Pilosella caespitosa (yellow hawkweed)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Risk of Introduction
- Habitat
- Habitat List
- Hosts/Species Affected
- Biology and Ecology
- Latitude/Altitude Ranges
- Air Temperature
- Rainfall
- Rainfall Regime
- Soil Tolerances
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Vectors
- Plant Trade
- Impact Summary
- Environmental Impact
- Social Impact
- Risk and Impact Factors
- Uses
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Contributors
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Pilosella caespitosa (Dumort.) P.D.Sell & C.West
Preferred Common Name
- yellow hawkweed
Other Scientific Names
- Hieracium altaicum Nägeli & Peter
- Hieracium caespitosum Dumort.
- Hieracium caespitosum Dumort.
- Hieracium collinum
- Hieracium dimorphum Norrl.
- Hieracium dissolutum (Nägeli & Peter) Üksip
- Hieracium dublanense (Rehmann) Czerep.
- Hieracium karelicum (Norrl.) Norrl.
- Hieracium leptocaulon (Nägeli & Peter) Üksip
- Hieracium pratense Tausch
- Hieracium pratense Tausch
- Hieracium rawaruskanum (Zahn) Czerep.
- Hieracium sudetorum (Nägeli & Peter) Üksip
- Hieracium sudetorum (Peter) J.Weiss
- Pilosella altaica (Nägeli & Peter) Schljakov
- Pilosella dissoluta (Nägeli & Peter) Schljakov
- Pilosella dublanensis (Rehmann) Schljakov
- Pilosella karelica Norrl.
- Pilosella leptocaula (Nägeli & Peter) Schljakov
- Pilosella pratensis (Tausch) F.W.Schultz & Sch.Bip.
- Pilosella rawaruskana (Zahn) Schljakov
- Pilosella sudetorum (Peter) Dostál
International Common Names
- English: king devil; meadow hawkweed; yellow fox-and-cubs; yellow king-devil
- French: epervière des prés
Local Common Names
- Austria: Wiesen-Habichtskraut
- Germany: Wiesen-Habichtskraut
- Netherlands: havikskruid, weide-
- Switzerland: epervière des prés; Wiesen-Habichtskraut
EPPO code
- HIECA (Hieracium caespitosum)
Summary of Invasiveness
Top of pageP. caespitosa is a stoloniferous rosette plant which has spread rapidly to exotic locations outside its native range, namely to North America after its introduction as a garden ornamental or contaminant of agricultural seed. It continues to be available as an ornamental and can be easily transported by machinery and as such is likely to spread further. P. caespitosa is an undesirable invader on account of its vigorous growth due to stolon, rhizome and adventitious root bud production and wind-dispersed seeds which are produced in high numbers. P. caespitosa displaces desirable pasture plants leading to loss of forage and biodiversity. Early infestations of P. caespitosa which are still very small may be difficult to spot since this weed occurs on upland pastures and forest meadows in parts of the USA, and it is a declared weed in the states of Idaho and Washington (USDA-NRCS, 2016).
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Asterales
- Family: Asteraceae
- Genus: Pilosella
- Species: Pilosella caespitosa
Notes on Taxonomy and Nomenclature
Top of pageP. caespitosa is often referred to by the synonym Hieracium caespitosum. The scientific name Hieracium is of Greek origin and means hawk, referring to the fact that many species grow at higher altitudes which are only accessible by hawks. According to other sources hawks sharpened their faces with the latex sap of hawkweeds (Zahn, 1987). During the sixteenth and seventeenth centuries, botanists used to include various other yellow-flowering Asteraceae under the name Hieracium (e.g. Sonchus spp., Tragopogon spp., Crepis spp., Hypochoeris spp., and Leontodon spp.) (Marzell, 1972). Hieracium spp. are perennial rhizomatous herbs comprising 850-1000 species worldwide with most occurring in western Europe (Gottschlich, 1996). The genus Hieracium consists of the three subgenera Hieracium, Pilosella and Stenotheca, and H. caespitosum was thought to belong to the subgenus Pilosella, section Pratensina. Most species in this subgenus produce stolons for vegetative reproduction in contrast to species in the subgenera Hieracium and Stenotheca which do not produce stolons.
However, Sell and West (1976) and other authors prefer to consider Hieracium and Pilosella as separate genera and hence the name Pilosella caespitosa. The recognition of a distinct genus is thought to be justified both morphologically (Pilosella is distinct from Hieracium by cypsela features) and phylogenetically (Bräutigam and Greuter, 2007). Detailed justification for this name change can be found in Bräutigam and Greuter (2007). For the purpose of this datasheet and in keeping with The Plant List (2013) the name Pilosella caespitosa will be applied. Pilosella refers to the Latin word 'pilosus', which means 'hairy' (Zahn, 1987).
