Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


African cassava mosaic virus
(African cassava mosaic)



African cassava mosaic virus (African cassava mosaic)


  • Last modified
  • 20 December 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • African cassava mosaic virus
  • Preferred Common Name
  • African cassava mosaic
  • Taxonomic Tree
  • Domain: Virus
  •   Unknown: "ssDNA viruses"
  •     Unknown: "DNA viruses"
  •       Family: Geminiviridae
  •         Genus: Begomovirus
  • Summary of Invasiveness
  • Cassava is vegetatively propagated therefore ACMV and other CMGs are primarily transmitted via movement of contaminated cuttings. Consequently, introductions of specific CMGs into new localities mirror patterns of cassa...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Cassava mosaic disease (African cassava mosaic); whole plant, showing Cassava mosaic symptoms.
CaptionCassava mosaic disease (African cassava mosaic); whole plant, showing Cassava mosaic symptoms.
Copyright©CABI/Phil Taylor
Cassava mosaic disease (African cassava mosaic); whole plant, showing Cassava mosaic symptoms.
SymptomsCassava mosaic disease (African cassava mosaic); whole plant, showing Cassava mosaic symptoms.©CABI/Phil Taylor
Cassava mosaic disease (African cassava mosaic); symptoms  on cassava leaf.
CaptionCassava mosaic disease (African cassava mosaic); symptoms on cassava leaf.
Copyright©CABI/Phil Taylor
Cassava mosaic disease (African cassava mosaic); symptoms  on cassava leaf.
SymptomsCassava mosaic disease (African cassava mosaic); symptoms on cassava leaf.©CABI/Phil Taylor
Cassava mosaic disease (African cassava mosaic); symptoms on cassava.
CaptionCassava mosaic disease (African cassava mosaic); symptoms on cassava.
Copyright©Pasquale Piccirillo
Cassava mosaic disease (African cassava mosaic); symptoms on cassava.
SymptomsCassava mosaic disease (African cassava mosaic); symptoms on cassava.©Pasquale Piccirillo


Top of page

Preferred Scientific Name

  • African cassava mosaic virus

Preferred Common Name

  • African cassava mosaic

Other Scientific Names

  • Cassava African mosaic bigeminivirus

International Common Names

  • English: cassava latent virus; cassava mosaic
  • Spanish: mosaico africano de la yuca
  • French: mosaïque africaine du manioc

Local Common Names

  • Germany: Cassava Mosaikvirus

English acronym

  • ACMV

EPPO code

  • ACMV00 (African cassava mosaic begomovirus)

Summary of Invasiveness

Top of page

Cassava is vegetatively propagated therefore ACMV and other CMGs are primarily transmitted via movement of contaminated cuttings. Consequently, introductions of specific CMGs into new localities mirror patterns of cassava cuttings exchange among farmers. Once infected cuttings are planted, the virus establishes easily and can be transmitted within and between fields through the feeding behaviour of the whitefly vector, Bemisia tabaci. ACMV is particularly invasive in that it is the most widespread of all known CMGs, occurring across all cassava-producing countries of Africa in cassava and several alternative host plants (Thottappilly et al., 2003; Alabi et al. 2015). ACMV has also been reported infecting non-cultivated exotic cotton species in Pakistan (Nawaz-Ul-Rehman et al., 2012) further underscoring its invasive nature. Yield loss due to CMD can range from 12 to 82%, depending on the cassava variety and infection type (Owor et al., 2004). ACMV is not on the IUCN or ISSG alert list.

Taxonomic Tree

Top of page
  • Domain: Virus
  •     Unknown: "ssDNA viruses"
  •         Unknown: "DNA viruses"
  •             Family: Geminiviridae
  •                 Genus: Begomovirus
  •                     Species: African cassava mosaic virus

Notes on Taxonomy and Nomenclature

Top of page

African cassava mosaic virus (ACMV) is a member of the genus Begomovirus in the family Geminiviridae. ACMV was the first of 10 recognized and one tentative begomovirus species characterized from cassava plants affected by cassava mosaic disease (CMD). Historically, the first report of CMD came from the Usambaras Mountains range in northeast Tanzania in 1894. The disease was named as ‘Kräuselkrankheit’, a German word that translates to ‘rippling/crinkling illness’ (Warbug, 1894) which describes symptoms observed on affected plants. Although a virus was originally suggested to be the causal agent of CMD (Zimmermann, 1906) and its transmission by Bemisia spp. whiteflies demonstrated (Chant, 1958), it was not until the 1970s when small, quasi-isometric, geminate particles were found in leaf tissue samples from symptomatic CMD-affected cassava (Harrison et al., 1977). The virus was momentarily named as cassava latent virus (CLV) because its sap inoculation into Nicotiana clevelandii did not produce symptoms in this herbaceous host (Bock et al., 1978). Following the molecular characterization of CLV (Stanley and Gay, 1983), the virus was successful sap-inoculated onto N. benthamiana and cassava and typical CMD symptoms produced (Bock and Woods, 1983) thus fulfilling Koch’s postulates and prompting a name change from CLV to ACMV. Fifteen years later, an infectious clone of ACMV was developed and its infectivity onto cassava via biolistic inoculation achieved (Briddon et al., 1998). Over the course of several decades, nine additional viruses and one tentative species have been characterized from CMD-affected cassava worldwide. They are: East African cassava mosaic virus (EACMV; Hong et al., 1993), East African cassava mosaic Malawi virus (EACMMV; Zhou et al., 1998), South African cassava mosaic virus (SACMV; Berrie et al., 1998), East African cassava mosaic Cameroon virus (EACMCV; Fondong et al., 2000), Indian cassava mosaic virus (ICMV; Mathew and Muniyappa, 1992; Saunders et al., 2002), Sri Lankan cassava mosaic virus (SLCMV; Saunders et al., 2002), East African cassava mosaic Zanzibar virus (EACMZV; Maruthi et al., 2004), East African cassava mosaic Kenya virus (EACMKV; Bull et al., 2006) and Cassava mosaic Madagascar virus (CMMGV; Harimalala et al., 2012). A recombinant virus, African cassava mosaic Burkina Faso virus (ACMBFV; Tiendrébéogo et al., 2012) was also characterized from disease-affected cassava but is yet to be recognized as a bona fide species by the International Committee on Taxonomy of Viruses (ICTV). Besides ICMV and SLCMV, all other CMD-associated viruses are of African origin. All CMD-associated viruses are collectively called cassava mosaic geminiviruses (CMGs) or cassava mosaic begomoviruses (CMBs).


Top of page

The first elucidation of ACMV was achieved when electron micrographs obtained from sap extracts from symptomatic cassava leaves revealed twinned (geminate), small, quasi-isometric particles measuring 15-20 nm in diameter (Harrison et al., 1977; Böttcher et al., 2004). The particle size measures 20 x 30 nm and comprises a 30 kDa coat protein (Stanley et al., 2005). The coat protein encapsidates the bipartite, circular ssDNA DNA A and DNA B genome components of ACMV that are each ~2.7 Kb.

