Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Aceria guerreronis
(coconut mite)



Aceria guerreronis (coconut mite)


  • Last modified
  • 11 October 2017
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Aceria guerreronis
  • Preferred Common Name
  • coconut mite
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Chelicerata
  •         Class: Arachnida
  • Summary of Invasiveness
  • The coconut mite, Aceria guerreronis, is considered the most important pest of coconuts in the Americas, Africa and most recently in South-East Asia. Although its exact origin is debatable it is likely to be...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
TitleGreen nuts damaged by A. guerreronis
Copyright©CABI BioScience/Dave Moore
Green nuts damaged by A. guerreronis©CABI BioScience/Dave Moore


Top of page

Preferred Scientific Name

  • Aceria guerreronis Keifer

Preferred Common Name

  • coconut mite

Other Scientific Names

  • Eriophyes guerreronis Keifer

International Common Names

  • Spanish: acaro del cocotero
  • French: acarien du cocotier; ravageur du cocotier (dahomey)
  • Portuguese: acaro da necrose do olho do coqueiro

Local Common Names

  • Germany: Milbe, Kokosblueten-

EPPO code

  • ACEIGU (Aceria guerreronis)

Summary of Invasiveness

Top of page

The coconut mite, Aceria guerreronis, is considered the most important pest of coconuts in the Americas, Africa and most recently in South-East Asia. Although its exact origin is debatable it is likely to be native to South America and introduced to Africa and Asia, where it is an invasive species (Navia et al., 2005).

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Chelicerata
  •                 Class: Arachnida
  •                     Subclass: Acari
  •                         Superorder: Acariformes
  •                             Suborder: Prostigmata
  •                                 Family: Eriophyidae
  •                                     Genus: Aceria
  •                                         Species: Aceria guerreronis


Top of page

Keifer (1965) first described A. guerreronis. The adult female coconut mite is vermiform, 36-52 µm wide and 205-255 µm long with two pairs of legs and a finely ringed body with several long setae. The genital opening of both sexes is positioned proximally, closely behind the legs.


Top of page

Since first reported from Mexico, A. guerreronis has been reported from many coconut-growing regions of the Americas, in West Africa from Côte d'Ivoire to Nigeria (Hall and Espinosa, 1981) and Gambia (Howard et al., 2001), Tanzania, India and Sri Lanka (Sathiama et al., 1998; CRI/UNDP, 2000). 

A record of A. guerreronis in Australia published in previous versions of the Compendium was erroneous and has been removed. Halliday and Knihinicki (2004) and Coutts et al. (2008) clearly refer to wheat curl mite, Aceria tosichella, in Australia and not A. guerreronis.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


IndiaPresentCABI/EPPO, 2006; EPPO, 2014
-Andaman and Nicobar IslandsPresentCABI/EPPO, 2006; EPPO, 2014
-Andhra PradeshPresentCABI/EPPO, 2006; EPPO, 2014
-GujaratPresentCABI/EPPO, 2006; EPPO, 2014
-KarnatakaPresentCABI/EPPO, 2006; Basavaraj et al., 2012; EPPO, 2014
-KeralaPresentSathiamma et al., 1998; EPPO, 2014
-LakshadweepPresentCABI/EPPO, 2006; EPPO, 2014
-MaharashtraPresentDesai et al., 2010
-OdishaPresentCABI/EPPO, 2006; EPPO, 2014
-Tamil NaduPresentMuthiah and Bhaskaran, 1999; EPPO, 2014
-West BengalPresentCABI/EPPO, 2006; EPPO, 2014
MalaysiaPresentCABI/EPPO, 2006; EPPO, 2014
MaldivesPresentUpublished reports of A. guerreronis in Maldives.
OmanPresentEPPO, 2014
PhilippinesPresentCABI/EPPO, 2006; EPPO, 2014
Sri LankaPresentCRI/UNDP, 2000; Moore, 2000; EPPO, 2014


