Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Genista monspessulana
(Montpellier broom)

Toolbox

Datasheet

Genista monspessulana (Montpellier broom)

Summary

  • Last modified
  • 19 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Genista monspessulana
  • Preferred Common Name
  • Montpellier broom
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • In its native range in the Mediterranean region, G. monspessulana is widespread but only locally abundant. It tends to form small populations. In its introduced range, however, it is an invasive environmental weed of national, state and urban parks a...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Genista monspessulana (Montpellier broom); flowering habit. Oakland, California., USA. January 2008.
TitleHabit
CaptionGenista monspessulana (Montpellier broom); flowering habit. Oakland, California., USA. January 2008.
Copyright©Calibas/via wikipedia - CC BY-SA 4.0
Genista monspessulana (Montpellier broom); flowering habit. Oakland, California., USA. January 2008.
HabitGenista monspessulana (Montpellier broom); flowering habit. Oakland, California., USA. January 2008.©Calibas/via wikipedia - CC BY-SA 4.0

Identity

Top of page

Preferred Scientific Name

  • Genista monspessulana (L.) L. Johnson (1962)

Preferred Common Name

  • Montpellier broom

Other Scientific Names

  • Cytisus candicans (L.) DC. (1805)
  • Cytisus candicans (L.) Lam. (1786)
  • Cytisus kunzeanus Willk. (1877)
  • Cytisus monspessulanus L. (1753)
  • Genista candicans L. (1755)
  • Genista eriocarpa Kunze (1846)
  • Genista syriaca Boiss. & Blanche (1856)
  • Teline monspessulana (L.) C. Koch (1869)

International Common Names

  • English: Cape broom; French broom; soft broom; teline
  • Spanish: escobones; retama; retamo liso
  • French: cytise de Montpellier; genet blanchatre; genet de Montpellier

Local Common Names

  • Germany: Montpellier- Geissklee
  • Italy: citiso di Montpellier; rutaccio
  • Spain: coniells; ginesta; ginesta de Montpellier

EPPO code

  • TLNMO (Teline monspessulana)

Summary of Invasiveness

Top of page In its native range in the Mediterranean region, G. monspessulana is widespread but only locally abundant. It tends to form small populations. In its introduced range, however, it is an invasive environmental weed of national, state and urban parks and fallow land, often forming dense monospecific stands. It is listed as a controlled weed in Australia and California, USA.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Fabales
  •                         Family: Fabaceae
  •                             Subfamily: Faboideae
  •                                 Genus: Genista
  •                                     Species: Genista monspessulana

Notes on Taxonomy and Nomenclature

Top of page Genista monspessulana (Tribe Genisteae, Family Fabaceae) is part of a large Eurasian genus of some 87 species. Fifteen species (and eight subspecies) in this genus (Percy and Cronk, 2002), including G. monspessulana and other known weeds such as G. linifolia, G. canariensis and G. stenopetala, have been historically treated morphologically as being in a separate genus Teline (Gibbs, 1968). Recent phylogenetic analyses suggest all species tested in Teline are closely related to two sub-groups represented by G. linifolia and G. monspessulana, but distinctions of this group do not merit genus status (Käss and Wink, 1997; Percy and Cronk, 2002). Genista stenopetala (leafy broom) and particularly G. canariensis (Canary broom) are often confused with G. monspessulana in the exotic range and, as such, their common names are confused. Because the origin of most alien infestations is from horticultural stock where hybridization has frequently been practised and may occur further in the field (D Cooke, Department of Water, Land and Biodiversity Conservation, Adelaide, Australia, personal communication, 2005), confusion regarding clear identification is compounded.

Despite the wide and patchy geographic distribution of G. monspessulana, only one subspecies or variety has been recognized: var. colmeiroi Bolòs and Vigo (1974); but this is not widely accepted.

The association of this species with Montpellier, France, results from the place of first taxonomic description, because this species does not commonly occur around this locality. The common name 'Cape broom' comes from a misplaced early belief that this weed originated from the Cape Verde islands (JMB Smith, Australian Antarctic Division, Kingston, personal communication, 2005).