Description
Top of pageP. caespitosa is a stoloniferous, yellow-flowering rosette plant with several flower heads per stem. The rosettes of P. caespitosa have 2-4 (up to 8) leaves which are soft, grass- or yellowish-green, oblanceolate or oblong-spathulate, acute or obtuse, long-attenuate at base. The leaves are 8-15 (-22) cm long, 1-4 cm wide, entire or rarely minutely denticulate, with more or less numerous, long simple eglandular hairs. The 1-3 leaves on the flowering stem resemble those in the rosettes or are bract-like. The upper leaf surface is free of stellate hairs whereas the leaf margin and the lower leaf surface are sparsely covered with stellate hairs. The flowering stem is (20-) 30-50 (-80) cm long, with sparse stellate hairs, numerous unequal simple eglandular hairs and few, short glandular hairs, with 1-3 leaves like those of the rosette or bract. Inflorescences are cymose-corymbose with (5-) 10-25 (-50) capitula. The stems bearing the capitula are covered with glandular and stellate hairs, and numerous blackish eglandular hairs. Involucral bracts of P. caespitosa are linear-lanceolate, usually obtuse, with sparse stellate hairs, numerous simple eglandular hairs and numerous, shorter, dark glandular hairs. The ligules are pale yellow (Sell and West, 1976; Zahn, 1987; Gottschlich, 1996). The fruit is an achene up to 3 mm long and 1 mm wide with a brown pappus.
Distribution
Top of pageThe natural distribution of P. caespitosa is Euro-Sibiric (Zahn, 1987) and the cohesive area of distribution extends from the Rhine to the Altey (Gottschlich, 1996). Besides populations in France near Paris, none of the other populations west of the Rhine (e.g. in Brittany, France, UK and Norway) are native (Gottschlich, 1996). P. caespitosa can be found from Siberia to subarctic Europe and from Scandinavia and northern Russia to northern Greece and Bulgaria and occasionally Turkey (Gottschlich, 1996). P. caespitosa has been introduced into North America and New Zealand.
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 10 Feb 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Asia |
|||||||
Japan | Present | Present based on regional distribution. | |||||
-Hokkaido | Present | ||||||
Mongolia | Present, Localized | Native | |||||
Turkey | Present, Localized | Native | |||||
Uzbekistan | Present, Localized | Native | |||||
Europe |
|||||||
Austria | Present | Native | |||||
Belarus | Present | Native | |||||
Belgium | Present | Introduced | 1999 | ||||
Bosnia and Herzegovina | Present | Native | |||||
Bulgaria | Present, Localized | Native | |||||
Croatia | Present, Few occurrences | Native | |||||
Czechia | Present | Native | |||||
Denmark | Present | Introduced | |||||
Estonia | Present | Native | |||||
Federal Republic of Yugoslavia | Present | Native | |||||
Finland | Present | Native | |||||
France | Present, Localized | Native | |||||
Germany | Present, Localized | Native | |||||
Greece | Present, Localized | Native | |||||
Hungary | Present | Native | |||||
Ireland | Present | Introduced | 1944 | ||||
Latvia | Present | Native | |||||
Liechtenstein | Present | Native | |||||
Lithuania | Present | Native | |||||
Luxembourg | Present | Introduced | |||||
Moldova | Present | ||||||
Netherlands | Present | Introduced | |||||
Norway | Present, Localized | Introduced | |||||
Poland | Present | Native | |||||
Romania | Present | Native | |||||
Russia | Present | Present based on regional distribution. | |||||
-Central Russia | Present | Native | |||||
-Northern Russia | Present | Native | |||||
-Southern Russia | Present | Native | |||||
-Western Siberia | Present | Native | |||||
Serbia | Present | Native | |||||
Slovakia | Present | Native | |||||
Slovenia | Present | Native | |||||
Sweden | Present | Native | |||||
Switzerland | Present, Localized | Native | |||||
Ukraine | Present | Native | |||||
United Kingdom | Present, Localized | Introduced | |||||
North America |
|||||||
Canada | Present | Present based on regional distribution. | |||||
-British Columbia | Present, Widespread | Introduced | Invasive | ||||
-New Brunswick | Present | Introduced | |||||
-Nova Scotia | Present | Introduced | |||||
-Ontario | Present | Introduced | |||||
-Prince Edward Island | Present | Introduced | |||||
-Quebec | Present | Introduced | |||||
United States | Present | Introduced | 1828 | Invasive | |||
-Alaska | Present | Introduced | 2004 | As: Hieracium caespitosum | |||
-Connecticut | Present | Introduced | |||||
-Delaware | Present | Introduced | |||||
-Idaho | Present, Widespread | Introduced | Invasive | ||||
-Illinois | Present | Introduced | |||||
-Indiana | Present | Introduced | |||||
-Kentucky | Present | Introduced | |||||
-Maine | Present | Introduced | |||||
-Maryland | Present | Introduced | |||||
-Michigan | Present | Introduced | |||||
-Minnesota | Present | Introduced | |||||
-Montana | Present | Introduced | |||||
-New Hampshire | Present | Introduced | |||||
-New Jersey | Present | Introduced | |||||
-New York | Present | Introduced | First reported: c 1879 | ||||