BeninWidespreadEPPO, 2014
CameroonWidespreadEPPO, 2014
Côte d'IvoireWidespreadEPPO, 2014
GambiaPresentHoward et al., 2001; EPPO, 2014
MozambiquePresentCABI/EPPO, 2006; EPPO, 2014
NigeriaWidespreadEPPO, 2014
Sao Tome and PrincipeWidespreadEPPO, 2014
TanzaniaWidespreadCRI/UNDP, 2000; EPPO, 2014
TogoWidespreadEPPO, 2014

North America

MexicoWidespreadEPPO, 2014
USAPresentCABI/EPPO, 2006; EPPO, 2014
-CaliforniaPresentCABI/EPPO, 2006; EPPO, 2014
-FloridaPresentHoward et al., 1990; EPPO, 2014

Central America and Caribbean

AnguillaPresentEPPO, 2014
BahamasWidespreadEPPO, 2014
BelizePresentCABI/EPPO, 2006; EPPO, 2014
Costa RicaPresentCABI/EPPO, 2006; EPPO, 2014
CubaWidespreadEPPO, 2014
DominicaPresentEPPO, 2014
Dominican RepublicPresentEPPO, 2014
GrenadaWidespreadEPPO, 2014
GuadeloupePresentEPPO, 2014
HaitiWidespreadEPPO, 2014
JamaicaWidespreadEPPO, 2014
MartiniquePresentEPPO, 2014
Puerto RicoWidespreadHoward et al., 1990; EPPO, 2014
Saint Kitts and NevisRestricted distributionEPPO, 2014
Saint LuciaPresentIntroduced Invasive Jn Pierre, 2008; EPPO, 2014
Saint Vincent and the GrenadinesWidespreadEPPO, 2014
Trinidad and TobagoWidespreadEPPO, 2014

South America

BrazilWidespreadEPPO, 2014
-AlagoasPresentCABI/EPPO, 2006; EPPO, 2014
-BahiaPresentCABI/EPPO, 2006; EPPO, 2014
-CearaPresentFreitas et al., 2006
-Minas GeraisPresentCABI/EPPO, 2006; EPPO, 2014
-PernambucoPresentCABI/EPPO, 2006; EPPO, 2014
-Rio de JaneiroPresentCABI/EPPO, 2006; EPPO, 2014
-Rio Grande do NortePresentCABI/EPPO, 2006; EPPO, 2014
-Rio Grande do SulPresentPereira et al., 2009
-Sao PauloPresentNávia et al., 2005
-SergipePresentCABI/EPPO, 2006; EPPO, 2014
ColombiaWidespreadEPPO, 2014
VenezuelaWidespreadEPPO, 2014


HungaryPresentGólya et al., 2002
PolandPresentJezewska, 2000; Skoracka and Magowski, 2002

Risk of Introduction

Top of page

Probably limited in that only young nutlets carry the mite and these are unlikely to be transported. 


Top of page

A. guerreronis occurs under the perianth of young nutlets of Cocos nucifera, largely from a few weeks to 7-8 months after fertilisation of the female flower. Migrating individuals may be found on the nut surface and populations have been recorded on seedlings. 

Hosts/Species Affected

Top of page

A. guerreronis is the only species of eriophyoid mite considered to be a serious pest of coconuts, Cocos nucifera. It was first described in 1965 from specimens from Guerrero State, Mexico (Keifer, 1965). Until reported from Lytocaryum weddellianum, a cocosoid palm species, it was only known from the coconut (Flechtmann, 1989) but has since been reported on Borassus flabellifer and Syagrusromanzoffiana

Host Plants and Other Plants Affected

Top of page

Growth Stages

Top of page Fruiting stage, Seedling stage


Top of page

Populations of the mite develop on the meristematic zone of the young nuts, from as early as one month after fertilization. This area is covered by the perianth (collectively, the tepals, and often referred to as the bracts). Feeding of the mites in this zone apparently causes physical damage so that as newly formed tissue expands, the surface becomes necrotic and suberized, usually in distinct 'v' shape(s) extending down from the perianth. Uneven growth results in distortion and stunting of the coconut; usually the younger the nut when first attacked the greater the severity of damage. 

