Hylastes ater (black pine bark beetle)
Index
- Pictures
- Identity
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- Risk of Introduction
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Growth Stages
- List of Symptoms/Signs
- Biology and Ecology
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Plant Trade
- Wood Packaging
- Impact
- Environmental Impact
- Detection and Inspection
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Hylastes ater (Paykull, 1800)
Preferred Common Name
- black pine bark beetle
Other Scientific Names
- Bostrichus ater Paykull, 1800
- Hylesinus chloropus Duftschmidt, 1825
- Tomicus pinicola Bedel, 1888
International Common Names
- English: bark beetle, black pine
- French: hylesine noir du pin
Local Common Names
- Denmark: rodbille, fyrrens
- Finland: ruskoniluri
- Germany: Bastkaefer, Schwarzer Kiefern-; Schwarzer Kiefernbastkär
- Italy: ilaste nero dei pini
- Japan: matsuno-kuro-kikuimushi
- Netherlands: Dennebastkever, zwarte; zwarte dennebastkever
- Norway: fururotbille
- Sweden: tallbastborre, Svart
EPPO code
- HYASAR (Hylastes ater)
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Metazoa
- Phylum: Arthropoda
- Subphylum: Uniramia
- Class: Insecta
- Order: Coleoptera
- Family: Curculionidae
- Genus: Hylastes
- Species: Hylastes ater
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageThe larvae are of a typical scolytine form. For a detailed description see Lekander (1968) and Beaver (1970).
The pupa is soft, yellowish-white and exarate, with two conspicuous caudal processes on the ninth abdominal segment. Spines are conspicuous on the head, pronotum and abdomen (Clark, 1932).
There are about 30 species of Hylastes that are native to the Holarctic region and they are all superficially quite similar. See Wood (1982) for a generic description of the adults. Hylastes is closely related to Hylurgops but can be distinguished by having narrower, emarginated third tarsal segments. In Hylurgops these segments are broader and bilobed, and the pronotum is usually anteriorly constricted.
H. ater adults are 3.5-4.5 mm long and black (light-brown when teneral). The pronotum is strongly elongate and parallel-sided for the basal half with a median, impunctate, conspicuous ridge. The elytral interstices are dull and microscopically reticulate between the punctures.
Distribution
Top of pageDistribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 10 Feb 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Asia |
|||||||
China | Present | Present based on regional distribution. | |||||
-Fujian | Present | Native | |||||
-Heilongjiang | Present | Native | |||||
Japan | Present | Native | |||||
North Korea | Present | ||||||
South Korea | Present | ||||||
Turkey | Present | Native | |||||
Europe |
|||||||
Austria | Present | Native | |||||
Belgium | Present | Native | |||||
Bulgaria | Present | Native | |||||
Cyprus | Present | Native | |||||
Czechoslovakia | Present | Native | |||||
Federal Republic of Yugoslavia | Present | Native | |||||
Denmark | Present | Native | |||||
Estonia | Present | Native | |||||
Finland | Present | Native | |||||
France | Present | Native | |||||
-Corsica | Present | ||||||
Germany | Present | Native | |||||
Greece | Present | Native | |||||
Italy | Present | Native | |||||
Latvia | Present | Native | |||||
Lithuania | Present | Native | |||||
Netherlands | Present | Native | |||||
Norway | Present | Native | |||||
Poland | Present | Native | |||||
Portugal | Present | Native | |||||
-Azores | Present | Native | |||||
Russia | Present | Native | |||||
Spain | Present | Native | |||||
Sweden | Present | Native | |||||
Switzerland | Present | Native | |||||
United Kingdom | Present | Native | |||||
North America |
|||||||
Greenland | Present | ||||||
Oceania |
|||||||
Australia | Present | Present based on regional distribution. | |||||
-New South Wales | Present | Introduced | |||||
-Queensland | Present | Introduced | |||||
-South Australia | Present | Introduced | |||||
-Tasmania | Present | Introduced | |||||
-Victoria | Present | Introduced | |||||
New Zealand | Present | Introduced | 1929 | ||||
South America |
|||||||
Chile | Present | Introduced | 1981 |
Risk of Introduction
Top of pageHosts/Species Affected
Top of pageHost Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Abies alba (silver fir) | Pinaceae | Main | |
Araucaria cunninghamii (colonial pine) | Araucariaceae | Main | |
Chamaecyparis lawsoniana (Port Orford cedar) | Cupressaceae | Main | |
Larix decidua (common larch) | Pinaceae | Main | |
Picea sitchensis (Sitka spruce) | Pinaceae | Main | |
