to Nuorteva (1956), the mean number of eggs in egg galleries was 37; the biggest number of eggs was observed in the relatively short egg galleries: 2.7 cm - 63 eggs, 2.2 cm - 62 eggs and 2.2 cm - 39 eggs.
Environmental Requirements
H. palliatus is a typically secondary species (Escherich, 1923). It generally reproduces in dead or dying trees. Chararas (1959) studied osmotic pressures in the bark, wood and needles of branches of Pinus sylvestris and Picea abies. For both species, low pressures were associated with heavy attacks by Scolytidae. Measurements on a large number of samples showed that H. palliatus attacked branches only when bark pressures were in the range 3-5 atm, i.e. in dying trees.
H. palliatus infests the bases and roots of dying trees and stumps. It prefers logs cut during the autumn of the previous year to newly cut logs (Schroeder, 1991). This type of older breeding material may release relatively high amounts of ethanol produced in deteriorating tree tissue, whereas monoterpenes are probably released in lower amounts compared with the amounts released from newly felled or broken trees. Schroeder (1992) also studied the field response of H. palliatus to the attractant ethanol in combination with volatile wood constituents released from the non-host tree species Populus tremula and Betula pendula. The attraction of the species decreased when aspen or birch wood was added to the ethanol bait.
The sections close to the roots and parts of bark lying on the soil surface or partially covered with soil were attacked by H. palliatus. It occurs mainly on the under-side of timber, branches and other logging waste. Also the lower part (up to about 2 m) of standing, dying or dead trees, and occasionally stumps and roots, will be attacked. It seems to prefer high humidity in the bark and often occurs with Trypodendron lineatum (striped ambrosia beetle) (Ozols, 1975; Lekander et al., 1977; Koch, 1992; Jakus, 1998).
In Sweden, the attacks of bark beetles on broken conifer stems after severe snow-breakage in early 1988 were studied in autumn 1988 and 1989 (Schroeder and Eidmann, 1993). H. palliatus was frequently encountered on spruce and pine stumps in the second year following snow-breakage, whereas on spruce stumps it also occurred in the first year (Schroeder and Eidmann, 1993).
The attack density and breeding success of the bark beetles and the abundance of their predators were studied at forest-clearcut edges in southern Finland on Picea abies (Norway spruce) (Peltonen and Heliövaara, 1999). Attack densities of H. palliatus increased markedly towards the forest interior. The breeding success of H. palliatus was increased with increasing distance from the stand edge.
Attacks of bark and wood-boring beetles on mechanically created high stumps of P. abies were studied in central Sweden. H. palliatus was among the most frequently encountered species on the stumps. A negative relationship was found between stump diameter and H. palliatus occupancy (Schroeder et al., 1999).
Associations
Wingfield and Gibbs (1991) studied the blue-stain fungi associated with H. palliatus. Isolations for blue-stain fungi were made from Hylastes ater, Hylastes opacus, H. palliatus and Tomicus piniperda trapped in Pinus sylvestris billets. Five Leptographium spp. including one of unknown identity and two, apparently undescribed Graphium spp., were isolated. Leptographium procerum, Leptographium serpens [Ophiostoma serpens] and Leptographium wingfieldii were recorded for the first time in the UK. Leptographium lundbergii had previously been found in this country.
A dark stain penetrating only shallowly into the sap wood develops round the gallery and is most often caused by Ophiostoma penicillatum (Lekander et al., 1977).
In Germany, a new species of the hyphomycete genus Phialocephala, Phialocephala trigonospora, was isolated from conifericolous bark beetles (Dryocoetes autographus, H. palliatus, Ips typographus and Orthotomicus laricis) and their galleries in the bark of Pinus sylvestris and P. abies (Kirschner and Oberwinkler, 1998).