-North Carolina | Present | Introduced | |||||
-Ohio | Present | Introduced | |||||
-Oregon | Present, Localized | Introduced | Invasive | ||||
-Pennsylvania | Present | Introduced | Invasive | ||||
-Rhode Island | Present | Introduced | Invasive | ||||
-South Carolina | Present | Introduced | Invasive | ||||
-Tennessee | Present | Introduced | |||||
-Vermont | Present | Introduced | |||||
-Virginia | Present | Introduced | |||||
-Washington | Present | Introduced | Invasive | ||||
-West Virginia | Present | Introduced | |||||
-Wisconsin | Present | Introduced | |||||
Oceania |
|||||||
New Zealand | Present, Widespread | Introduced | 1940 | Invasive |
History of Introduction and Spread
Top of pageIn New Zealand, P. caespitosa has been present since approximately 1940 (Webb et al., 1988) where Pilosella and Hieracium species were probably introduced as contaminants of pasture seed (Makepeace, 1985). Four of the ten non-indigenous Pilosella/Hieracium species present in New Zealand have become noxious weeds including Pilosella caespitosa, also H. lepidulum, Pilosella officinarum and Pilosella piloselloides subsp. praealta (Hunter, 1992).
P. caespitosa was probably introduced to the USA in 1828 (Britton and Brown, 1970) and into northern New York around 1879 (Birdsall and Quimby, 1996). Species of Hieracium and Pilosella in North America are primarily weeds of moist pastures, forest meadows, abandoned fields, clearings, and roadsides (Fernald, 1950; Wilson and Callihan, 1999), but have also shown a tendency to invade mid- to high-elevation meadows and abandoned farmland (Wilson and Callihan, 1999). Small P. caespitosa infestations have the potential to spread rapidly. A P. caespitosa infestation in the Mt. Hood National Forest (USA) has spread to approximately 40 ha within a few years and scattered plants and patches are now common in the surrounding area (Oregon Invasive Species Council, 2002).
Risk of Introduction
Top of pageFurther spread is highly probable, owing to the risks of both accidental movement as a contaminant of seed or soil, or attached to machinery, and deliberate introduction as an ornamental. This is encouraged by the availability from commercial nurseries via mail-order catalogues and websites.
Habitat
Top of pageIn its native range, P. caespitosa occurs in patches on nutrient-poor, moist pastures, loam or clay soils, and also peat. Its typical growth habitats are swamp meadows, swamps and swamp margins, but P. caespitosa is also often found on oligotrophic sites disturbed by man such as a pioneer plant at moist roadsides, waysides, gravel pits and along railway lines (Gottschlich, 1996). For most Pilosella species the best growing conditions in Europe were available in the middle of the nineteenth century due to the huge diversity of the countryside, i.e. many pastures and forest margins and the permanent lack of nutrients on most agricultural land (Gottschlich, 1996). In North America, P. caespitosa is primarily a weed of moist pastures, forest meadows, abandoned fields, clearings and roadsides (Fernald, 1950; Wilson and Callihan, 1999). However, they have shown a tendency to invade mid- to high-elevation meadows and abandoned farmland (Wilson and Callihan, 1999). In New Zealand, P. caespitosa grows in extreme wet and dry conditions and is a notable weed associate in shrublands, tall-tussock and red-tussock grassland. It is often abundant up to 1500 m (Hunter, 1992).
Habitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | Managed | Managed grasslands (grazing systems) | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Disturbed areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Rail / roadsides | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Urban / peri-urban areas | Present, no further details | |
Terrestrial | Natural / Semi-natural | Natural grasslands | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Wetlands | Present, no further details | Harmful (pest or invasive) |
Hosts/Species Affected
Top of pageP. caespitosa is not known to be a weed in crops. It does not persist in cultivation because crops can out-compete other species of Pilosella, especially where herbicides are used in the cropping system (Wilson and Callihan, 1999). It is however, a serious weed of both natural and managed pastures where it out-competes with forage species.
Biology and Ecology
Top of pageGenetics
The chromosome number of P. caespitosa is 2n=18, 27, 36, 45 (Sell and West, 1976). P. caespitosa populations from southern Poland are tetraploid (2n=36) and apomictic whereas populations from eastern Poland are diploid (2n=18) and sexual (Gottschlich, 1987). Hybridization is possible with numerous other species of Pilosella including P. aurantiaca, H. cymosum, P. floribunda, P. lactucella and P. officinarum, with the most closely related species being P. aurantiaca (Meusel and Jäger, 1992). Two species assumed to have resulted from interspecific hybridization including P. caespitosa are H. flagellare and P. glomerata.