Pinus cembra (arolla pine) | Pinaceae | Main | |
Pinus densiflora (Japanese umbrella pine) | Pinaceae | Main | |
Pinus muricata (bishop pine) | Pinaceae | Main | |
Pinus nigra (black pine) | Pinaceae | Main | |
Pinus pinaster (maritime pine) | Pinaceae | Main | |
Pinus pinea (stone pine) | Pinaceae | Main | |
Pinus pumila (Dwarf Siberian pine) | Pinaceae | Main | |
Pinus radiata (radiata pine) | Pinaceae | Main | |
Pinus strobus (eastern white pine) | Pinaceae | Main | |
Pinus sylvestris (Scots pine) | Pinaceae | Main | |
Pinus taeda (loblolly pine) | Pinaceae | Main | |
Pinus uncinata (mountain pine) | Pinaceae | Main | |
Pseudotsuga menziesii (Douglas-fir) | Pinaceae | Main | |
Sequoia sempervirens (coast redwood) | Taxodiaceae | Main | |
Thuja sp. (thuja) | Cupressaceae | Main |
List of Symptoms/Signs
Top of pageSign | Life Stages | Type |
---|---|---|
Growing point / dieback | ||
Growing point / discoloration | ||
Roots / external feeding | ||
Stems / external feeding | ||
Stems / gummosis or resinosis | ||
Whole plant / external feeding | ||
Whole plant / plant dead; dieback |
Biology and Ecology
Top of pageThe brood galleries may be initiated in any month of the year. Each gallery that is initiated by the female consists of a short entrance tunnel leading to an oblique nuptial chamber from which issues a single egg gallery. This is 80-130 mm long and usually parallel with the grain of the wood. These brood galleries reach, but do not engrave, the surface of the sapwood. The male is usually in the nuptial chamber, close to the entrance and the female is further in towards the egg gallery, but in some chambers the male may be absent. Approximately 100 eggs are laid in individual notches that the female cuts in the lateral walls of the egg gallery. The females may sometimes leave the first egg gallery and start a second one elsewhere. The males may assist with the gallery construction, at least by pushing out frass from the entrance and sometimes making short feeding tunnels that extend from the nuptial chamber. The success of brood galleries in the absence of the males suggests that their part in establishing the galleries is only minor. The larvae initially make feeding tunnels at right angles to the maternal gallery, but these are later randomly directed and eventually obliterate both the early larval tunnels and those made by the parent adults. There are four larval instars and the rate of development of the feeding larvae appears to depend on seasonal temperatures. Emergence does not immediately follow eclosion of the adults but the length of the delay has not been investigated. Some adults feed in the material in which they were reared but the majority emerge and feed in fresh material where groups of approximately 40 feeding adults are found in communal galleries (Milligan, 1978).
In Canterbury, New Zealand the development from egg to adult can take from 60 to 300 days. The duration of development is least when the eggs are laid at the end of January and the beginning of February, and greatest when they are laid in approximately the second week of March. These later broods overwinter as mature larvae and appear to be subject to diapause so that they do not pupate until late December. Variations in the rate of development of both feeding and non-feeding larvae cause the adults from both the fast-developing and slow-developing broods to appear in January (Milligan, 1978).
There are two or three overlapping broods of H. ater per year in New Zealand (Clark, 1932) and Munro (1917) reported two in Scotland. Milligan (1978) noted that in September to October and in April to May swarming flights of H. ater occur in New Zealand. These do not coincide with the times when the greatest numbers reach the adult stage and probably involve many beetles that have been feeding for some time. What initiates this swarming, or what purpose it serves, is not understood. It has been suggested that it is associated with the local depletion of host material but this would not seem to apply in those forests where felling continues throughout the year (Milligan, 1978).
Reay and Walsh (2001) discuss the results of a trapping programme, which indicate that H. ater is now univoltine in New Zealand. They hypothesize that this has happened since Hylurgus ligniperda (another northern hemisphere scolytine) established in New Zealand in 1974. The trapping programme used raw turpentine in Lindgren funnel traps as the attractant and this must make the results of the programme open to question because Reay and Walsh (2002a) reported that raw turpentine performed no better as an attractant than a control.