During a survey of fungi associated with bark beetles (Crypturgus cinereus, Crypturgus pusillus, D. autographus, H. palliatus, I. typographus, Pityogenes chalcographus and Trypodendron lineatum) in Germany, an undescribed species of Ophiostoma was isolated. This differs from the other species of the genus by having pigmented, aseptate, convergent ostiolar hyphae; cucullate, sheathed ascospores; and is a Hyalorhinocladiella anamorph. The species is described as Ophiostoma neglectum. It is rarely associated with primary bark beetles but often associated with secondary bark beetles mainly infesting P. abies (Kirschner and Oberwinkler, 1999b).
Diplocladium gregarium was described almost 100 years ago. It was recent rediscovered from bark beetle (C. pusillus, D. autographus, H. palliatus, I. typographus and Orthotomicus laricis) galleries in the bark of P. abies and Pinus sylvestris in Germany. The fungus was redescribed and a new genus (Cylindrocarpostylus) was proposed to accommodate it (Kirschner and Oberwinkler, 1999a).
A previously unknown heterobasidiomycetous fungus was isolated from the galleries of H. palliatus, collected from P. abies in Germany. It is described as Atractocolax pulvinatus gen. et sp. nov. (Kirschner et al., 1999).
Several species of bark beetles may carry dauer larvae of nematodes. H. palliatus proved to be a vector of dauer larvae of Bursaphelenchus poligraphi, Bursaphelenchus eggersi and Bursaphelenchus sexdentati in Germany (Braasch et al., 1999).
Kakulia et al. (1973) studied the nematode fauna of H. palliatus in the Former Republic of Georgia. Parasitorhabditis palliati, Cryptaphelenchus cryptus, B. eggersi, Mikoletzkya palliati, Panagrolaimus fuchsi and Cephalobus persegnis were found in H. palliatus and its frass on Picea orientalis in the Borzhomy and Khashuri districts of Georgia.
Crypturgus cinereus was found in the galleries of H. palliatus (Michalski and Mazur, 1999).
In Finland, H. palliatus was among the most abundant bark beetle species in a dead Norway spruce stand flooded by beavers (Castor canadensis) (Saarenmaa, 1978).
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Corticeus fraxini | Predator | Arthropods|Larvae; Arthropods|Pupae | ||||
Corticeus pini | Predator | Arthropods|Larvae; Arthropods|Pupae | ||||
Dendrosoter middendorffii | Parasite | Arthropods|Larvae | ||||
Dinotiscus eupterus | Parasite | Arthropods|Larvae | ||||
Epuraea marseuli | Predator | |||||
Epuraea unicolour | Predator | |||||
Eurytoma arctica | Parasite | Arthropods|Larvae | ||||
Glischrochilus quadripunctatus | Predator | |||||
Nudobius lentus | Predator | Eggs; Arthropods|Larvae; Arthropods|Pupae | ||||
Paromalus parallelepipedus | Predator | Eggs; Arthropods|Larvae | ||||
Plegaderus vulneratus | Predator | Eggs; Arthropods|Larvae; Arthropods|Pupae | ||||
Rhizophagus depressus | Predator | |||||
Rhizophagus parvulus | Predator | |||||
Rhopalicus tutela | Parasite | Arthropods|Larvae | ||||
Scoloposcelis pulchella | Predator | |||||
Scutacarus scolyti |
Notes on Natural Enemies
Top of pageNuorteva (1959) discusses systematics, biology, and bark beetle associations (for example) of five Medetera species found in Finland. From the mean numbers of Medetera larvae found per breeding gallery of H. palliatus (1.75), beetle larvae destroyed by fly larvae in feeding tests (7) and eggs of H. palliatus per breeding gallery (38), it is estimated that Medetera larvae destroyed approximately one-third of the H. palliatus larvae.
In a spruce forest near Aarau, Switzerland. web-building spiders were observed as predators of H. palliatus (Moor and Nyffeler, 1983). A small erigonid spider, Troxochrus nasutus was observed feeding on H. palliatus and Pityogenes chalcographus bark beetles (Moor and Nyffeler, 1984).