Both genome components are needed for efficient transmission of ACMV and its establishment in otherwise healthy cassava plants (Liu et al., 1997). Once the vector has acquired the virus, a 6-8 hour latent period must elapse before the vector can transmit the virus over an inoculation access period of 20-30 minutes (Dubern, 1994). After acquiring the virus, viruliferous whiteflies remain infective for 9 days but progenies of infective whiteflies do not retain the virus (Dubern, 1994). Thus ACMV is transstadially, but not transovarially, transmitted (Dubern, 1994). Compared with the Asian Bemisia tabaci, the African B. tabaci is more efficient in transmitting CMGs from Africa than those from Asia suggesting a phenomenon of virus-vector-co-adaptation within the cassava pathosystem (Maruthi et al., 2002). Apart from B. tabaci, other whitefly species such as Bemisia afer are known to transmit ACMV (Palaniswami et al., 1996) albeit at a lower efficiency.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


IndiaWidespreadEPPO, 2014
-Andhra PradeshPresentEPPO, 2014
-KarnatakaPresentEPPO, 2014
-KeralaPresentEPPO, 2014
-Tamil NaduPresentEPPO, 2014
IndonesiaWidespreadEPPO, 2014
PakistanPresentIntroducedNawaz-Ul-Rehman et al., 2012
Sri LankaRestricted distributionEPPO, 2014


AngolaWidespreadNative2009 Invasive Kumar et al., 2009; EPPO, 2014
BeninPresentNative Invasive Gbaguidi et al., 2005; EPPO, 2014
Burkina FasoPresentNative Invasive Tiendrebeogo et al., 2012; Tiendrebeogo et al., 2012; EPPO, 2014
BurundiPresentNative Invasive Bigirimana et al., 2004; EPPO, 2014
CameroonPresentNative Invasive Fondong et al., 1998; EPPO, 2014
Cape VerdeWidespreadEPPO, 2014
Central African RepublicWidespreadEPPO, 2014
ChadWidespreadJohnson, 1992; EPPO, 2014
CongoWidespreadEPPO, 2014
Congo Democratic RepublicWidespreadEPPO, 2014
Côte d'IvoireWidespreadNeuenschwander et al., 2002; EPPO, 2014
Equatorial GuineaWidespreadEPPO, 2014
EthiopiaWidespreadEPPO, 2014
GabonWidespreadLegg et al., 2004; EPPO, 2014
GhanaWidespreadOkao-Okuja et al., 2004; EPPO, 2014
GuineaWidespreadOkao-Okuja et al., 2004; EPPO, 2014
Guinea-BissauWidespreadEPPO, 2014
KenyaWidespreadKamau et al,, 2005; EPPO, 2014
LesothoWidespreadEPPO, 2014
LiberiaWidespreadEPPO, 2014
MadagascarWidespreadEPPO, 2014; Harimalala et al., 2015
MalawiWidespreadNyirenda et al., 1993; EPPO, 2014
MauritaniaWidespreadEPPO, 2014
MauritiusWidespreadEPPO, 2014
MozambiqueWidespreadThresh and Hillocks, 2003; EPPO, 2014
NigeriaWidespreadBock and Harrison, 1985; EPPO, 2014
RwandaWidespreadLegg et al., 2001; EPPO, 2014
Sao Tome and PrincipeWidespreadEPPO, 2014
SenegalWidespreadOkao-Okuja et al., 2004; EPPO, 2014
SeychellesWidespreadEPPO, 2014
Sierra LeoneWidespreadEPPO, 2014
South AfricaWidespreadBerrie et al., 1998; EPPO, 2014
SudanWidespreadEPPO, 2014
TanzaniaWidespreadNative Invasive Ndunguru et al., 2005; EPPO, 2014
-ZanzibarPresentNative Invasive Ndunguru et al., 2005
TogoWidespreadEPPO, 2014
UgandaWidespreadOtim-Nape et al., 1997; EPPO, 2014
ZambiaWidespreadEPPO, 2014; Mulenga et al., 2016
ZimbabweWidespreadEPPO, 2014

History of Introduction and Spread

Top of page

ACMV is thought to be native to the African continent and its islands. Although the primary host, cassava, was introduced to Africa from South America in the sixteenth and eighteenth centuries, ACMV has not been reported in the Americas but its disease symptoms were first reported in Tanzania in the nineteenth century (Warbug, 1894) and the causal pathogen studied (Storey, 1936; Storey and Nichols, 1938; Bock and Woods, 1983). In mainland Africa, ACMV occurs in virtually all cassava-growing regions spanning East Africa (Legg, 1999; Ndunguru et al., 2005, 2016; Bull et al., 2006), West and Central Africa (Fauquet and Fargette, 1990; Fondong et al. 2000; Ogbe et al., 2003, 2006; Alabi, 2009) and Southern Africa (Mabasa, 2007; Cossa, 2011; Chikoti et al., 2013; Mulenga et al., 2016). In the 1930s, ACMV symptoms on cassava plants were noticed in Madagascar (Cours et al., 1997) and its distribution alongside other CMGs mapped (Harimalala et al., 2015). Several reports of ACMV in Seychelles, Zanzibar and other islands exist (Fauquet and Fargette, 1990; Thresh and Cooter, 2005). ACMV has a relatively stable genome with fewer species than EACMV-type CMGs but recently a tentative ACMV-like recombinant begomovirus, African cassava mosaic Burkina Faso virus (ACMBFV) was characterized in Burkina Faso (Tiendrébéogo et al., 2012) indicating plasticity of the ACMV genome.

Risk of Introduction

Top of page

Cassava is a vegetatively propagated crop and this mode of propagation is exploited by CMGs, their genetic variants and sequences enhancing geminivirus symptoms (SEGS) for their spread distal to the infection loci. As most farmers have little or no knowledge of the viral aetiology of symptomatic plants, there is a high frequency of farmer-to-farmer exchange of virus-infected planting material and CMGs take advantage of this to launch into CMD-free areas (Alabi et al., 2015). This is arguably the primary route for spread of ACMV across most cassava-growing regions.  

Secondarily, CMGs are also acquired and transmitted from virus-infected plants to healthy plants through the feeding behaviour of the whitefly vector, Bemisia tabaci. However, this occurs over short distances (within field) because B. tabaci is a ‘weak’ flier (Chant, 1958; Dubern, 1994). However, aided by the direction of the prevailing wind, whiteflies can spread CMGs over long distances within and between fields (Fargette et al., 1990). Studies have shown that B.tabaci populations from specific geographical regions exhibit lower virus transmission efficiency (Maruthi et al., 2002) with the consequence that huge whitefly populations are more important in the spread of ACMV than the transmission efficiency of individual insects (Legg, 2010). But the population dynamics of B. tabaci is influenced by many factors including environmental and biological factors as well as abundance of susceptible cassava varieties. High whitefly populations are therefore highly likely in countries with a biannual rainfall pattern that fosters continuous ‘green bridges’ for perpetuation of the whitefly’s preferred cassava foliar stages for feeding and reproduction. This is probably the more likely reason for the pandemic spread of the more severe form of CMD in East Africa. Once introduced into a new area, CMD eradication is difficult because besides cassava, there are known wild hosts of ACMV and the other CMGs that also support substantial whitefly pest densities (Alabi et al., 2015).