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Parasitylenchus hylastis | Parasite | Adults; Arthropods|Larvae; Arthropods|Pupae | ||||
Rhizophagus bipustulatus | Predator | New Zealand | Pinus | |||
Rhizophagus dispar | Predator | New Zealand | Pinus | |||
Rhizophagus ferrugineus | Predator | New Zealand | Pinus | |||
Rhopalicus tutele | Parasite | New Zealand | Pinus | |||
Thanasimus formicarius | Predator | Adults; Arthropods|Larvae | New Zealand | Pinus |
Notes on Natural Enemies
Top of pageIn 1976, the adults and larvae of Thanasimus formicarius were imported into New Zealand from Austria. The adults were successfully reared, and between 1977 and 1987 over 12,000 adults were released in numerous pine plantations. The first recoveries were made in 1984 (Faulds, 1989).
Rhopalicus tutele and Dinotiscus eupterus may be parasitic on H. ater in Europe. In 1975, numbers of both of these species were shipped to New Zealand from Austria as potential biological control agents. They were reared from logs from which H. ater constituted less than 1.7% of emerging bark beetles compared with over 90% for Hylurgops palliatus (Faulds, 1989).
Ten species of nematodes (Allantonema morosa, Parasitylenchus kleini, Contortylenchus cunicularii, Neoditylenchus panurgus, Cryptaphelenchus koerneri, Ektaphelenchus hylastophilus, Parasitaphelenchus uncinatus, Parasitylenchus hylastis, Micoletzkya thalenhorsti and Parasitorhabditis ateri) are associated with H. ater in Europe. Except for P. hylastis, the nature of the relationships with H. ater is unknown and it may be just phoretic. Three of these species: P. hylastis, M. thalenhorsti and P. ateri have also been found in New Zealand as has Bursaphelenchus eggersi which is not associated with H. ater in Europe but is found with Hylurgops palliatus. Anguilluloides zondagi has also been found associated with H. ater in New Zealand (Dale, 1967).
Means of Movement and Dispersal
Top of pagePlant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Roots | arthropods/adults; arthropods/eggs; arthropods/larvae; arthropods/pupae | Yes | Pest or symptoms usually visible to the naked eye | |
Seedlings/Micropropagated plants | arthropods/adults | Yes | Pest or symptoms usually visible to the naked eye | |
Stems (above ground)/Shoots/Trunks/Branches | arthropods/adults; arthropods/eggs; arthropods/larvae; arthropods/pupae | Yes | Pest or symptoms usually visible to the naked eye |
Wood Packaging
Top of pageWood Packaging liable to carry the pest in trade/transport | Timber type | Used as packing |
---|---|---|
Solid wood packing material with bark | Conifers, mainly Pinus spp. | No |
Wood Packaging not known to carry the pest in trade/transport |
---|
Loose wood packing material |
Non-wood |
Processed or treated wood |
Solid wood packing material without bark |
Impact
Top of pageNeumann (1979) stated that the damage is sometimes severe on nursery stock and young plantings in Australia but Elliott et al. (1998) noted that it is a relatively minor pest of Pinus spp., particularly Pinus radiata. However, Elliott also noted that in the early 1990s, 770 ha of second rotation P. radiata in Tasmania sustained numerous deaths of young seedlings.
Ciesla (1988) reported that up to 70% of pine seedlings in some areas of Chile have died as a result of H. ater attack.
Zondag (1965) reported that H. ater was the most troublesome insect in P. radiata regeneration in New Zealand and recorded over 50% mortality but with the qualification that it was only significant in poorly stocked areas. This implies that he was referring to natural regeneration and not planted areas. Clark (1932) reported that it caused severe loss in a young pine stand that had been re-established after logging operations.
Reay et al. (2001) discussed seedling mortality surveys that had been conducted within 1 year following planting in the central North Island of New Zealand. Seedling mortality in most forest compartments was less than 5% but was as high as 30% in a few compartments. The destructive sampling of seedlings showed that there was a high level of sub-lethal attack on seedlings, it was greater than 50% in two-thirds of the compartments sampled. Similar results were reported from a trial in the South Island of New Zealand much earlier, where 82% of seedlings had superficial resin-encrusted wounds on the stem base and larger roots (New Zealand Forest Service, 1970). Obviously the sub-lethal or abortive attack on seedlings is very common and it would seem that the presence of feeding damage or the beetles themselves on dead seedlings is not conclusive evidence of cause and effect. Milligan (1978) suggested that in general healthy seedlings do not succumb to adult feeding and that those seedlings that do die are in some way debilitated or weakened by environmental factors such as extreme climatic conditions and poorly aerated soils. Several writers have observed that the quality of nursery stock and its treatment prior to and during planting, affect its susceptibility to damage by H. ater (e.g. Munro, 1917; Clark, 1932).