Protozoa as pathogens of some species of bark beetles were studied in Germany (Purrini, 1978, 1980). A list of the 16 species of Protozoa that are known as pathogenic to scolytids is given, together with their hosts, spore size and the names of their collectors. H. palliatus was found to be infected by Nosema cf. typographi in Upper Bavaria (Purrini, 1978). Trophozoites and cysts of Malamoeba scolyti n.sp. (Amoebidae, Rhizopoda, Protozoa) were found in the Malpighian tubules of 14% of H. palliatus collected from spruce stands in Lower Saxony, Germany (Purrini, 1980). Only the pupae and adult beetles were infected.
Means of Movement and Dispersal
Top of pagePlant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Bark | arthropods/adults; arthropods/eggs; arthropods/larvae; arthropods/pupae | Yes | Pest or symptoms usually visible to the naked eye | |
Stems (above ground)/Shoots/Trunks/Branches | arthropods/adults; arthropods/eggs; arthropods/larvae; arthropods/pupae | Yes | Pest or symptoms usually visible to the naked eye |
Plant parts not known to carry the pest in trade/transport |
---|
Bulbs/Tubers/Corms/Rhizomes |
Flowers/Inflorescences/Cones/Calyx |
Fruits (inc. pods) |
Growing medium accompanying plants |
Leaves |
Roots |
Seedlings/Micropropagated plants |
True seeds (inc. grain) |
Wood |
Wood Packaging
Top of pageWood Packaging liable to carry the pest in trade/transport | Timber type | Used as packing |
---|---|---|
Solid wood packing material with bark | Conifers | No |
Wood Packaging not known to carry the pest in trade/transport |
---|
Loose wood packing material |
Non-wood |
Processed or treated wood |
Solid wood packing material without bark |
Impact Summary
Top of pageCategory | Impact |
---|---|
Animal/plant collections | None |
Animal/plant products | None |
Biodiversity (generally) | Positive |
Crop production | None |
Environment (generally) | None |
Fisheries / aquaculture | None |
Forestry production | None |
Human health | None |
Livestock production | None |
Native fauna | None |
Native flora | None |
Rare/protected species | None |
Tourism | None |
Trade/international relations | None |
Transport/travel | None |
Impact
Top of pageImpact: Biodiversity
Top of pageInvestigations carried out in Germany have shown that Picea abies stems harvested by modern harvesters are unsuitable for successful colonization by the most important bark beetles (Ips typographus or Pityogenes chalcographus). This is because they have already been attacked by the early-swarming H. palliatus which presents no danger, and because their bark rapidly loses its physiological suitability for the dangerous species (Watzek and Niemeyer, 1996).
Detection and Inspection
Top of pagePerttunen (1957) investigated the reactions of H. palliatus to different concentrations of alpha-pinene in the laboratory. H. palliatus was strongly repelled by the higher and slightly by the lower concentration.
Scolytids normally living in spruce, or in spruce as well as in pine, were mostly attracted to stored spruce wood. Even though fresh wood attracted many H. palliatus, stored wood was generally the more attractive host material for this species (Lindelöw et al., 1992). Chemical analyses of the wood samples revealed differences in the composition of volatile constituents between stored and fresh spruce wood. Samples from stored tree stems showed a considerable increase in the relative amounts of two volatile constituents during storage. These constituents have been identified as ethanol and acetaldehyde using gas chromatography (Sjödin et al., 1989). Ethanol was found in different relative amounts in injured trees but not in healthy trees. Ethanol and acetaldehyde are also produced in stressed trees (Kimmerer and Kozlowski, 1982).
H. palliatus was attracted to traps containing ethanol as a bait and spruce resin acted synergistically (Kohnle, 1985). Schroeder (1988) also found that H. palliatus was attracted by ethanol. Combinations of alpha-pinene and ethanol attracted high numbers of H. palliatus and the catches increased with increasing release rates of ethanol.