Hosts/Species Affected

Top of page

ACMV, like the other CMGs, are primarily borne in cassava vegetative cuttings. Emerging leaves from such cuttings may manifest CMD symptoms and serve as sources of virus inoculum for secondary spread within and across fields by the whitefly vector. True cassava seeds are not known to carry the virus (Dubern, 1994). Depending on the mode of infection, symptoms appear in the first emerging leaves for cutting infection and 12-20 days after inoculation by viruliferous whiteflies (Storey and Nichols, 1938) usually determined by varietal characteristics.

Host Plants and Other Plants Affected

Top of page

Growth Stages

Top of page Flowering stage, Seedling stage, Vegetative growing stage


Top of page

CMGs cause a variety of foliar symptoms on cassava but no pattern is ascribed to any one single virus. Generally, symptoms include yellow or green mosaic, mottling, and misshapen and twisted leaflets (Thottappilly et al., 2003; Alabi et al., 2011). The display of the symptoms may vary in distribution in the fields, from plant to plant and even on the same plant. The pattern of foliar symptoms is influenced by the associated virus species, the presence of sequences enhancing geminivirus symptoms (SEGS) (Ndunguru et al., 2016) and the presence of single or mixed infections, age of the plant, variety responses to infection and environmental factors (Legg and Thresh, 2000; Maruthi et al., 2002Ogbe et al., 2003). Studies have shown that severe symptoms are usually characteristic of plants infected by mixtures of CMGs, their recombinant variants and/or SEGS. This was evident in plants infected by ACMV/ East African cassava mosaic Uganda variant (EACMV-UG) first recorded in Uganda in the 1990s (Zhou et al., 1998). EACMV-UG is a recombinant virus that arose from recombination of portions of the genomes of ACMV and EACMV (Zhou et al., 1997). The time to symptom expression in an infected plant depend on the mode of infection. Planting material sourced from infected stock display ACMV symptoms in the first few emerging leaves (cutting-borne infection) whereas ACMV infections facilitated by whiteflies (vector-borne infection) require a lag period before the virus titre can build up to levels capable of eliciting symptoms.

Field diagnosis of CMD symptoms may be confusing especially if the fields are also infested with cassava green mites (CGMs); with symptoms looking more severe than normal. Although CMGs affect cassava plants to varying levels of severity, the symptoms produced cannot easily be ascribed to any one virus species by visual inspection of diseased leaves. This is because the mosaic symptoms do not form characteristic patterns associated with specific viruses. In infection complexes, therefore, it is important to confirm the causal species through PCR and ELISA methods.

List of Symptoms/Signs

Top of page
SignLife StagesType
Growing point / dwarfing; stunting
Leaves / abnormal colours
Leaves / abnormal forms
Leaves / abnormal patterns
Roots / reduced root system
Whole plant / distortion; rosetting
Whole plant / dwarfing

Means of Movement and Dispersal

Top of page

Vector transmission (biotic)

Vector transmission is the most important and efficient means of within field transmission of ACMV from infected plants to healthy ones. The virus is transmitted in a non-persistent manner and transmission can be optimal with as few as 10 viruliferous whiteflies (Dubern, 1994). Vector mobility is key in ACMV transmission over short (within field) and long (between fields) distances and is aided by wind direction (Fargette et al., 1990).

Accidental introduction

This is not known to be a factor in introduction of ACMV to virus-free areas.

Intentional introduction

There is no information on the intentional introduction of ACMV to new areas, but the literature indicates that most farmers are unfamiliar with the viral aetiology of symptomatic plants, with the consequence that they are oblivious to the presence of the disease in the selection of commonly shared or traded planting materials (Alabi et al., 2015). This is arguably the most important route of movement of ACMV and other CMGs across regions.

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Breeding and propagationCassava breeding programmes routinely screen their materials for virus presence. However, viruses present in very low concentrations undetectable using traditional diagnostic assays may escape detection Yes
Crop productionACMV is frequently spread via planting of contaminated cassava cuttings Yes Yes Thottappilly et al., 2003; Alabi et al., ; ,
People sharing resourcesFarmers frequently share cassava cuttings oblivious of their virus status Yes Yes Thottappilly et al., 2003; Alabi et al., ; ,

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
WindWind-aided dispersal of viruliferous whiteflies may contribute to field spread Yes Yes Legg, 2010

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Yes Pest or symptoms usually invisible

Vectors and Intermediate Hosts

Top of page
Aleurotrachelus socialisInsect
Bemisia tabaciEFSA Panel on Plant Health, 2013. Insect

Impact Summary

Top of page

Economic Impact

Top of page

The economic impact of ACMV as a single virus is not clearly stated in the literature. However, collectively CMGs have been shown to cause varying levels of yield loss depending on whether they occur as single or mixed infections and the susceptibility of varieties infected (Owor et al., 2004). Because of the difficulty of measuring yield loss attributed only to ACMV or to CMGs, the majority of yield loss estimates were conducted in the twentieth century (Thresh et al., 1994; Thottappilly et al., 2003; Legg et al., 2004). At the time, annual yield loss estimates were approximated at 15% and 24% translating to 12-23 million tonnes or US$ 1.2-2.3 billion (Thresh et al., 1997). In other studies, yield loss estimates were revised upwards to 30% in a region-wide assessment of sub-Saharan Africa (Legg and Thresh, 2000; Legg et al., 2006).

Social Impact

Top of page

CMD-related yield loss not only impacts crop performance but disrupts the livelihoods of people that depend on cassava as a staple. This was evident in East Africa when a regional pandemic of an unusually severe form of CMD began in Uganda in the early to mid-1990s (Gibson et al., 1996; Otim-Nape et al., 1997) and spread across the East African region causing severe crop loss. The East African CMD pandemic resulted in famine-related deaths (Otim-Nape et al., 1998) reminiscent of the infamous potato late blight disease outbreak in Ireland in the nineteenth century (Alabi et al., 2015).

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Tolerant of shade
  • Has high genetic variability
Impact outcomes
  • Altered trophic level
  • Host damage
  • Increases vulnerability to invasions
  • Negatively impacts agriculture
  • Negatively impacts livelihoods
  • Negatively impacts trade/international relations
Impact mechanisms
  • Rooting
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Highly likely to be transported internationally illegally
  • Difficult/costly to control


Top of page

Distinct foliar mosaic symptoms induced by virus infection of cassava plants can be used for visual diagnosis of CMD but identification of the CMGs involved in the disease requires serological and/or molecular assays.