Reay et al. (2001) suggested that there might be ramifications from the adult feeding on seedlings on future wood quality because it is known that the beetles can carry sapstain fungi to seedlings. The following species of sapstain fungi have been isolated from H. ater in New Zealand: Ophiostoma ips, Ophiostoma setosum, Ophiostoma querci, Ophiostoma huntii, Ophiostoma galeiformis, Ophiostoma pluriannulatum, Leptographium truncatum and Leptographium procerum. The following fungi have been isolated from surface-sterilized seedlings following attack by H. ater: O. galeiformis, O. huntii, O. setosum, O. querci, Ophiostoma floccosum, Ophiostoma piceae, L. procerum and L. truncatum (MacKenzie, 1992; Reay et al., 2001). It would be of interest to know what species of fungi could be isolated from seedlings that have not been attacked by H. ater. Clearly more work is warranted.
Pasek (1998) suggested that there is the potential for H. ater to vector root diseases associated with intensive management. In England, several species of sapstain fungi can be consistently isolated from brood galleries of H. ater. These include Ophiostoma coerulescens, Ophiostoma penicillata (Dowding, 1973), Leptographium serpens and Leptographium sp. (Wingfield and Gibbs, 1991).
In New Zealand, infested logs are either refused for export or must be treated (usually by fumigation) immediately before shipping. Green sawn timber for export may also have to be treated (fumigation or kiln sterilization) if the adults that have been attracted to the freshly sawn wood are present. Sapstain fungi are transmitted by the beetles to the outer sapwood of logs but rarely significantly penetrate unless there is abnormal delay between felling and sawing (Milligan, 1978).
Environmental Impact
Top of pageDetection and Inspection
Top of pageRemoval of the bark from stumps, larger roots, logs and sawn timber will reveal the presence of insects under the bark.
Reay and Walsh (2002a) have shown that H. ater is attracted to raw turpentine and beta-pinene with the addition of ethanol but was not attracted to alpha-pinene, either in combination with ethanol or alone. Eight-funnel traps (Lindgren, 1983) were used.
Similarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Infestations in logs may be minimized by:- The rapid turnover of stockpiles in the forest.
- A selection of unshaded skid sites.
- The stacking of logs on skids rather than on the ground (Milligan, 1978).
Logs for export can be mechanically debarked and treated with an insecticide (USDA, 1992).
Green sawn timber that is intended for export can either be kiln sterilized just prior to shipping or treated with an insecticidal dip (Milligan, 1978).
Seedlings can be protected from adult feeding damage by the use of controlled release granular insecticides (Reay and Walsh, 2002b). However, this measure is not usually necessary.
Biological control agents were imported into New Zealand, but only Thanasimus formicarius established. Because the larvae of H. ater are principally below ground, they are protected from natural enemies and T. formicarius is ineffective (Faulds, 1989).
References
Top of pageBeaver RA, 1970. On Hylastes ater Payk. and H. brunneus Er. (Coleoptera: Scolytidae), with a description of the larva of H. ater. The Entomologist, 103(1287):198-206.
Blair KG, 1949. Hylastes brunneus Er. (Col., Scolytidae) in Britain. Entomologist's Monthly Magazine, 85:89.
Bright DE; Skidmore RE, 1997. A catalog of Scolytidae and Platypodidae (Coleoptera), Supplement 1 (1990-1994). Ottawa, Canada: NRC Research Press, 368 pp.
Bright DE; Skidmore RE, 2002. A catalogue of Scolytidae and Platypodidae (Coleoptera), Supplement 2 (1995-1999). Ottawa, Canada: NRC Research Press, 523 pp.
Browne FG, 1968. Pests and diseases of forest plantation trees: an annotated list of the principal species occurring in the British Commonwealth. Oxford, UK: Clarendon Press.
Clark AF, 1932. The pine-bark beetle, Hylastes ater, in New Zealand. New Zealand Journal of Science and Technology, 14:1-20.
Dale PS, 1967. Nematodes associated with the pine-bark beetle, Hylastes ater, in New Zealand. New Zealand Journal of Science, 10:222-234.
Dowding P, 1973. Effects of felling time and insecticidal treatment on the interrelationships of fungi and arthropods in pine logs. Oikos, 24:422-429.