According to Volz (1988), who studied host selection in the bark beetles under field conditions, H. palliatus preferred flight barrier traps baited with ethanol and oleoresin from their favoured host, Picea abies, compared to traps baited with ethanol and various monoterpenes. However, the replacement of host-specific oleoresin with beta-pinene and the pine characteristic terpinolene enhanced trap catches of the species. The response of H. palliatus increased with myrtenol, but decreased with transverbenol.
Byers (1992) confirmed that a monoterpene mix containing (±)-a-pinene, (+)-3-carene and terpinolene plus ethanol was significantly more attractive to H. palliatus than ethanol alone. The baiting of pipe traps with a series of short-chain alcohols (methanol to hexanol) showed that ethanol was greatly preferred by H. palliatus but sometimes it was attracted to propanol. No insects were caught on butanol, pentanol, hexanol, ethylene glycol or unbaited pipe traps (Byers, 1992).
Schroeder and Lindelöw (1989) studied the attraction of scolytids and associated beetles by using different absolute amounts and proportions of alpha-pinene and ethanol in field experiments with flight barrier traps. Traps baited with both alpha-pinene alone and ethanol alone caught significantly higher numbers than unbaited traps of H. palliatus. However, H. palliatus was not attracted as strongly to alpha-pinene alone as Tomicus piniperda was but it was synergistically attracted to combinations of alpha-pinene and ethanol (Schroeder, 1991). Combinations of alpha-pinene and ethanol resulted in a synergistically increased attraction of this species. The effect of synergism was strongest when the release rate of ethanol was ten times higher than that of alpha-pinene.
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
H. palliatus is typically a secondary species and does not need any control measures.References
Top of pageBright DE; Skidmore RE, 2002. A catalogue of Scolytidae and Platypodidae (Coleoptera), Supplement 2 (1995-1999). Ottawa, Canada: NRC Research Press, 523 pp.
Burakowski B; Mroczkowski M; Stefanska J, 1992. Volume 18, Part XXIII. Beetles - Coleoptera. Curculionoidea apart from Curculionidae. Katalog Fauny Polski, 23(18):324 pp.; many ref.
Chararas C, 1959. Variations of osmotic pressure in conifers, as a factor determining penetration by Scolytidae. Comptes Rendus Hebdomadaires des Siances de I'Acadgmie des Sciences, Paris, 249(9):(1407-1410).
Ehnström B; Axelsson R, 2002. Insekts gnag i bark och ved. Uppsala, Sweden: ArtDatabanken, SLU.
Escherich K, 1923. Die Forstinsekten Mitteleuropas II. Berlin, Germany: Paul Parey, 1-663.
Freude H; Harde KW; Lohse GA, 1981. Die Käfer Mitteleuropas. Vol. 10. Krefeld, Germany: Goecke & Evers.
Grüne S, 1979. Handbuch zur bestimmung der Europäischen Borkenkäfer (Brief illustrated key to European bark beetles). Hannover, Germany: Verlag M & H Schapfer.
Haack RA, 2002. Intercepted bark beetles (Scolytidae) at US ports of entry: 1985-2000. In: Proceedings US Department of Agriculture interagency research forum on Gypsy moth and other invasive species. USDA Northeastern Research Station, General Technical Report NE-300, 33.
Kakulia GA; Maglakelidze LK; Kakuliya GA, 1973. Nematode fauna of Hylurgops palliatus in the Georgian SSR. Parazitologicheskii Sbornik. Tbilisi, 3:76-78.
Kobakhidze DN; Murusidze BV; Zharkov DG; Nizharadze TG; Imnadze TS; Kobakhidze TD; Dzhavelidze IG; Mirianashvili VV, 1973. Sbornik nauchnyh rabot po izucheniyu bolshogo elovogo luboeda v Gruzii. [Materials on the investigation of bioecology of the great spruce beetle (Dendroctonus micans Kugel.) in Georgia]. Tbilisi, 1:7-27.