List of Symptoms/Signs

Top of page
SignLife StagesType
Fruit / abnormal shape
Fruit / gummosis
Fruit / malformed skin
Fruit / premature drop
Fruit / reduced size

Biology and Ecology

Top of page

Relatively little is known of the biology of A. guerreronis; a review of eriophyoid mites of coconuts by Moore and Howard (1996) focused on this species and much of the data are derived from that work.

The adult female coconut mite is 36-52 µm wide and 205-255 µm long (Keifer, 1965). It can pass between the upper and lower tepals to reach the fruit surface covered by the perianth within a few weeks to a month after fertilization of the flower (Ortega et al., 1965; Mariau and Julia, 1970; Hall and Espinosa, 1981; Moore and Alexander, 1987; Howard and Abreu-Rodríguez, 1991). The perianth almost completely covers the young fruit, providing protection against many hazards. During the first month of development the tepals are tightly adpressed to the fruit (Howard and Abreu-Rodríguez, 1991), so that the perianth gives maximal protection. As the fruit develops, it becomes increasingly larger in relation to the perianth, and within about a month spaces develop between the coconut surface and the perianth which are sufficiently large to permit the entry of coconut mites. With a development cycle from egg to adult of about 10 days (Mariau, 1977) mite numbers can build up rapidly. Spermatophores associated with coconut mite colonies have been observed underneath the perianth, showing that reproductive activities take place there. The fruits remain susceptible to mite attack almost throughout the whole development, but decreasingly so after the nut reaches full size. On more mature fruits (10-13 months), coconut mites are found rarely and in small numbers (Hall and Espinoza, 1981; Moore and Alexander, 1987).

The coconut mite is found in tropical and subtropical climates, but populations can survive both short periods of freezing temperatures and periods of cool temperatures more prolonged than those normally encountered where coconut palms are grown (Howard et al., 1990). Some workers claim that coconut mite attacks are more severe in relatively dry climates or during the dry season of wetter climates (Zuluaga and Sanchez, 1971; Griffith, 1984). However, in other localities there is no detectable relationship between coconut mite populations and wet and dry weather (Doreste, 1968; Mariau, 1969, 1977; Howard et al., 1990).


Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Acremonium recifei Pathogen Adults/Nymphs Ivory Coast Cocos nucifera
Hirsutella nodulosa Pathogen Adults/Larvae/Nymphs
Hirsutella thompsonii Pathogen Adults/Larvae/Nymphs St Lucia Cocos nucifera
Lecanicillium lecanii Pathogen Adults/Nymphs
Sporothrix fungorum Pathogen Kumar et al., 2001

Notes on Natural Enemies

Top of page

The following information has been drawn from Moore and Howard (1996). The coconut mite is not attacked by parasitoids, and their sheltered habitat and biology provide few opportunities for other natural enemies to be effective. Theoretically, predators could attack the coconut mite during dispersal, which occurs regularly (Moore and Alexander, 1987), and some have been observed occupying the meristematic zone of coconut fruits. These include Bdella distincta, Amblyseius largoensis, Neoseiulus mumai and N. paspalivorus (Howard et al., 1990), two phytoseiids and a tarsonemid (Julia and Mariau, 1979). Predaceous mites are observed only occasionally and in very small populations on infested coconuts, and there is no evidence that they make a significant impact on coconut mite populations (Hall et al., 1980; Howard et al., 1990). In Sri Lanka, N. paspalivorus is considered to cause significant reductions in pest populations (CRI/UNDP, 2000).