Physiology and Phenology
P. caespitosa seeds germinate well at high temperatures after only a short period of after-ripening, though are probably not viable in soil for a long period of time (Panebianco and Willemsen, 1976). However, even though seed and seedling mortality appear to be very high, the establishment of only a small number of rosettes is needed to ensure the success of P. caespitosa since it is a perennial and multiplies vegetatively. P. caespitosa plants flower between May and July in Europe, but later flowering can occur (Gottschlich, 1996); between May and August in North America (Fernald, 1950) and from November to January in New Zealand, but individuals flower until March and fruits mature between December and February (Webb et al., 1988). No references were found regarding allelopathic substances in P. caespitosa (e.g. umbelliferone, caffeic acid and chlorogenic acid) as recorded for P. officinarum (Makepeace et al., 1985) which does not mean, however, that they are absent in P. caespitosa.
Reproductive Biology
Non-flowering P. caespitosa rosettes originate either from seedlings or establish at the end of leafy stolons from adventitious root buds located on the fibrous roots (Wilson and Callihan, 1999) or from rhizomes. Since each flowering stem produces (5-) 10-25 (-50) capitula, considerable amounts of seeds can be produced. The flowering stems are (20-) 30-50 (-80) cm tall and seeds are wind-dispersed. However, even though seed and seedling mortality appear to be very high, the establishment of only a small number of rosettes is needed to ensure the success of P. caespitosa, since it is a perennial and multiplies vegetatively (Panebianco and Willemsen, 1976). When the plant initiates flowering, stolons and rhizomes initiated from axillary buds at the base of rosette leaves begin to grow (Wilson and Callihan, 1999). There is no information comparing numbers of newly established rosettes originating from vegetative production and numbers arising from seeds, although it is likely that vegetative reproduction within a population is more important than rosettes derived from seeds, as recorded for P. officinarum and the closely related P. floribunda. A large difference in turnover of P. officinarum plants between field sites in New Zealand was recorded, with field populations of 5-173 new rosettes per 100 existing rosettes and that spread occurs mainly by vegetative means (99%) (Makepeace, 1985). Similar results were obtained in North America for the closely related P. floribunda where only 1% of new plants in a population were derived from seedlings (Thomas and Dale, 1975). Nonetheless, seeds remain important for long-distance spread. A mixed strategy of clonal growth and reproduction by seeds may be necessary to maintain populations of this species in the presence of high interspecific competition and a shortage of open space (Winkler and Stöcklin, 2002). By spreading vegetatively, P. caespitosa rosettes can form dense mats with 3500 plants per m² (Wilson and Callihan, 1999).
Environmental Requirements
Throughout their geographic range in New Zealand, species of Hieracium/Pilosella are particularly abundant in sub-humid to humid montane to lower sub-alpine bioclimates. The optimal rainfall range for vigorous Hieracium/Pilosella-dominated communities appears to be 600-1200 mm. However, P. caespitosa also occurs locally where annual rainfall exceeds 3000 mm (Hunter, 1992). Possible reasons for the past 50 year decline of P. caespitosa populations throughout Europe include nitrogen fertilizer application, nitrogen contamination through rain and intensive agricultural use of the landscape (Gottschlich, 1996). However, locally, P. caespitosa is becoming more abundant due to disturbance (e.g. in gravel pits and at roadsides) (Gottschlich, 1996). In North America, P. caespitosa poses the greatest threat to cooler, sub-humid to humid sites in the northern regions of the United States. Habitats most susceptible to invasion range from the lowlands of the northern Pacific Coast to elevations of 1500 m or more in the mountain states (Wilson and Callihan, 1999). P. caespitosa plants tolerate very low winter temperatures, with -32.5°C recorded in Poland.