Description

Top of page G. monspessulana is an unarmed leafy leguminous shrub, usually with one stem branching into ascendant, spreading and ridged (but not 5-sided) green stems covered with short soft hairs (Gibbs and Dingwall, 1971; Jepson, 1979). The main stem is grey and hairless and ridges reduce with age. Plants grow to 3 m. Leaves are alternate, three-foliate and petiolate (2-4 mm long). Leaflets are elliptic to obovate, 5-20 x 2.2-15 mm, often with a short point or mucro (0-0.3 mm long), upper surface virtually hairless, lower surface of leaflets varying from scattered hairs to softly hairy with hairs often more common along the midrib. Stipules 0.5-1.5 mm not persisting or prominent. Flowers pea-like, yellow 1.5-8 mm. Calyx (4-7 mm) hairy in two parts, the upper lip deeply two toothed and the lower lip indistinctly three toothed. Flowers are pedicellate and borne in a series of congested lateral racemes of three to seven flowers on indeterminate axillary branches along last year's shoot growth with new growth and leaves continuing above. Bracts of the lowermost two to three flowers sub-foliaceous, trifoliolate, those of the upper flowers reduced, unifoliolate. Pedicels 1.5-3 mm; bracteoles 0.5-1.0 mm. Standard (or large upper petal) 10-13 mm, broadly ovate, glabrous. Flowering late winter-spring and sometimes in late summer-autumn. Mature pod (legume) densely hairy, ovoid to oblong, 1.5-2.5 cm long, 3-5 mm wide with three to six (nine) seeds released explosively when ripe (Gibbs and Dingwall, 1971). Seeds strophiolate (with appendages to the hilum). Plants maintain their leaves for a year losing them soon after new leaves are formed higher up the shoot.

The characters used to separate Teline from other Genista species are the longer standard than the lower keel petals and the relatively long aril or appendage on the seed. The upright spreading growth form, height, leafy spineless shoots, and racemes of showy flowers are common to all members of the Teline group in contrast to the 'genistiform' (tussock of vertical leafless shoots) shape of other Genista species. In the field, G. monspessulana plants are conspicuous because of their upright but not rigid canopy cover and especially their abundant small yellow flowers borne along, rather than at the end, of the branches at peak flowering early in the season.

Plant Type

Top of page Broadleaved
Perennial
Seed propagated
Shrub
Woody

Distribution

Top of page In its native range, G. monspessulana is most abundant in the coastal and sub-montane slopes of the Atlas Mountains in Morocco and Algeria, southwest Corsica, France (where it co-occurs with Cytisus scoparius) and in northwest Catalonia (Spain and France). Other significant native areas for this species are France (Massif des Maures and les Cevennes), Italy (Catena Costiera and Aspromonte; Sicily in Monti Nebrodi and Madonie; Sardinia in Monte Ortobene, Nuoro), Albania, Greece (Ilía - western Peloponissos), certain eastern Aegean Islands (e.g. Rhodes), Portugal (Estremadura, western Lisboa), Spain (southwestern Andalucia) and Turkey (southern coastal Mediterranean slopes) (Gibbs and Dingwall, 1971; Sheppard, 2003; Sheppard and Thomann, 2004). Populations in the east part of this distribution have very few specific natural enemies suggesting a western centre of evolution of this species, while populations in Portugal were also species poor for natural enemies suggesting a recent expansion there (Sheppard and Thomann, 2004).

Native populations in the Mediterranean tend to be small (90% of populations observed had fewer than 100 individuals) and scattered, either as a low density and spindly understorey component of disturbed cork oak/pine forest or as dense but transient populations in post-fire regenerating maquis communities in zones of rich acidic soil and relatively high rainfall (>600 mm). This association with higher rainfall areas in the Mediterranean becomes immediately apparent in Greece where the plant is only found on one 100-km² area in the western Peloponissos. This is the only place in Greece where acid soils occur at sufficient altitude for the necessary rainfall, in an area that does not experience hard continental winters (Sheppard, 2003). Apart from G. monspessulana, the other species within the Teline group are restricted in native distribution to either the western Mediterranean or various Atlantic islands (twelve species are endemic to the Atlantic islands; Percy and Cronk, 2002). G. monspessulana's habitat restriction in its native range and its scattered occurrence around the Mediterranean give it a very patchy distribution and localized abundance across the Mediterranean region.

It its exotic range, G. monspessulana is present in a number of countries surrounding the native distribution (Syria, the Caucasus, the Azores and Armenia; Gibbs and Dingwall, 1971; ILIDIS, 2004). It is also present in North and South America, South Africa and Australasia. In Australia, it is a widespread environmental weed of national, state and urban parks and fallow land mainly in South Australia and Victoria, but also in Tasmania and southern New South Wales (Sheppard, 2000). It has been estimated to invade at least 600,000 ha in Australia. In South Australia and Victoria it is classed as a noxious weed, while in Tasmania it is a 'secondary weed'. In South Australia it is widespread but with large infestations in the Mount Lofty Ranges, Belair National Park and the Clare Valley (Crossman and Kochergen, 2002). It also poses direct costs to the Forestry Industry (D McGuire, Forestry South Australia, Meadows, Australia, personal communication, 2005). In Victoria, Montpellier broom is in the top 30 most widespread weeds with 1000 ha of dense infestation, 50,000 ha of medium infestation and 550,000 ha of scattered infestation (Lane et al., 1980). Montpellier broom is a regionally controlled weed in the Wimmera, Glenelg, Corangamite, Port Phillip East, Goulburn, North East, West Gippsland and East Gippsland Catchment and Land Protection Regions. It is widespread with the largest infestations in the Dandenong ranges National Park (Gillespie, 1991), Australian Alps National Park, Central Highlands and the Wonangatta Valley. In Tasmania, Montpellier broom is widely scattered in the east, occurring commonly in the north-east in the Great Western Tiers and on Mount Wellington. In New South Wales it occurs on the coast, the tablelands, the western slopes and southwestern plains and there are scattered infestations totalling 1200 ha in 26 local government area shires and seven reserves in five districts of the New South Wales National Parks (Leys, 1998). Significant areas infested are in the Illawarra district and New England Tablelands. A few plants have been recorded in the Margaret River area of Western Australia (Parsons and Cuthbertson, 1992).