The acerogenous fungus, Hirsutella thompsoni, has been isolated from samples of coconut mites from tropical America and West Africa (Hall et al., 1980) and from samples of Colomerus novahebridensis from New Hebrides, New Guinea and Sri Lanka (Hall et al., 1980). In Mexico, up to 75% mortality was achieved using the fungus (Espinosa and Carrillo, 1986), but no success was reported in West Africa (Anon., 1989) or from limited trials in St Lucia (Moore et al., 1989). In laboratory trials, Sampedro and Rosa (1989) tested seven isolates of H. thompsonii; mortality ranged from 88% with an isolate from A. guerreronis to 32% with one obtained from Phyllocoptruta oleivora.

Another acerogenous species attacking A. guerreronis, Hirsutella nodulosa, has been reported from Cuba (Cabrera and Dominguez, 1987).

Means of Movement and Dispersal

Top of page

Natural Dispersal (non-biotic)

The principal method by which coconut mites spread and colonize new palms, particularly over long distances, is almost certainly through aerial dispersal of inseminated female mites. The coconut palm provides a large target for aerially dispersed organisms, and air currents may carry the mites to racemes, or to the more vertical leaves in the crown, from which they may drop to inflorescences. Coconut mites can walk between touching inflorescences, and, being negatively geotactic, tend to move from older to younger inflorescences (Moore and Alexander, 1987). Coconut mites walk at a rate of 20-100 µm per second but are probably inefficient in finding sites to colonize. A high reproductive rate and rapid development compensate for inefficient dispersal and host-finding.

Vector Transmission

Some dispersal may take place by phoresy, either on animals directly attracted to the inflorescences (for example, pollinating insects such as bees; rodents which feed on the fruits), or on those attracted by such animals (for example, predatory lizards, birds, predaceous insects).

Seedborne Spread

This is unlikely as the mature nut is not infested by mites.

Agricultural Practices

Coconut seedlings can be infested and it is theoretically possible for dispersal to occur by movement of seedlings; this has not been reported.

Movement in Trade

This is unlikely as the mature nut is not infested by mites.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Fruits (inc. pods) adults; eggs; larvae; nymphs Yes Pest or symptoms not visible to the naked eye but usually visible under light microscope
Plant parts not known to carry the pest in trade/transport
Growing medium accompanying plants
Stems (above ground)/Shoots/Trunks/Branches
True seeds (inc. grain)


Top of page

Accurate crop loss assessments are rarely done, but estimates range from 7.5% (Julia and Mariau, 1979) and 30% (Hernández, 1977) to 60% (Griffith, 1984) and some attacks may be so bad that farmers stop harvesting. Yield losses depend on cultivar, age, health and general maintenance of the crop, climate etc, but average copra losses may be 20-30% with premature nut fall and increased difficulty in dehusking (leading to greater labour requirements for this job) also contributing to economic loss. 


Top of page

Removal of the tepals and microscopic examination at which point eriophyoid mites can be easily distinguished. Full confirmation requires mounting and careful taxonomic study (Amrine and Manson, 1996). 

Detection and Inspection

Top of page

The scarring and distortion of nutlets can be observed from the ground, although with taller trees the use of binoculars may be necessary. Harvested nuts also bear the marks, although few, if any, mites will be found on these.

Similarities to Other Species/Conditions

Top of page

Colomerus novahebridensis, widespread in South-East Asia and Oceania occurs mainly on the fruits, producing scarring similar to that of A. guerreronis (Hall et al., 1980). It apparently has no significant impact on coconut production (Kang, 1981). However, this species has been reported as causing damage on a few West African hybrids in the Philippines. Dolicotetranychus sp. also causes similar scarring, but causes flat-bottomed marks, sometimes as discrete rings around the circumference of the nut rather than distinctive 'v'-shaped marks.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Chemical control of the coconut mite is possible; chinomethionate sprayed onto bunches of developing fruits every 20 or 30 days significantly reduced damage (Hernández, 1977). Similar results were obtained with acaricides applied at 15-day, but not 60-day, intervals (Mariau and Tchibozo, 1973).

Varietal differences in susceptibility occur (Mariau, 1986) and breeding may provide a long term solution. The tightness of fit of the perianth may be critical (Mariau, 1986; Moore, 1986; Howard and Abreu-Rodríquez, 1991) and this may be a varietal characteristic and also one influenced by agronomy and climate.