Latitude/Altitude Ranges
Top of pageLatitude North (°N) | Latitude South (°S) | Altitude Lower (m) | Altitude Upper (m) |
---|---|---|---|
0 | 1500 |
Air Temperature
Top of pageParameter | Lower limit | Upper limit |
---|---|---|
Absolute minimum temperature (ºC) | -33 | |
Mean annual temperature (ºC) | 5 | 9 |
Mean maximum temperature of hottest month (ºC) | 15 | 25 |
Mean minimum temperature of coldest month (ºC) | -6 | -5 |
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Dry season duration | 0 | 8 | number of consecutive months with <40 mm rainfall |
Mean annual rainfall | 600 | 3000 | mm; lower/upper limits |
Soil Tolerances
Top of pageSoil drainage
- free
- impeded
Soil reaction
- acid
- alkaline
- neutral
- very acid
Soil texture
- heavy
- light
- medium
Special soil tolerances
- infertile
- shallow
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Aulacidea pilosellae | Herbivore | Plants|Leaves; Plants|Stems | ||||
Cheilosia psilophthalma | Herbivore | Plants|Growing point; Plants|Stems | New Zealand | P. caespitosa, P. aurantiaca, H. lepidulum, P.officinarum and P. piloselloides subsp. praealta | ||
Cheilosia urbana | Herbivore | Plants|Roots | USA, Canada, New Zealand | P. officinarum | ||
Macrolabis pilosellae | Herbivore | Plants|Growing point; Plants|Stems | New Zealand | P. caespitosa, H. lepidulum, P.officinarum and P, piloselloides subsp. praealta | ||
Noeeta pupillata | Herbivore | Plants|Inflorescence; Plants|Seeds | ||||
Orthochaetes setiger | Herbivore | Plants|Growing point | ||||
Oxyptilus pilosellae | Herbivore | Plants|Whole plant | New Zealand | P. aurantiaca, H. lepidulum, P. officinarum and P. piloselloides subsp. praealta |
Notes on Natural Enemies
Top of pageP. caespitosa is not attacked to any noticeable degree by phytophagous insects in New Zealand (Syrett and Smith, 1998) and may therefore have a competitive advantage over native rangeland species. In its native range, P. caespitosa is associated with a range of specialized phytophagous insects (Grosskopf et al., 2001; 2003), the main insect groups being Aulacidea spp., Oxyptilus spp., Cheilosia spp., gall midges and tephritids developing in the flower heads. In contrast to other weeds (e.g. Alliaria petiolata, Cynoglossum officinale or Euphorbia spp.), so far, no host-specific Coleoptera have been found.
Means of Movement and Dispersal
Top of pageNatural Dispersal
Propagation occurs via seeds, which are produced in very large numbers. Seeds are wind-dispersed. Plants also reproduce vegetatively by stolons, rhizomes and adventitious root buds that could be spread by water.
Vector Transmission
All introductions of P. caespitosa can be traced to anthropogenic sources (i.e. human activity). Introductions to other countries occur either accidentally as a contaminant of pasture seed or deliberately as cultivation of ornamental plants.
Accidental Introduction
Accidental introduction as a contaminant of agricultural seed is likely. It is assumed that P. caespitosa was introduced to New Zealand as a contaminant of pasture seed. Accidental spread is also likely as contamination of garden waste or by transporting or moving soil contaminated with seeds, roots or stolon fragments, as suspected for P. officinarum. It is likely that root, stolon or rhizome fragments are accidentally moved with soil or machinery during earthworks.
Intentional Introduction
Deliberate introduction of P. caespitosa is quite likely as it is used as an ornamental species. Such introduction is encouraged by the availability of seed and/or plants from commercial nurseries via mail-order catalogues and from websites in the USA and Europe.
Pathway Vectors
Top of pageVector | Notes | Long Distance | Local | References |
---|---|---|---|---|
Internet | Yes | |||
Plants or parts of plants | Contaminant of pastoral seeds | Yes |
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Fruits (inc. pods) | weeds/seeds | |||
Growing medium accompanying plants | weeds/roots; weeds/seeds | |||
True seeds (inc. grain) |
Plant parts not known to carry the pest in trade/transport |
---|
Bark |
Bulbs/Tubers/Corms/Rhizomes |
Flowers/Inflorescences/Cones/Calyx |
Leaves |
Roots |
Seedlings/Micropropagated plants |
Stems (above ground)/Shoots/Trunks/Branches |
Wood |
Impact Summary
Top of pageCategory | Impact |
---|---|
Animal/plant collections | None |
Animal/plant products | None |
Biodiversity (generally) | Negative |
Crop production | None |
Environment (generally) | Negative |
Fisheries / aquaculture | None |
Forestry production | None |
Human health | None |
Livestock production | Negative |
Native fauna | None |
Native flora | Negative |
Rare/protected species | Negative |
Tourism | None |
Trade/international relations | None |
Transport/travel | None |
Environmental Impact
Top of pageP. caespitosa can form dense stands and subsequently out-competes pasture and range species there is serious concern about the loss of native plant biodiversity in infested areas (Birdsall and Quimby, 1996; Wilson and Callihan, 1999) and the threat to lawns and gardens (Wilson and Callihan, 1999). This is a particular problem in parks and reserves.
Social Impact
Top of pageThe environmental and aesthetic costs of P. caespitosa are difficult to estimate. These costs include loss of scenic values in national parks and other reserves, the threat to native plants and their associated fauna, and loss of conservation values and species within agricultural areas (Grundy, 1989).
Risk and Impact Factors
Top of page- Proved invasive outside its native range
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Highly mobile locally
- Has high reproductive potential
- Negatively impacts agriculture
- Reduced native biodiversity
- Competition - monopolizing resources
- Highly likely to be transported internationally accidentally
- Highly likely to be transported internationally deliberately
- Difficult/costly to control
Uses
Top of pageThe uses of P. caespitosa in New Zealand are as a source of umbelliferone (used in sun-screens and sun tan lotions), forage for stock, soil conservation, horticultural plants, a pollen source for honey production, suppression of other weeds and seed for herbal purposes (Grundy, 1989), though these are considered as negligible in relation to the negative impacts of this plant.