For purposes of detection, ACMV can be detected using polyclonal antibodies applied in Enzyme-linked immunosorbent assay (ELISA) in Double antibody sandwich (DAS) ELISA formats capable of detecting the virus in leaf extracts (Sequeira and Harrison, 1982). Monoclonal antibodies capable of discriminating CMGs can be used for rapid detection of CMGs using Triple- antibody sandwich-ELISA (Thomas et al., 1986). The different forms of ELISA are versatile and can be used to screen large field samples but they are of limited use for the discrimination of mixed virus infections due to similarities in coat protein epitopes of CMGs (Thottapilly et al., 2003). Mixed virus infections can be detected and diagnosed using polymerase chain reaction (PCR) methods in singleplex (Fondong et al., 2000; Berry and Rey, 2001; Pita et al., 2001; Ndunguru et al., 2005; Ogbe et al., 2006; Alabi et al., 2008; Sserubombwe et al., 2008; Monde et al., 2010) and multiplex (Ndunguru et al., 2005; Ogbe et al., 2006; Alabi et al., 2008Abarshi et al., 2012; Aloyce et al., 2013) formats. 

Detection and Inspection

Top of page

Symptoms caused by ACMV are not distinguishable from those caused by other CMGs by visual inspection. However, mosaic patterns on cassava leaves indicate the presence of one or more of the CMD causal viruses, which can be discriminated using various diagnostic tools described under Diagnosis.

Similarities to Other Species/Conditions

Top of page

ACMV and other CMGs are indistinguishable from each other on the basis of foliar symptoms. Serological assays also have limitations for distinguishing CMGs. ACMV and other CMGs can best be distinguished using molecular approaches with virus-specific oligonucleotides.

Prevention and Control

Top of page

Approaches to CMD management have been discussed in several review articles (Atiri et al., 2004; Thresh and Cooter et al., 2005; Vanderschuren et al., 2007). They include crop resistance, CMD avoidance and cultural control, vector management, monitoring and survey.

Crop Resistance

Over the years, conventional breeding for resistance to ACMV and other CMGs has been the main thrust for prevention and control of cassava mosaic disease (Thresh and Cooter, 2005; Dixon et al., 2001, 2010). In the initial stages of breeding efforts, various sources of resistance were identified but Manihoti glaziovii was initially the sole candidate resistance gene source (Jennings, 1994). Later efforts included cassava landraces in the resistance gene pool (Fregene et al., 2001). Crosses between different cassava varieties mainly from West Africa resulted in the generation of tropical Manihot species (TMS) and tropical Manihot esculenta (TME) that were considerably resistant to CMGs and were pivotal in the control of the severe form of CMD in East Africa (Legg et al., 2006). These materials were shared with many national breeding programmes in Africa for inclusion in local breeding programmes. Recently, to complement conventional breeding, efforts have been made in the development of transgenic resistance to CMD (Vanderschuren et al., 2007; 2009; Sayre et al., 2011)

Avoidance and Cultural Control

This is probably the cheapest way of managing ACMV and CMD in resource poor farmers’ fields. It involves planting of virus-free cassava cuttings obtained from a careful selection of plant materials from older crops observed to be disease-free in the previous season. Other approaches include roguing of diseased plants in the early stages of crop growth, disease avoidance by adjusting dates of planting, intercropping and varietal mixture. Results obtained from applying these management strategies have been viewed differently. Some have deemed the strategies effective (Sserubombwe et al., 2001; Fondong et al., 2002Thresh and Otim-Nape, 1994), whereas others have disputed their effectiveness (Fargette and Fauquet, 1988; Otim-Nape et al., 1997). Despite disagreements, such methods have found application with varying levels of success.

Vector Management

Chemical control of whiteflies to limit the spread of ACMV has not been widely adopted by farmers in Africa mainly due to the cost of chemicals. Biological control using parasitoids has remained at an experimental level with little to show for effective delivery of whitefly control to minimize the spread of CMGs (Legg et al., 2014, and references therein).  

Monitoring and Survey

In order to monitor changes in the CMD dynamics across sub-Saharan Africa, several surveillances have been and continue to be conducted (Ndunguru et al., 2005; Bull et al., 2006Ogbe et al., 2006; Sserubombwe et al., 2008De Bruyn et al., 2012; Harimalala et al., 2012; Muengula-Manyi et al., 2012Zinga et al., 2012; Chikoti et al., 2013; Mulenga et al., 2016). Results from these efforts have informed decisions made by government authorities in addressing the CMD disease burden in farmers’ fields via deployment of disease-resistant cultivars.


Top of page

Abarshi, M. M., Mohammed, I. U., Jeremiah, S. C., Legg, J. P., Kumar, P. L., Hillocks, R. J., Maruthi, M. N., 2012. Multiplex RT-PCR assays for the simultaneous detection of both RNA and DNA viruses infecting cassava and the common occurrence of mixed infections by two cassava brown streak viruses in East Africa. Journal of Virological Methods, 179(1), 176-184. doi: 10.1016/j.jviromet.2011.10.020

Alabi, O. J., 2009. Studies on epidemiology, molecular detection and genetic diversity of selected viruses infecting cassava and wine grapes. PhD Thesis. Washington, USA: Washington State University

Alabi, O. J., Kumar, P. L., Naidu, R. A., 2008. Multiplex PCR for the detection of African cassava mosaic virus and East African cassava mosaic Cameroon virus in cassava. Journal of Virological Methods, 154(1/2), 111-120. doi: 10.1016/j.jviromet.2008.08.008

Alabi, O. J., Kumar, P. L., Naidu, R. A., 2011. Cassava mosaic disease: A curse to food security in Sub-Saharan Africa. APSnet Features, doi: 10.1094/APSnetFeature-2011-0701

Alabi, O. J., Mulenga, R. M., Legg, J. P., 2015. Cassava mosaic. In: Virus diseases of tropical and subtropical crops, [ed. by Tennant, P., Fermin, G.]. Wallingford, UK: CAB International. 56-72.

Aloyce, R. C., Tairo, F., Sseruwagi, P., Rey, M. E. C., Ndunguru, J., 2013. A single-tube duplex and multiplex PCR for simultaneous detection of four cassava mosaic begomovirus species in cassava plants. Journal of Virological Methods, 189(1), 148-156. doi: 10.1016/j.jviromet.2012.10.007

Atiri, G. I., Ogbe, F. O., Dixon, A. G. O., Winter, S., Ariyo, O., 2004. Status of cassava mosaic virus diseases and cassava begomoviruses in sub-Saharan Africa. Journal of Sustainable Agriculture, 24(3), 5-35. doi: 10.1300/J064v24n03_03

Berrie, L. C., Palmer, K. E., Rybicki, E. P., Rey, M. E. C., 1998. Molecular characterisation of a distinct South African cassava infecting geminivirus. Archives of Virology, 143(11), 2253-2260. doi: 10.1007/s007050050457

Berry, S., Rey, M. E. C., 2001. Molecular evidence for diverse populations of cassava-infecting begomoviruses in southern Africa. Archives of Virology, 146(9), 1795-1802. doi: 10.1007/s007050170065

Bigirimana, S., Barumbanze, P., Obonyo, R., Legg, J. P., 2004. First evidence for the spread of East African cassava mosaic virus - Uganda (EACMV-UG) and the pandemic of severe cassava mosaic disease to Burundi. Plant Pathology, 53(2), 231. doi: 10.1111/j.0032-0862.2004.00971.x

Bock KR, Woods RD, 1983. Etiology of African cassava mosaic disease. Plant Disease, 67(9):994-995

Bock, K. R., Guthrie, E. J., Figueiredo, G., 1981. A strain of cassava latent virus occurring in coastal districts of Kenya. Annals of Applied Biology, 99(2), 151-159. doi: 10.1111/j.1744-7348.1981.tb05142.x

Bock, K. R., Guthrie, E. J., Meredith, G., Barker, H., 1977. RNA and protein components of maize streak and cassava latent viruses. Annals of Applied Biology, 85(2), 305-308. doi: 10.1111/j.1744-7348.1977.tb01804.x

Bock, K. R., Harrison, B. D., 1985. African Cassava Mosaic Virus. In: Descriptions of Plant Viruses , (No. 297) : Association of Applied Biologists.