Duffy EAJ, 1953. Handbooks for the Identification of British Insects. Coleoptera: Scolytidae and Platypodidae. London, UK: Royal Entomological Society of London, 5(15).
Elliott HJ; Ohmart CP; Wylie FR, 1998. Insect Pests of Australian Forests: Ecology and Management. Melbourne, Australia: Inkata Press.
Hansen V, 1955. Notes on some species of Hylastes Er. and Trypophloeus Fairm. (Coleopt. Scolytidae). Entomologiske Meddeleiser, 27:169-185.
Lekander B, 1965. On Hylastes ater Payk. and Hylastes brunneus Er. (Col. Scolytidae). Entomologisk Tidskrift, 86:184-185.
Lekander B, 1968. Scandinavian bark beetle larvae. Royal College of Forestry, Sweden, Research Notes, 4:1-186.
MacKenzie M, 1992. Potential forest exports and pests from New Zealand. In Log imports and introduced forest pests into the Pacific Northwest. Symposium Proceedings. Oregon State University, Corvallis, USA, 21-23 April 1992.
Milligan RH, 1970. Overseas wood- and bark-boring insects intercepted at New Zealand ports [in 1948-65]. Technical Paper, Forest Research Institute, New Zealand Forest Service, No. 57:80 pp.
Milligan RH, 1978. Hylastes ater (Paykull) (Coleoptera: Scolytidae): Black pine bark beetle. Forest and timber insects in New Zealand. No. 29. Rotorua, New Zealand: New Zealand Forest Service, Forest Research Institute.
New Zealand Forest Service, 1970. Report of Forest Research Institute for 1 January to 31 December 1969. Wellington, New Zealand: New Zealand Forest Service.
Ojeda Gomez P, 1985. Hylastes ater (Paykull). Programma de control de plagas y enfermadades forestales. Santiago, Chile: Corporacion Nacional Forestal.
Pasek JE, 1998. Hylastes ater (Paykull). USDA-APHIS, North Carolina, USA. http://www.exoticforestpests.org/english/Detail.CFM?tblEntry__PestID=21.
Reay SD; Walsh PJ, 2001. Observations on the flight activity of Hylastes ater and Hylurgus ligniperda (Curculionidae: Scolytinae) in Pinus radiata forests in the central North Island, New Zealand. New Zealand Entomologist, 24:79-85.
Reay SD; Walsh PJ, 2002. A carbosulfan insecticide to protect pine seedlings from Hylastes ater (Coleoptera: Scolytidae) damage. New Zealand Plant Protection, 55:80-84.
Reay SD; Walsh PJ, 2002. Relative attractiveness of some volatiles to the introduced pine bark beetles, Hylastes ater and Hylurgus ligniperda (Curculionidae: Scolytinae). New Zealand Entomologist, 25:51-56.
Reay SD; Walsh PJ; Thwaites JM; Farrell; RL, 2001. The black pine bark beetle Hylastes ater in Zealand. New Zealand Tree Grower, November 2001, 32-33.
Schedl KE, 1968. Die Gattung Hylastes Er. 256 Beitrag. Anzeiger für Schadlingskunde, 41:155-158.
USDA, 1992. Pest risk assessment of the importation of Pinus radiata and Douglas-fir logs from New Zealand. USDA Forest Service Miscellaneous Publication 1508.
Wood SL; Bright DE, 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. Great Basin Naturalist Memoirs, 13: 1-1553.
Zondag R, 1965. Insect pests of forest nurseries and younf plantations in New Zealand. Proceedings of the 12th International Congress of Entomology, London, UK, 674-675.
Distribution References
Bright DE, Skidmore RE, 1997. A catalog of Scolytidae and Platypodidae (Coleoptera), (1990-1994)., Ottawa, Canada: NRC Research Press. 368 pp.
Bright DE, Skidmore RE, 2002. A catalogue of Scolytidae and Platypodidae (Coleoptera), Supplement 2 (1995-1999)., Ottawa, Canada: NRC Research Press. 523 pp.
Browne FG, 1968. Pests and diseases of forest plantation trees: an annotated list of the principal species occurring in the British Commonwealth., Oxford, UK: Clarendon Press.
CABI, Undated. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
Elliott HJ, Ohmart CP, Wylie FR, 1998. Insect Pests of Australian Forests: Ecology and Management., Melbourne, Australia: Inkata Press.
Ojeda Gomez P, 1985. Hylastes ater (Paykull).,
Wood SL, Bright DE, 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. In: Great Basin Naturalist Memoirs, 13 1-1553.
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/