Similarities to Other Species/Conditions
Top of pageP. glomerata, H. cymosum and P. dubia are all very similar to P. caespitosa. P. glomerata has yellowish-green to bluish-green leaves whereas P. caespitosa always has yellowish- or grass-green leaves. P. glomerata leaves have a dense cover of short hairs which are 1 (-2) mm in length (which are responsible for the rough texture of the leaves) and the upper and lower leaf surfaces are sparsely covered with stellate hairs. In contrast, leaves of P. caespitosa are covered with numerous long hairs (2-6 mm long) but the upper leaf surface has no stellate hairs; only the margin and the lower leaf surface are sparsely covered with stellate hairs. H. cymosum only rarely has stolons and when present, are below-ground, pale and thin. The number of flower heads per stem is 20-50 (up to 100) and the stylus is yellow. Flowering P. caespitosa plants produce stolons which are 5-15 cm long and green spatulous leaves. The flowering stems have 10-25 (up to 50) flower heads and the stylus is dark. P. dubia usually has no stolons, but when present, stolons are thin and often below-ground. The rosette leaves of P. dubia are bluish green to leek-green.
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Control
Cultural Control
In its native range, P. caespitosa occurs mainly on nutrient-poor soils. Thus, fertilizers can control these species by increasing the competitive ability of more desirable pasture species (Wilson and Callihan, 1999). The main method of control at present is to improve land by the application of fertilizer and over sowing with pasture species. However, these species remain a problem on areas with low economic growth potential, abandoned land, reserves and national parks (Grundy, 1989).
Mechanical Control
Mechanical control of P. caespitosa has had limited success. Digging the plants or otherwise disturbing the stolons, rhizomes, or roots only serves to spread and multiply the weed, since plants can grow from buds on small roots, stolons and rhizome fragments (Wilson and Callihan, 1999). Due to its mat-forming growth, mowing does not kill P. caespitosa.
Chemical Control
Chemical control is especially promising on small infestations to prevent further spread. P. caespitosa is effectively controlled by clopyralid, picloram, and picloram + 2,4-D, (Whitson et al., 2000). However, total kill is unlikely and follow up with fertilizer and top dressing is considered essential (Grundy, 1989). A problem with chemical control is that the chemicals have as much, or more, impact on many desirable pasture species as they do onP. caespitosa. (Grundy, 1989). In many areas in New Zealand, chemical control is uneconomic and thus not considered on a large scale (Grundy, 1989).
Biological Control
Since chemical and mechanical control of P. caespitosa are ineffective and/or not economical in New Zealand, a programme to develop biological control with insects and a pathogen was initiated in 1992 (Syrett and Smith, 1998). P. caespitosa is not attacked to any noticeable degree by specialized phytophagous insects in New Zealand (Syrett and Smith, 1998), and may therefore have a competitive advantage over native rangeland species. Five insect species of European origin were studied and tested, and are approved for release in New Zealand (Syrett et al., 1999; Grosskopf et al., 2002; Klöppel et al., 2003) and four of them have the potential to develop on P. caespitosa. These are the plume moth Oxyptilus pilosellae (Lepidoptera, Pterophoridae), the larvae of which feed on the above-ground plant parts; the gall midge Macrolabis pilosellae (Diptera, Cecidomyiidae) which galls stolon tips and rosettes; the syrphid Cheilosia urbana (Diptera, Syrphidae), the larvae of which feed externally on the roots; and the closely related species Cheilosia psilophthalma (Diptera, Syrphidae), the larvae of which feed in rosette centres, leaf axils and on stolons. P. caespitosa is not a host plant of the fifth species, the cynipid Aulacidea subterminalis Niblett (Hymenoptera, Cynipidae) which galls the stolon tips of P. officinarum and P. aurantiaca.
Since P. caespitosa is a noxious weed in North America and is often not effectively controlled by other means, especially in remote areas, a consortium was formed to initiate a biological control programme in North America. There are, however, major differences between the programmes in New Zealand and North America. These are firstly the presence of closely related and native Hieracium/Pilosella species in North America, The second difference is a different range of weedy Hieracium species present in New Zealand (P. caespitosa, H. lepidulum, P. officinarum and P. piloselloides subsp. praealta) as compared to North America (P. aurantiaca, P. caespitosa, P. glomerata, P. piloselloides, locally also P. officinarum). Insect species approved for release in New Zealand are being tested by CABI-CH for their suitability as potential biological control agents of P. caespitosa in North America, and additional surveys to explore other insect species are being made (Grosskopf et al., 2001; 2003). Research on the potential of O. pilosellae,M. pilosellae,A. hieracii and C. psilophthalma as biocontrol agents of P. caespitosa have been discontinued as a result of agents not being host-specific. Aulacidea pilosellae causes small galls on the midrib of leaves, stolons and flower stalks of several Hieracium/Pilosella target species, and appears to have a restricted host range. The wasp is being studied in collaboration with Agriculture and Agri-Food Canada (AAFC) and Montana State University (MSU).