Briddon, R. W., Liu, S., Pinner, M. S., Markham, P. G., 1998. Infectivity of African cassava mosaic virus clones to cassava by biolistic inoculation. Archives of Virology, 143(12), 2487-2492. doi: 10.1007/s007050050478

Brown, J. K., Fauquet, C. M., Briddon, R. W., Zerbini, F. M., Moriones, E., Navas-Castillo, J., 2012. Family Geminiviridae. In: Virus taxonomy. Ninth report of the international committee on taxonomy of viruses, [ed. by King, A. M. Q., Adams, M. J., Carstens, E. B., Lefkowitz, E. J.]. London, UK: Elsevier Academic Press. 351–373.

Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos Sobrinho, R., Silva, J. C. F., Fiallo-Olivé, E., Briddon, R. W., Hernández-Zepeda, C., Ali Idris, Malathi, V. G., Martin, D. P., Rivera-Bustamante, R., Ueda, S., Varsani, A., 2015. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 160(6), 1593-1619. doi: 10.1007/s00705-015-2398-y

Bull, S. E., Briddon, R. W., Sserubombwe, W. S., Ngugi, K., Markham, P. G., Stanley, J., 2006. Genetic diversity and phylogeography of cassava mosaic viruses in Kenya. Journal of General Virology, 87(10), 3053-3065. doi: 10.1099/vir.0.82013-0

Böttcher, B., Unseld, S., Ceulemans, H., Russell, R. B., Jeske, H., 2004. Geminate structures of African cassava mosaic virus. Journal of Virology, 78(13), 6758-6765. doi: 10.1128/JVI.78.13.6758-6765.2004

Chant SR, 1958. Studies on the transmission of cassava mosaic virus by Bemisia spp. (Aleyrodidae). Annals of Applied Biology, 46:210-215

Chikoti, P. C., Ndunguru, J., Melis, R., Tairo, F., Shanahan, P., Sseruwagi, P., 2013. Cassava mosaic disease and associated viruses in Zambia: occurrence and distribution. International Journal of Pest Management, 59(1), 63-72. doi: 10.1080/09670874.2012.752887

Cossa, N. S., 2011. Epidemiology of Cassava Mosaic Disease in Mozambique. MSc Thesis. Johannesburg, South Africa: University of Witwatersrand

Cours G, 1951. Le manioc a Madagascar. Mémoires de l'Institut Scientifique de Madagascar. Série B Biologie Végétale, 3:203-400

Cours, G., Fargette, D., Otim-Nape, G. W., Thresh, J. M., 1997. The epidemic of cassava mosaic virus disease in Madagascar in the 1930s-1940s: lessons for the current situation in Uganda. Tropical Science, 37(4), 238-248.

Dixon, A. G. O., Ogbe, F. O., Okechukwu, R. U., 2010. Cassava mosaic disease in Sub-Saharan Africa: a feasible solution for an unsolved problem. Outlook on Agriculture, 39(2), 89-94.

Dixon, A. G. O., Whyte, J. B. A., Mahungu, N. M., Ng, S. Y. C., 2001. Tackling the cassava mosaic disease (CMD) challenge in Sub-Saharan Africa: the role of plant host resistance and germplasm deployment. In: Cassava, an ancient crop for modern times: Food, health, culture, [ed. by Taylor, N. J., Ogbe, F., Fauquet, C. M.]. St. Louis, Missouri, USA: Donald Danforth Plant Sciences Center. S8–05.

Dubern J, 1994. Transmission of African cassava mosaic geminivirus by the whitefly (Bemisia tabaci). Tropical Science, 34(1):82-91

Echendu, T. N. C., Ojo, J. B., James, B. D., Gbaguidi, B., 2005. Whiteflies as vectors of plant viruses in cassava and sweet potato in Africa: Nigeria. In: Whiteflies and Whitefly-Borne Viruses in the Tropics: Building a Knowledge Base for Global Action, [ed. by Anderson, P. K., Morales, F.]. Cali, Colombia: Centro Internacional de Agricultura Tropical. 35–39.

EFSA Panel on Plant Health, 2013. Scientific Opinion on the risks to plant health posed by Bemisia tabaci species complex and viruses it transmits for the EU territory. EFSA Journal, 11(4). 3162.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization.

Fargette, D., Fauquet, C., 1988. A preliminary study on the influence of intercropping maize and cassava on the spread of African cassava mosaic virus by whiteflies. Apects Appl. Biol, 17, 195-202.

Fargette, D., Fauquet, C., Grenier, E., Thresh, J. M., 1990. The spread of African cassava mosaic virus into and within cassava fields. Journal of Phytopathology, 130(4), 289-302. doi: 10.1111/j.1439-0434.1990.tb01179.x

Fauquet C, Fargette D, 1990. African cassava mosaic virus: etiology, epidemiology, and control. Plant Disease, 74(6):404-411

Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M., Zhou, X., 2008. Geminivirus strain demarcation and nomenclature. Archives of Virology, 153(4), 783-821. doi: 10.1007/s00705-008-0037-6

Fauquet, C. M., Maxwell, D. P., Gronenborn, B., Stanley, J., 2000. Revised proposal for naming geminiviruses. Archives of Virology, 145(8), 1743-1761. doi: 10.1007/s007050070089

Fauquet, C. M., Stanley, J., 2003. Geminivirus classification and nomenclature: progress and problems. Annals of Applied Biology, 142(2), 165-189. doi: 10.1111/j.1744-7348.2003.tb00241.x

Fondong, V. N., Pita, J. S., Rey, C., Beachy, R. N., Fauquet, C. M., 1998. First report of the presence of East African cassava mosaic virus in Cameroon. Plant Disease, 82(10), 1172. doi: 10.1094/PDIS.1998.82.10.1172B

Fondong, V. N., Pita, J. S., Rey, M. E. C., Kochko, A. de, Beachy, R. N., Fauquet, C. M., 2000. Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. Journal of General Virology, 81(1), 287-297.