Experimentally, the use of Hirsutella species-based mycoacaricides has shown good field results but the development of successful products demands more research. Aratchige et al. (2009) summarized research on the potential of Neoseiulus baraki and Hirsutella thompsonii as biological control agents of A. guerreronis on coconut in Sri Lanka.

Good management, replacing old trees, providing balanced fertilizer regimes and generally maintaining healthy trees may increase the tolerance of trees to attack and hence reduce yield losses.

Nair et al. (2005) provide an overview of bioecology and management of A. guerreronis.


Top of page

Amrine JW Jr; Manson DCM, 1996. Preparation, mounting and descriptive study of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J, eds. Eriophyoid mites their biology, natural enemies and control. Amsterdam, The Netherlands: Elsevier, 383-396.

Anon., 1989. Eriophyes guerreronis. OlTagineux, 44:130-131.

Aratchige NS; Fernando LCP; Kumara ADNT; Suwandharathne NI; Perera KFG; Hapuarachchi DCL; Silva PHPRde, 2009. Advances in research on biological control of the coconut mite, Aceria guerreronis Keifer in Sri Lanka. Indian Coconut Journal, 52(5):23-30.

Arunachalam V; Jerard BA; Elain Apshara S; Jayabose C; Subaharan K; Ravikumar N; Palaniswami C, 2013. Digital phenotyping of coconut and morphological traits associated with eriophyid mite (Aceria guerroronis Keifer) infestation. Journal of Plantation Crops, 41(3):417-424.

Basavaraj Kalmath; Mallik B; Onkarappa S; Girish R; Srinivasa N, 2012. Isolation, genetic diversity and identification of a virulent pathogen of eriophyid mite, Aceria guerreronis (Acari: Eriophyidae) by DNA marker in Karnataka, India. African Journal of Biotechnology, 11(104):16790-16799.

CABI/EPPO, 2006. Aceria guerreronis. Distribution Maps of Plant Pests, No. 680. Wallingford, UK: CAB International.

Cabrera RI; Dominguez D, 1987. Hirsutella nodulosa fungus, a new pathogen for the coconut mite Eriophyes guerreronis. Ciencia y Tecnica en la Agricultura, Citricos y Otros Frutales, 10(1):41-51

Coutts BA; Strickland GR; Kehoe MA; Severtson DL; Jones RAC, 2008. The epidemiology of Wheat streak mosaic virus in Australia: case histories, gradients, mite vectors, and alternative hosts. Australian Journal of Agricultural Research, 59(9):844-853.

CRI/UNDP, 2000. Workshop on Coconut Mite (Aceria guerreronis. An international workshop organized by Coconut Research Institute, Sri Lanka, 6-8 January 2000. Sponsored by United Nations Development Programme (UNDP) and Coconut Research Institute, Sri Lanka. Abstracts.

Desai VS; Nagwekar DD; Desai SS, 2010. Evaluation of neem based pesticides against coconut eriophyid mite, Aceria guerreronis Keifer in Konkan region of Maharashtra. Green Farming, 3(2):133-135.

Doreste ES, 1968. El ßcaro de la flor del cocotero (Aceria guerreronis) en Venezuela. Agronomfa Tropical, 18:379-386.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization.

Espinosa Becerril A; Carrillo Sanchez JL, 1986. The fungus Hirsutella thompsonii Fisher for the control of the eriophyid Eriophyes guerreronis (Keifer). Agricultura Tecnica en Mexico, 12(2):319-323

Flechtmann CHW, 1989. Cocos weddelliana H. Wendl. (Palmp: Arecaceae), a new host plant for Eriophyes guerreronis (Keifer,1965) (Acari: Eriophyidae) in Brazil. International Journal of Acarology, 15(4):241

Freitas JDBde; Innecco R; Mendes AJP; Gonçalves MEde C, 2006. Alternative control of the coconut mite, Aceria guerreronis. (Controle alternativo do ácaro da necrose do coqueiro.) Revista Ciência Agronômica, 37(3):315-320.