Koch K, 1992. Die Käfer Mitteleuropas. Ökologie, vol. 3. Krefeld, Germany: Goecke & Evers.
Kolomiets NG; Bogdanova DA, 1980. Parazity i chishchniki ksilofagov Sibiri. Novosibirsk, USSR: Izdatelstvo "Nauka", Sibirskoe Otdelenie.
Mamaev BM, 1985. Stem pests in the forests of Siberia and Far East. Moscow: Agropromizdat.
Michalski J; Mazur A, 1999. Korniki. Praktyczny przewodnik dla lesnikow. Wydawnictwo Swiat, Warszawa, 188 pp.
Moor H; Nyffeler M, 1984. Eine borkenkäferfressende Spinne, Troxochrus nasutus Schenkel (Araneae, Erigonidae). [A bark beetle-eating spider, Troxochrus nasutus Schenkel (Araneae, Erigonidae)]. Faunistisch-ökologische Mitteilungen. Neumünster, 5(9-10):193-197.
Nuorteva M, 1956. Über den Fichtenstamm-Bastkäfer, Hylurgops palliatus Gyll., und seine Insektenfeinde. Acta Entomologica Fennica, 13:1-118.
Nuorteva M, 1959. Untersuchungen über einige in den Frassbildern der Borkenkäfer lebende Medetera-Arten (Dipt., Dolichopodidae). [Some Medetera species living in the galleries of bark-beetles]. Annales Entomologici Fennici, 25(4):193-210.
Õunap H, 2001. Insect predators and parasitoids of bark beetles (Coleoptera, Scolytidae) in Estonia. Dissertationes Scientiarum Naturalium Universitatis Agriculturae Estoniae, 8:1-44, ISBN 9985-882-96-2.
Ozols G, 1982. Investigation of the fauna of dendrophagous beetles of pine and spruce in the Latvian SSR. Latvijas Entomologs, 25:20-36.
Ozols GE, 1975. Bark beetles (Col., Scolytidae) of spruce in the Latvian SSR. In: Liepa I et al., eds. Spruce and spuce stands of Latvia, Riga, Latvia: Zinatne, 140-145.
Perttunen V, 1957. Reactions of two bark beetle species, Hylurgops palliatus Gyll. and Hylastes ater Payk. (Col., Scolytidae) to the terpene alpha-pinene. Annales Entomologici Fennici, 23(2):101-110.
Pileckis S, 1976. Lietuvos vabalai. Vilnius, Lithuania: Mokslas.
Pileckis S; Monsevicius V, 1997. Lietuvos fauna. Vabalai 2. Mokslo ir enciklopediju leidybos institutas, Vilnius, 216 pp.
Postner M, 1974. Scolytidae (= Ipidae), Borkenkäfer. In: Schwenke W, ed. Die Forstschadlinge Europas. Vol. 2. Hamburg, Berlin, Germany: Parey, 334-482.
Rudnev DF; Vasechko GI, 1988. Bark beetles - Ipidae. In: Vasilyev VP, ed. Pests of Agricultural Crops and Forest Plantations Vol. 2. Kiev, Ukraine: Urozhai, 146-182.
Saarenmaa H, 1978. The occurrence of bark beetles (Scolytidae) in a dead Norway spruce stand flooded by beavers (Castor canadensis Kuhl). Silva Fennica, 12(3):201-216.
Schroeder LM, 1991. Attraction of some scolytids and associated beetles to the host volatiles (-pinene and ethanol. In: Baranchikov YN, Mattson WJ, Hain FP, Payne TL, eds. Forest insect guilds: patterns of interaction with host trees, USDA Forestry Service General Technical Report, NE-153, 393-394.
Simionescu A, 1993. The health of the forests of Bucovina during the years 1955-1991. Bucovina Forestiera, 1(1-2):18-32.
Sjödin K; Schroeder LM, Eidmann HH et al. , 1989. Attack rates of scolytids and composition of volatile wood constituents in healthy and mechanically weakened pine trees. Scandinavian Journal of Forestry Research, 4:379-391.