Fondong, V. N., Thresh, J. M., Zok, S., 2002. Spatial and temporal spread of cassava mosaic virus disease in cassava grown alone and when intercropped with maize and/or cowpea. Journal of Phytopathology, 150(7), 365-374. doi: 10.1046/j.1439-0434.2002.00775.x

Fregene, M., Okogbenin, E., Mba, C., Angel, F., Suarez, M. C., Janneth, G., Chavarriaga, P., Roca, W., Bonierbale, M., Tohme, J., 2001. Genome mapping in cassava improvement: challenges, achievements and opportunities. Euphytica, 120(1), 159-165. doi: 10.1023/A:1017565317940

Gbaguidi, B., James, B., Saizonou, S., 2005. Whiteflies as vectors of plant viruses in cassava and sweet potato in Africa: Benin. In: Whiteflies and Whitefly-Borne Viruses in the Tropics: Building a Knowledge Base for Global Action, [ed. by Anderson, P. K., Morales, F.]. Cali, Colombia: Centro Internacional de Agricultura Tropical. 30-34.

Gibson, R. W., Legg, J. P., Otim-Nape, G. W., 1996. Unusually severe symptoms are a characteristic of the current epidemic of mosaic virus disease of cassava in Uganda. Annals of Applied Biology, 128(3), 479-490. doi: 10.1111/j.1744-7348.1996.tb07108.x

Harimalala, M., Chiroleu, F., Giraud-Carrier, C., Hoareau, M., Zinga, I., Randriamampianina, J. A., Velombola, S., Ranomenjanahary, S., Andrianjaka, A., Reynaud, B., Lefeuvre, P., Lett, J. M., 2015. Molecular epidemiology of cassava mosaic disease in Madagascar. Plant Pathology, 64(3), 501-507. doi: 10.1111/ppa.12277

Harimalala, M., Lefeuvre, P., Bruyn, A. de, Tiendrébéogo, F., Hoareau, M., Villemot, J., Ranomenjanahary, S., Andrianjaka, A., Reynaud, B., Lett, J. M., 2012. A novel cassava-infecting begomovirus from Madagascar: cassava mosaic Madagascar virus. Archives of Virology, 157(10), 2027-2030. doi: 10.1007/s00705-012-1399-3

Harrison BD, Zhou X, Otim-Nape GW, Liu Y, Robinson DJ, 1997. Role of a novel type of double infection in the geminivirus-induced epidemic of severe cassava mosaic in Uganda. Annals of Applied Biology, 131(3):437-448; 21 ref

Hong, Y. G., Robinson, D. J., Harrison, B. D., 1993. Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted geminiviruses in cassava. Journal of General Virology, 74(11), 2437-2443. doi: 10.1099/0022-1317-74-11-2437

Jennings, D. L., 1994. Breeding for resistance to African cassava mosaic geminivirus in East Africa. Tropical Science, 34(1), 110-122.

Jericho C, Thompson GJ, Gerntholtz U, Viljoen JC, 1999. Occurrence and distribution of cassava diseases in South Africa. In: Proceedings of the Scientific Workshop of the Southern African Root Crops Research Network (SARRNET), Lusaka, Zambia, 17-19 August 1998 [ed. by Akoroda MO, Teri JM]. 252-262.

Johnson A, 1992. Report, Lake Chad Farmer Training and Agricultural Development Project: American Organizations for Rehabilitation Through Training. Unpublished report. US Agency for International Development, Chad

Kamau J, Sseruwagi P, Aritua V, 2005. Whiteflies as vectors of plant viruses in cassava and sweet potato in Africa: Kenya. In: Whiteflies and Whitefly-Borne Viruses in the Tropics: Building a Knowledge Base for Global Action, [ed. by Anderson PK, Morales F]. Cali, Colombia: Centro Internacional de Agricultura Tropical. 54–60.

Kumar, P. L., Akinbade, S. A., Dixon, A. G. O., Mahungu, N. M., Mutunda, M. P., Kiala, D., Londa, L., Legg, J. P., 2009. First report of the occurrence of East African cassava mosaic virus-Uganda (EACMV-UG) in Angola. Plant Pathology, 58(2), 402. doi: 10.1111/j.1365-3059.2008.01995.x

Lazarowitz, S. G., Lazdins, I. B., 1991. Infectivity and complete nucleotide sequence of the cloned genomic components of bipartite squash leaf curl geminivirus with a broad host range phenotype. Virology (New York), 180(1), 58-69. doi: 10.1016/0042-6822(91)90009-Z

Legg, J. P., 1999. Emergence, spread and strategies for controlling the pandemic of cassava mosaic virus disease in east and central Africa. Crop Protection, 18(10), 627-637. doi: 10.1016/S0261-2194(99)00062-9

Legg, J. P., 2010. Epidemiology of a whitefly-transmitted cassava mosaic geminivirus pandemic in Africa. In: Bemisia: Bionomics and Management of a Global Pest, [ed. by Stansly, P. A., Naranjo, S. E.]. Springer Science + Business Media B. V. 233-255.

Legg, J. P., French, R., Rogan, D., Okao-Okuja, G., Brown, J. K., 2002. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Molecular Ecology, 11(7), 1219-1229. doi: 10.1046/j.1365-294X.2002.01514.x

Legg, J. P., Jeremiah, S. C., Obiero, H. M., Maruthi, M. N., Ndyetabula, I., Okao-Okuja, G., Bouwmeester, H., Bigirimana, S., Tata-Hangy, W., Gashaka, G., Mkamilo, G., Alicai, T., Kumar, P. L., 2011. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Research, 159(2), 161-170. doi: 10.1016/j.virusres.2011.04.018

Legg, J. P., Ndjelassili, F., Okao-Okuja, G., 2004. First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathology, 53(2), 232. doi: 10.1111/j.0032-0862.2004.00972.x

Legg, J. P., Okao-Okuja, G., Mayala, R., Muhinyuza, J. B., 2001. Spread into Rwanda of the severe cassava mosaic virus disease pandemic and the associated Uganda variant of East African cassava mosaic virus (EACMV-Ug). Plant Pathology, 50(6), 796. doi: 10.1046/j.1365-3059.2001.00619.x

Legg, J. P., Owor, B., Ndunguru, J., Sseruwagi, P., 2006. Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Advances in Virus Research, 67, 356–419.

Legg, J. P., Shirima, R., Tajebe, L. S., Guastella, D., Boniface, S., Jeremiah, S., Nsami, E., Chikoti, P., Rapisarda, C., 2014. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Management Science, 70(10), 1446-1453. doi: 10.1002/ps.3793

Legg, J. P., Thresh, J. M., 2000. Cassava mosaic virus disease in east Africa: a dynamic disease in a changing environment. Virus Research, 71(1/2), 135-149. doi: 10.1016/S0168-1702(00)00194-5

Liu SiJun, Bedford, I. D., Briddon, R. W., Markham, P. G., 1997. Efficient whitefly transmission of African cassava mosaic geminivirus requires sequences from both genomic components. Journal of General Virology, 78(7), 1791-1794.