A joint petition for the field release of the root-feeding hoverfly Cheilosia urbana in North America was submitted to the United States Department of Agriculture – Animal and Plant Health Inspection Service (USDA-APHIS) Technical Advisory Group (TAG) and the Canadian Biological Control Review Committee in December 2014. The agent was approved for release in Canada by the Canadian Food Inspection Agency (CFIA) in April 2016 and recommended for release by TAG for the USA in May 2016. Surveys in Switzerland to collect the hoverfly in view of future releases in Nord America commenced in 2016.
Integrated Control
Strategies for sustainable, long-term management include prevention, early detection, minimizing disturbance (e.g. avoidance of heavy grazing and burning), maintaining soil health, controlling grazing, judicious use of herbicides, periodic applications of fertilizer, and cooperation between private and public land managers (Wilson and Callihan, 1999). Classical biological control could complement these management practices by further stressing or even killing P. caespitosa plants (Grundy, 1989; Wilson and Callihan, 1999).
Since P. caespitosa infests permanent upland pastures and forest meadows in remote areas in parts of the USA, conventional surveys to determine infestations of P. caespitosa are not practical (Carson et al., 1995). Therefore, Carson et al. (1995) and Lass and Callihan (1997) developed a method to identify P. caespitosa infestations with remote multispectral digital imagery taken from aircraft. However, small and moderate P. caespitosa infestations with less than 20% P. caespitosa cover are not detectable using this technique (Carson et al., 1995).
References
Top of pageBirdsall J, Quimby PC, 1996. Yellow hawkweed. In: Rees NE, Quimby PC Jr, Piper GL, Coombs EM, Turner CE, Spencer NR, Knutson LV, eds. Biological Control of Weeds in the West. Bozeman, Montana: Western Society of Weed Science in cooperation with USDA Agricultural Research Service, Montana Department of Agriculture, Montana State University.
Britton NL, Brown A, 1970. An illustrated flora of the northern United States and Canada, Vol. III, edition. New York, USA: Dover Publications, Inc.
Fernald ML, 1950. Gray's Manual of Botany. 8th Ed. New York, USA: American.
Gleason HA, Cronquist A, 1991. Manual of Vascular Plants of Northeastern United States and adjacent Canada. Second edition. New York, USA: The New York Botanical Garden.
Gottschlich G, 1987. DCCCI. Hieracium L. (Nachträge, Berichtigungen und Ergänzungen zum Nachdruck der 1. Auflage von Band VI/2 (1928/9)). In: Conert HJ, Hamann U, Schultze-Motel W, Wagenitz G, eds. Gustav Hegi, Illustrierte Flora von Mitteleuropa, Band VI, Teil 4, Compositae II: Matricaria - Hieracium. 2. überarb. u. erw. Aufl. Hamburg and Berlin, Germany: Verlag Paul Parey, 1437-1451.
Gottschlich G, 1996. Hieracium. In: Die Farn- und Blütenpflanzen Baden-Württembergs. Volume 6. Spezieller Teil (Spermatophyta, Unterklasse Asteridae): Valerianaceae bis Asteraceae. Germany: Eugen Ulmer.
Grosskopf G, Butler S, Recher H, Schneider H, 2001. Biological control of hawkweeds, Hieracium spp. Unpublished Annual Report 2001. Delémont, Switzerland: CABI Bioscience Switzerland Centre.
Grosskopf G, Chevillat V, Klymenko S, Lovis L, Wang J, 2003. Biological control of hawkweeds, Hieracium spp. Unpublished Annual Report 2002. Delémont, Switzerland: CABI Bioscience Switzerland Centre.
Marzell H, 1972. Wörterbuch der deutschen Pflanzennamen. Volume 2. Daboecia to Lythrum. Leipzig, Germany: Verlag von S. Hirzel, 853-866.
Meusel H, Jäger EJ, 1992. Vergleichende Chorologie der zentraleuropäischen Flora, Band III. Jena and Stuttgart, Germany: New York, USA: Gustav Fischer Verlag.
Oregon Invasive Species Council, 2002. Invasive Species in Oregon. Report Card, 2002.
Panebianco R, Willemsen RW, 1976. Seed germination of Hieracium pratense, a successional perennial. Botanical Gazette, 137(3):255-261
Scoggan HL, 1979. Flora of Canada. Ottawa, Canada: National Museums of Canada.
Sell PD, West C, 1976. Hieracium L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, eds. Flora Europaea, Volume 4, Plantaginaceae to Compositae (and Rubiaceae). Cambridge and London, UK, New York, USA, and Melbourne, Australia: Cambridge University Press, 358-410.