Solodovnikov IA, 1999. Catalogue of Coleoptera (Insecta) of Belarussian Poozerye. Vitebsk.
Tomic D, 1957. Potkornjaci sumskog rezervata planine Golije u 1953 godini. [Bark beetles in the forest reserve on Mt. Golija in 1953]. Sumarstvo, 10(3/4):207-210.
Voolma K; sunap H; Süda I, 2000. Scolytidae. Distribution maps of Estonian insects, 2. Tartu.
Wood SL; Bright DE, 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. Great Basin Naturalist Memoirs, 13: 1-1553.
Yanovskij VM, 1999. Annotated list of scolytids (Coleoptera, Scolytidae) of North Asia. Entomologicheskoe Obozrenie, 78(2):327-362.
Zolk K, 1932. Kodumaa ürasklased (Ipidae) ühes lühikese ülevaatega nende bionoomiast ja levimisest Eestis. [Die Borkenkäfer (Ipidae) Estlands mit kurzer Berücksichtigung ihrer Bionomie und Verbreitung]. Eesti Metsanduse Aastaraamat, 6. Tartu, 127-176.
Distribution References
Bright DE, Skidmore RE, 2002. A catalogue of Scolytidae and Platypodidae (Coleoptera), Supplement 2 (1995-1999)., Ottawa, Canada: NRC Research Press. 523 pp.
CABI, Undated. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Haack RA, 2002. Intercepted bark beetles (Scolytidae) at US ports of entry: 1985-2000. [Proceedings US Department of Agriculture interagency research forum on Gypsy moth and other invasive species], USDA Northeastern Research Station, General Technical Report NE-300. 33.
Kobakhidze DN, Murusidze BV, Zharkov DG, Nizharadze TG, Imnadze TS, Kobakhidze TD, Dzhavelidze IG, Mirianashvili VV, 1973. Materials on the investigation of bioecology of the great spruce beetle (Dendroctonus micans Kugel.) in Georgia. (Sbornik nauchnyh rabot po izucheniyu bolshogo elovogo luboeda v Gruzii). In: Tbilisi, 1 7-27.
Mamaev BM, 1985. Stem pests in the forests of Siberia and Far East., Moscow, Agropromizdat.
Ozols G, 1982. Investigation of the fauna of dendrophagous beetles of pine and spruce in the Latvian SSR. In: Latvijas Entomologs, 25 20-36.
Ozols GE, 1975. Bark beetles (Col., Scolytidae) of spruce in the Latvian SSR. In: Spruce and spuce stands of Latvia, [ed. by Liepa I et al]. Riga, Latvia: Zinatne. 140-145.
Pileckis S, Monsevicius V, 1997. (Lietuvos fauna. Vabalai 2)., Vilnius, Mokslo ir enciklopediju leidybos institutas. 216 pp.
Rudnev DF, Vasechko GI, 1988. Bark beetles - Ipidae. In: Pests of Agricultural Crops and Forest Plantations, 2 [ed. by Vasilyev VP]. Kiev, Ukraine: Urozhai. 146-182.
Simionescu A, 1993. The health of the forests of Bucovina during the years 1955-1991. In: Bucovina Forestiera, 1 (1-2) 18-32.
Solodovnikov IA, 1999. Catalogue of Coleoptera (Insecta) of Belarussian Poozerye., Vitebsk,
Voolma K, Sunap H, Süda I, 2000. Scolytidae. In: Distribution maps of Estonian insects, 2 Tartu,
Wood SL, Bright DE, 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. In: Great Basin Naturalist Memoirs, 13 1-1553.
Yanovskij VM, 1999. Annotated list of scolytids (Coleoptera, Scolytidae) of North Asia. In: Entomologicheskoe Obozrenie, 78 (2) 327-362.
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway | https://doi.org/10.5061/dryad.m93f6 | Data source for updated system data added to species habitat list. |
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/