Mabasa, K. G., 2007. Epidemiology of cassava mosaic disease and molecular characterization of cassava mosaic viruses and their associated whitefly Bemisia tabaci vector in South Africa. Msc. thesis Molecular and cell biology, University of the Witwatersrand

Maruthi, M. N., Colvin, J., Seal, S., Gibson, G., Cooper, J., 2002. Co-adaptation between cassava mosaic geminiviruses and their local vector populations. Virus Research, 86(1/2), 71-85. doi: 10.1016/S0168-1702(02)00051-5

Maruthi, M. N., Seal, S., Colvin, J., Briddon, R. W., Bull, S. E., 2004. East African cassava mosaic Zanzibar virus - a recombinant begomovirus species with a mild phenotype. Archives of Virology, 149(12), 2365-2377. doi: 10.1007/s00705-004-0380-1

Mathew, A. V., Muniyappa, V., 1992. Purification and characterization of Indian cassava mosaic virus. Journal of Phytopathology, 135(4), 299-308. doi: 10.1111/j.1439-0434.1992.tb04315.x

Monde, G., Walangululu, J., Winter, S., Bragard, C., 2010. Dual infection by cassava begomoviruses in two leguminous species (Fabaceae) in Yangambi, Northeastern Democratic Republic of Congo. Archives of Virology, 155(11), 1865-1869. doi: 10.1007/s00705-010-0772-3

Morris, B., Coates, L., Lowe, S., Richardson, K., Eddy, P., 1990. Nucleotide sequence of the infectious cloned DNA components of African cassava mosaic virus (Nigerian strain). Nucleic Acids Research, 18(1), 197-198. doi: 10.1093/nar/18.1.197

Muengula-Manyi, M., Nkongolo, K. K., Bragard, C., Tshilenge-Djim, P., Winter, S., Kalonji-Mbuyi, A., 2012. Incidence, severity and gravity of Cassava mosaic disease in savannah agro-ecological region of DR-Congo: analysis of agro-environmental factors. American Journal of Plant Sciences, 3(4), 512-519. doi: 10.4236/ajps.2012.34061

Mulenga, R. M., Legg, J. P., Ndunguru, J., Miano, D. W., Mutitu, E. W., Chikoti, P. C., Alabi, O. J., 2016. Survey, molecular detection, and characterization of geminiviruses associated with cassava mosaic disease in Zambia. Plant Disease, 100(7), 1379-1387.

Nawaz-ul-Rehman, M. S., Briddon, R. W., Fauquet, C. M., 2012. A melting pot of old world begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. PLoS ONE, 7(8), e40050. doi: 10.1371/journal.pone.0040050

Ndunguru, J., Legg, J. P., Aveling, T. A. S., Thompson, G., Fauquet, C. M., 2005. Molecular biodiversity of cassava begomoviruses in Tanzania:evolution of cassava geminiviruses in Africa and evidence for East Africa being a center of diversity of cassava geminiviruses. Virology Journal, 2, 21.

Ndunguru, J., León, L. de, Doyle, C. D., Sseruwagi, P., Plata, G., Legg, J. P., Thompson, G., Tohme, J., Aveling, T., Ascencio-Ibáñez, J. T., Hanley-Bowdoin, L., 2016. Two novel DNAs that enhance symptoms and overcome CMD2 resistance to cassava mosaic disease. Journal of Virology, 90(8), 4160-4173. doi: 10.1128/JVI.02834-15

Neuenschwander, P., Hughes, J. d'A., Ogbe, F., Ngatse, J. M., Legg, J. P., 2002. Occurrence of the Uganda variant of East African cassava mosaic virus (EACMV-Ug) in western Democratic Republic of Congo and the Congo Republic defines the westernmost extent of the CMD pandemic in East/Central Africa. Plant Pathology, 51(3), 385. doi: 10.1046/j.1365-3059.2002.00698.x

Ntawuruhunga, P., Okao-Okuja, G., Bembe, A., Obambi, M., Mvila, J. C. A., Legg, J. P., 2007. Incidence and severity of cassava mosaic disease in the Republic of Congo. African Crop Science Journal, 15(1), 1-9.

Ntonifor, N., James, B. D., Gbaguidi, B., Tumanteh, A., 2005. Whiteflies as vectors of plant viruses in cassava and sweetpotato in Africa: Cameroon. In: Whiteflies and Whitefly-Borne Viruses in the Tropics: Building a Knowledge Base for Global Action, [ed. by Anderson, P. K., Morales, F.]. Cali, Colombia: Centro Internacional de Agricultura Tropical. 40–45.

Nyirenda, G.K.C., Munthali, D. C., Phiri, G. S. N., Sauti, R. F. N., Gerling, D., 1993. Integrated Pest Management of Bemisia spp. white? ies in Malawi. In: Report Makoka Research Station Thondwe, Malawi

Ogbe, F. O., Dixon, A. G. O., Hughes, J. d'A., Alabi, O. J., Okechukwu, R., 2006. Status of cassava begomoviruses and their new natural hosts in Nigeria. Plant Disease, 90(5), 548-553. doi: 10.1094/PD-90-0548

Ogbe, F. O., Thottappilly, G., Dixon, A. G. O., Atiri, G. I., Mignouna, H. D., 2003. Variants of East African cassava mosaic virus and its distribution in double infections with African cassava mosaic virus in Nigeria. Plant Disease, 87(3), 229-232. doi: 10.1094/PDIS.2003.87.3.229

Okao-Okuja, G., Legg, J. P., Traore, L., Jorge, M. A., 2004. Viruses associated with cassava mosaic disease in Senegal and Guinea Conakry. Journal of Phytopathology, 152(2), 69-76. doi: 10.1046/j.1439-0434.2003.00797.x

Otim-Nape, G. W., Bua, A., Thresh, J. M., Baguma, Y., Ogwal, S., Semakula, G. N., Acola, G., Byabakama, B., Martin, A., 1997. Cassava mosaic virus disease in Uganda: the current pandemic and approaches to control. In: Cassava mosaic virus disease in Uganda: the current pandemic and approaches to control . Chatham, UK: Natural Resources Institute (NRI).65 pp.

Otim-Nape, G. W., Thresh, J. M., Shaw, M. W., 1998. The incidence and severity of cassava mosaic virus disease in Uganda: 1990-92. Tropical Science, 38(1), 25-37.

Owor, B., Legg, J. P., Okao-Okuja, G., Obonyo, R., Ogenga-Latigo, M. W., 2004. The effect of cassava mosaic geminiviruses on symptom severity, growth and root yield of a cassava mosaic virus disease-susceptible cultivar in Uganda. Annals of Applied Biology, 145(3), 331-337. doi: 10.1111/j.1744-7348.2004.tb00390.x

Palaniswami, M. S., Nair, R. R., Pillai, K. S., Thankappan, M., 1996. Whiteflies on cassava and its role as vector of cassava mosaic disease in India. Journal of Root Crops, 22(1), 1-8.

Pita, J. S., Fondong, V. N., Sangaré, A., Kokora, R. N. N., Fauquet, C. M., 2001. Genomic and biological diversity of the African cassava geminiviruses. Euphytica, 120(1), 115-125. doi: 10.1023/A:1017536512488

Rochester, D. E., Beachy, R. N., Fauquet, C. M., 1993. Geminivirus nomenclature: the need to set taxonomic standards. Archives of Virology, 132(1-2), 221-224. doi: 10.1007/BF01309856

Saunders, K., Nazeera Salim, Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G., Stanley, J., 2002. Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology , 293(1), 63-74. doi: 10.1006/viro.2001.1251

Sayre, R., Beeching, J. R., Cahoon, E. B., Egesi, C., Fauquet, C., Fellman, J., Fregene, M., Gruissem, W., Mallowa, S., Manary, M., Maziya-Dixon, B., Mbanaso, A., Schachtman, D. P., Siritunga, D., Taylor, N., Vanderschuren, H., Zhang Peng, 2011. The BioCassava Plus program: biofortification of cassava for sub-saharan Africa. Annual Review of Plant Biology, 62, 251-272.