Thomas A, Dale HM, 1975. The role of seed production in the dynamics of established populations of Hieracium floribundum and a comparison with that of vegetative reproduction. Canadian Journal of Botany, 53:3022-3031.
Tikhomirov VN, 2000. Genus Pilosella Hill (Hieracium subg. Pilosella (Hill) S.F. Gray, Asteraceae) in the Flora of Belarus. Botanical Journal, 85:116-126.
USDA-NRCS, 2002. The PLANTS Database, Version 3.5. National Plant Data Center, Baton Rouge, USA. http://plants.usda.gov.
USDA-NRCS, 2016. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov/
Webb CJ, Sykes WR, Garnock-Jones PJ, 1988. Flora of New Zealand Volume IV. Naturalised Pteridophytes, Gymnosperms and Dicotyledons. Christchurch, New Zealand: DSIR Botany Division, 1365 pp. http://floraseries.landcareresearch.co.nz/pages/Book.aspx?fileName=Flora%204.xml
Whitson TD, Dewey SA, Stougaard R, 2000. Weed Management Handbook. Utah State University, Montana State University, University of Wyoming.
Wilson LM, Callihan RH, 1999. Meadow and Orange Hawkweed. In: Sheley RL, Petroff JK, eds. Biology and Management of Noxious Rangeland Weeds, edition 1. Corvallis, USA: Oregon State University Press, 238-248.
Winkler E, Stöcklin J, 2002. Sexual and Vegetative Reproduction of Hieracium pilosella L. under Competition and Disturbance: a Grid-based Simulation Model. Annals of Botany, 89:525-536.
Zahn KH, 1987. DCCCI. Hieracium L. In: Conert HJ, Hamann U, Schultze-Motel W, Wagenitz G, eds. Gustav Hegi, Illustrierte Flora von Mitteleuropa, Band VI, Teil 4, Compositae II: Matricaria - Hieracium. 2. überarb. u. erw. Aufl. Hamburg and Berlin, Germany: Verlag Paul Parey, 1182-1351.
Distribution References
Birdsall J, Quimby PC, 1996. Yellow hawkweed. In: Biological Control of Weeds in the West, [ed. by Rees NE, Quimby PC Jr, Piper GL, Coombs EM, Turner CE, Spencer NR, Knutson LV]. Bozeman, Montana, Western Society of Weed Science in cooperation with USDA Agricultural Research Service, Montana Department of Agriculture, Montana State University.
Britton NL, Brown A, 1970. An illustrated flora of the northern United States and Canada., III New York, USA: Dover Publications, Inc.
CABI, Undated. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Gleason HA, Cronquist A, 1991. Manual of Vascular Plants of Northeastern United States and adjacent Canada., New York, USA: The New York Botanical Garden.
Gottschlich G, 1996. Hieracium. In: Die Farn- und Blütenpflanzen Baden-Württembergs. Spezieller Teil (Spermatophyta, Unterklasse Asteridae): Valerianaceae bis Asteraceae, 6 Germany: Eugen Ulmer.
Meusel H, Jäger EJ, 1992. (Vergleichende Chorologie der zentraleuropäischen Flora)., Jena and Stuttgart: New York, Germany; USA: Gustav Fischer Verlag.
Oregon Invasive Species Council, 2002. Invasive Species in Oregon., Report Card. 2002.
Scoggan H, 1979. Flora of Canada. Ottawa, Canada: National Museum of Natural Sciences.
Sell PD, West C, 1976. Hieracium L. In: Flora Europaea, Volume 4, Plantaginaceae to Compositae (and Rubiaceae), [ed. by Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA]. Cambridge and London; New York, UK; USA: Cambridge University Press. 358-410.
Tikhomirov VN, 2000. Genus Pilosella Hill (Hieracium subg. Pilosella (Hill) S.F. Gray, Asteraceae) in the Flora of Belarus. In: Botanical Journal, 85 116-126.
USDA-NRCS, 2002. The PLANTS Database. Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov
Webb CJ, Sykes WR, Garnock-Jones PJ, 1988. Flora of New Zealand. Naturalised Pteridophytes, Gymnosperms and Dicotyledons., IV Christchurch, New Zealand: DSIR Botany Division. 1365 pp. http://floraseries.landcareresearch.co.nz/pages/Book.aspx?fileName=Flora%204.xml
Wilson LM, Callihan RH, 1999. Meadow and Orange Hawkweed. In: Biology and Management of Noxious Rangeland Weeds, [ed. by Sheley RL, Petroff JK]. Corvallis, USA: Oregon State University Press. 238-248.
Contributors
Top of page19/12/2016 Updated by:
Ghislaine Cortat, CABI-CH, Switzerland
29/09/2003 Original text by:
Gitta Grosskopf, CABI-CH, Switzerland
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/