Gólya G; Kozma E; Szabó M, 2002. New data to the knowledge on the eriophyoid fauna on grasses in Hungary (Acari: Eriophyoidea). Acta Phytopathologica et Entomologica Hungarica, 37(4):409-412.

Griffith R, 1984. The problem of the coconut mite, Eriophyes guerreronis (Keifer), in the coconut groves of Trinidad and Tobago. In: Webb R, Knausenberger W, Yntema L, eds. Proceedings of the 20th Annual Meeting of the Caribbean Food Crops Society, St. Croix, US Virgin Islands, 21-26 October, 1984. East Caribbean Center, College of the Virgin Islands and Caribbean Food Crops Society, 128-132.

Hall RA; Espinosa BA, 1981. The coconut mite, Eriophyes guerreronis, with special reference to the problem in Mexico. Proceedings, 1981 British Crop Protection Conference - Pests and Diseases, 113-120.

Hall RA; Hussey NW; Mariau D, 1980. Results of a survey of biological control agents of the coconut mite, Eriophyes guerreronis. Oleagineux, 35(8/9):395-400

Halliday RB; Knihinicki DK, 2004. The occurrence of Aceria tulipae (Keifer) and Aceria tosichella Keifer in Australia (Acari: Eriophyidae). International Journal of Acarology, 30(2):113-118.

Hernßndez RF, 1977. Combate qufmico del eri=fido del cocotero Aceria (Eriophyes) guerreronis (K) en la Costa de Guerrero. Agricultura TTcnica en MTxico, 4:23-38.

Howard FW; Abreu-Rodrfguez E; Denmark HA, 1990. Geographical and seasonal distribution of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), in Puerto Rico and Florida, USA. Journal of Agriculture of the University of Puerto Rico, 74:237-251.

Howard FW; Giblin-Davis R; Moore D; Abad R, 2001. Insects on Palms. Wallingford, UK: CAB International.

Howard FW; Rodriguez EA, 1991. Tightness of the perianth of coconuts in relation to infestation by coconut mites. Florida Entomologist, 74(2):358-361

Jezewska M, 2000. Incidence of Wheat streak mosaic virus in Poland in the years 1998-1999. Phytopathologia Polonica, No. 20:77-83.

Jn Pierre L, 2008. Mitigating the Threat of Invasive Alien Species in the Insular Caribbean (Saint Lucia). Report to CABI. 56 pp.

Julia JF; Mariau D, 1979. New research on the coconut mite, Eriophyes guerreronis K., in the Ivory Coast. Oleagineux, 34(4):181-189

Kang SM, 1981. Malaysia - eriophyid and tarsonemid mites on coconut. Plant Protection Bulletin, FAO, 29(3/4):79

Keifer HH, 1965. Eriophyid studies B -14. California Department of Agriculture, Bureau of Entomology.

Kumar PS; Singh SP; Anuroop CP, 2001. First report of Sporothrix fungorum de Hoog & de Vries as a pathogen of Aceria guerreronis Keifer, the coconut eriophyid mite. Insect Environment, 7(3):106-107.

Mariau D, 1969. Aceria guerreronis Keifer: rTcent ravageur de la cocoteraie DahomTenne. OlTagineux, 24:269-272.

Mariau D, 1977. Aceria (Eriophyes) guerreronis: an important pest of African and American coconut plantations. Oleagineux, 32(3):101-111

Mariau D, 1986. Behaviour of Eriophyes guerreronis Keifer with respect to different varieties of coconut. Oleagineux, 41(11):499-505

Mariau D; Julia JF, 1970. L'acariose a Aceria guerreronis (Keifer), ravageur du cocotier. OlTagineux, 25:459-464.

Mariau D; Tchibozo; HM, 1973. Essais de lutte chimique contre Aceria guerreronis (Keifer). OlTagineux, 28:133-135.