Sequeira, J. C., Harrison, B. D., 1982. Serological studies on cassava latent virus. Annals of Applied Biology, 101(1), 33-42. doi: 10.1111/j.1744-7348.1982.tb00798.x

Sserubombwe, W. S., Briddon, R. W., Baguma, Y. K., Ssemakula, G. N., Bull, S. E., Bua, A., Alicai, T., Omongo, C., Otim-Nape, G. W., Stanley, J., 2008. Diversity of begomoviruses associated with mosaic disease of cultivated cassava (Manihot esculenta Crantz) and its wild relative (Manihot glaziovii Müll. Arg.) in Uganda. Journal of General Virology, 89(7), 1759-1769. doi: 10.1099/vir.0.83637-0

Sserubombwe, W. S., Thresh, J. M., Otim-Nape, G. W., Osiru, D. O. S., 2001. Progress of cassava mosaic virus disease and whitefly vector populations in single and mixed stands of four cassava varieties grown under epidemic conditions in Uganda. Annals of Applied Biology, 138(2), 161-170. doi: 10.1111/j.1744-7348.2001.tb00098.x

Stanley, J., Bisaro, D. M. , Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki,E. P., Stenger, D. C., 2005. Family Geminiviridae. In: Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, [ed. by Fauquet, M. C., Mayo, M. A., Maniloff, J., Desselberger, U., Ball, L. A.]. London, UK: Elsevier Academic Press. 301–326.

Stanley, J., Gay, M. R., 1983. Nucleotide sequence of cassava latent virus DNA. Nature, 301(5897), 260-262.

Storey HH, Nichols RFW, 1938. Studies of the mosaic diseases of cassava. Annals of Applied Biology, 25:790-806

STOREY, H. H., 1936. Virus diseases of East African plants. VI. A progress report on studies of disease of cassava. East African Agricultural Journal, 2, 34-9.

Swanson MM, Harrison BD, 1994. Properties, relationships and distribution of cassava mosaic geminiviruses. Tropical Science, 34(1):15-25

Thomas, J. E., Massalski, P. R., Harrison, B. D., 1986. Production of monoclonal anti- bodies to African cassava mosaic virus and differences in their reactivity with other whitefly-transmitted geminiviruses. Journal of General Virology, 67, 2739-2748.

Thottapilly, G., Thresh, J. M., Calvert, L. A., Winter, S., 2003. Cassava. In: Virus and virus-like diseases of major crops in developing countries, [ed. by Loebenstein, G., Thottapilly, G.]. Dordrecht, Netherlands: Kluwer Academic Publishers. 107-165.

Thresh JM, Otim-Nape GW, Legg JP, Fargette D, 1997. African cassava mosaic virus disease: the magnitude of the problem. African Journal of Root and Tuber Crops, 2:13-17

Thresh, J. M., Cooter, R. J., 2005. Strategies for controlling cassava mosaic virus disease in Africa. Plant Pathology, 54(5), 587-614. doi: 10.1111/j.1365-3059.2005.01282.x

Thresh, J. M., Hillocks, R. J., 2003. Cassava mosaic and cassava brown streak diseases in Nampula and Zambézia provinces of Mozambique. Roots, 8(2), 10–5.

Thresh, J. M., Mbwana, M. W., 1998. Cassava mosaic and cassava brown streak virus diseases in Zanzibar. Roots, 5(1), 6-9.

Thresh, J. M., Otim-Nape, G. W., 1994. Strategies for controlling African cassava mosaic geminivirus. In: Advances in Disease Vector Research, 10. 215-236.

Thresh, J. M., Otim-Nape, G. W., Jennings, D. L., 1994. Exploiting resistance to African cassava mosaic virus. In: Aspects of Applied Biology , (No. 39) . 51-60.

Thresh, J. M., Otim-Nape, G. W., Legg, J. P., Fargette, D., 1997. African cassava mosaic virus disease: the magnitude of the problem. African Journal of Root and Tuber Crops, 2(1/2), 13-19.

Tiendrebeogo F, Lefeuvre P, Hoareau M, Harimalala MA, Bruyn Ade, Villemot J, Traore VSE, Konate G, Traore AS, Barro N, Reynaud B, Traore O, Lett JM, 2012. Evolution of African cassava mosaic virus by recombination between bipartite and monopartite begomoviruses. Virology Journal, 9(67):(14 March 2012).

Vanderschuren, H., Alder, A., Zhang Peng, Gruissem, W., 2009. Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Molecular Biology, 70(3), 265-272. doi: 10.1007/s11103-009-9472-3

Vanderschuren, H., Stupak, M., Fütterer, J., Gruissem, W., Zhang Peng, 2007. Engineering resistance to geminiviruses - review and perspectives. Plant Biotechnology Journal, 5(2), 207-220. doi: 10.1111/j.1467-7652.2006.00217.x

Warburg, O., 1894. (Die kulturpflanzen usambaras). Mitt. Dtsch Schut- zgebieten, 7, 131.

Zhou XuePing, Liu YuLe, Calvert L, Munoz C, Otim-Nape GW, Robinson DJ, Harrison BD, 1997. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. Journal of General Virology, 78(8):2101-2111; 31 ref

Zhou XuePing, Robinson, D. J., Harrison, B. D., 1998. Types of variation in DNA-A among isolates of East African cassava mosaic virus from Kenya, Malawi and Tanzania. Journal of General Virology, 79(11), 2835-2840.

Zinga, I., Harimalala, M., Bruyn, A. de, Hoareau, M., Mandakombo, N., Semballa, S., Reynaud, B., Lefeuvre, P., Lett, J. M., 2012. East African cassava mosaic virus-Uganda (EACMV-UG) and African cassava mosaic virus (ACMV) reported for the first time in Central African Republic and Chad. New Disease Reports, 26, 17. doi: 10.5197/j.2044-0588.2012.026.017


Top of page

Nigeria: International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Oyo State,

Nigeria: National Root Crops Research Institute (NRCRI), Umudike Rd, Umudike,

Uganda: National Agricultural Research Organisation (NARO), P.O. Box 295 Entebbe Berkeley Rd, Entebbe ,

USA: Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri,

Colombia: International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira, Valle del Cauca,


Top of page

09/10/17 Original text by:

Olufemi Joseph Alabi, Department of Plant Pathology & Microbiology, Texas A&M AgriLife Research & Extension Center, Weslaco, Texas, USA

Rabson M. Mulenga, Zambia Agriculture Research Institute, Mount Makulu Central Research Station, Chilanga, Lusaka, Zambia

Distribution Maps

Top of page
You can pan and zoom the map
Save map