Moore D, 1986. Bract arrangement in the coconut fruit in relation to attack by the coconut mite Eriophyes guerreronis Keifer. Tropical Agriculture, 63(4):285-288

Moore D, 2000. Non-chemical control of Aceria guerreronis on coconuts. Biocontrol News and Information, 21(3):83N-88N; 32 ref.

Moore D; Alexander L, 1987. Aspects of migration and colonization of the coconut palm by the coconut mite, Eriophyes guerreronis (Keifer) (Acari: Eriophyidae). Bulletin of Entomological Research, 77(4):641-650

Moore D; Alexander L; Hall RA, 1989. The coconut mite, Eriophyes guerreronis Keifer in St. Lucia: yield losses and attempts to control it with acaricide, polybutene and Hirsutella fungus. Tropical Pest Management, 35(1):83-89

Moore D; Howard FW, 1996. Coconuts. In: Lindquist EE, Sabelis MW, Bruin J, eds. Eriophyoid mites their biology, natural enemies and control. Amsterdam, The Netherlands: Elsevier, 561-570.

Muthiah C; Bhaskaran R, 1999. Screening of coconut genotypes and management of eriophyid mite Aceria guerreronis (Eriophyidae: Acari) in Tamil Nadu. Indian Coconut Journal (Cochin), 30(6):10-11; 3 ref.

Nair CPR; Rajan P; Chandrika Mohan, 2005. Coconut eriophyid mite Aceria guerreronis Keifer - an overview. Indian Journal of Plant Protection, 33(1):1-10.

Návia D; Moraes GJde; Lofego AC; Flechtmann CHW, 2005. Acarofauna associated with coconut fruits (Cocos nucifera L.) from some localities in America. (Acarofauna associada a frutos de coqueiro (Cocos nucifera L.) de algumas localidades das Américas.) Neotropical Entomology, 34(2):349-354.

Ortega CA; Rodriguez VJ; Garibay VC, 1965. Investigaciones preliminares sobre el eri=fido del fruto del cocotero, Aceria guerreronis Keifer, en la Costa Grande de Guerrero. Agricultura TTcnica en MTxico, 2:222-226.

Pereira PRVda S; Navia D; Salvadori JR; Lau D, 2009. Occurrence of Aceria tosichella in Brazil. Pesquisa Agropecuária Brasileira, 44(5):539-542.

Sampedro L; Rosa JL, 1989. Seleccion de cepas de Hirsutella thompsonii Fisher para combatir al ßcaro del cocotero, Eriophyes guerreronis Keifer. I. Bioensayos de patogenicidad. Revista Mexicana de Micologia, 5:225-232.

Sathiamma B; Nair CPR; Koshy PK, 1998. Outbreak of a nut infesting eriophyid mite Eriophyes guerreronis (K.) in coconut plantations in India. Indian Coconut Journal (Cochin), 29(2):1-3; 8 ref.

Schotman CYL, 1989. Plant pests of quarantine importance to the Caribbean. RLAC-PROVEG, No. 21:80 pp.

Silva RVda; Narita JPZ; Vichitbandha P; Chandrapatya A; Konvipasruang P; Kongchuensin M; Moraes GJde, 2014. Prospection for predatory mites to control coconut pest mites in Thailand, with taxonomic descriptions of collected Mesostigmata (Acari). Journal of Natural History, 48(11/12):699-719.

Skoracka A; Magowski W, 2002. Two species of eriophyoid mites (Acari, Prostigmata) in wheat cultivation (Triticum aestivum L.) and associated grass community in Wielkopolska, Poland. Journal of Applied Entomology, 126(9):481-483.

Zuluaga CI; Sanchez PA, 1971. La ro±a o escoriaci=n de los frutos del cocotero (Cocos nucifera L.) en Colombia. OlTagineux, 26:767-770.

Distribution Maps

Top of page
You can pan and zoom the map
Save map