In the USA, G. monspessulana is a widespread environmental weed of national, state and urban parks and fallow land, mainly in central California and southern Oregon (Jepson, 1979). In California it has been estimated to invade at least 40,000 ha and was first introduced as an ornamental into the San Francisco Bay region. It is classed as an A-1 weed by CalEPPC (California Exotic Pest Plant Council) and a class C weed by the Californian Department of Food and Agriculture. It is particularly prevalent along the coast from Monterey county north to Mendicino county and inland in Lake Solano and Contra costa counties and also in the Sierra Nevada foothill counties to 800 m (Bossard, 2000). It is the most important weed in Jackson State Experimental Forest. Invaded habitats include coastal plains, mountain slopes, riverbanks, road cuts, forest clear-cuts, grassland and open canopy forest on a wide range of soil types.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

ArmeniaPresent Not invasive Komarov, 1945; Grossheim, 1952
Georgia (Republic of)Present Not invasive Komarov, 1945; Grossheim, 1952
LebanonPresentNative Not invasive USDA-ARS, 2005
SyriaRestricted distributionNative Not invasive Gibbs and Dingwall, 1971; Greuter et al., 1989
TurkeyRestricted distributionNative Not invasive Gibbs and Dingwall, 1971; Greuter et al., 1989

Africa

AlgeriaPresent, few occurrencesNative Not invasive Greuter et al., 1989
MoroccoWidespreadNative Not invasive Greuter et al., 1989
South AfricaPresentIntroduced Not invasive Adamson and Salter, 1950
Spain
-Canary IslandsAbsent, intercepted onlyIntroduced Not invasive Gibbs and Dingwall, 1971
TunisiaAbsent, formerly presentNative Not invasive Greuter et al., 1989

North America

USAPresentPresent based on regional distribution.
-CaliforniaWidespreadIntroduced Invasive Jepson, 1979; Hickman, 1993
-HawaiiPresent, few occurrencesIntroduced Invasive USDA-ARS, 2005
-OregonPresent, few occurrencesIntroduced Invasive Oregon State University Herbarium, 2005

South America

ArgentinaWidespreadIntroduced Invasive Burkart, 1952
ChilePresent, few occurrencesIntroduced Invasive Burkart, 1952
ColombiaPresentIntroducedGarcia-Barriga and Forero, 1968

Europe

AlbaniaRestricted distributionNative Not invasive Gibbs and Dingwall, 1971; Greuter et al., 1989
CroatiaRestricted distributionNative Not invasive Gibbs, 1968; Greuter et al., 1989
FranceRestricted distributionNative Not invasive Gibbs, 1968; Gibbs and Dingwall, 1971; Greuter et al., 1989
-CorsicaWidespreadNative Not invasive Gibbs, 1968; Gibbs and Dingwall, 1971; Greuter et al., 1989
GreeceRestricted distributionNative Not invasive Gibbs, 1968; Gibbs and Dingwall, 1971; Greuter et al., 1989
ItalyRestricted distributionNative Not invasive Gibbs, 1968; Gibbs and Dingwall, 1971; Pignatti, 1982; Greuter et al., 1989
-SardiniaRestricted distributionNative Not invasive USDA-ARS, 2005
-SicilyRestricted distributionNative Not invasive USDA-ARS, 2005
PortugalPresent, few occurrences Not invasive Gibbs, 1968; Gibbs and Dingwall, 1971; Pignatti, 1982; Greuter et al., 1989
-AzoresAbsent, intercepted onlyIntroduced Not invasive Gibbs, 1968; Gibbs and Dingwall, 1971
SloveniaPresentNative Not invasive Gibbs, 1968; Greuter et al., 1989
SpainRestricted distributionNative Not invasive Gibbs, 1968; Gibbs and Dingwall, 1971; Greuter et al., 1989

Oceania

AustraliaPresentPresent based on regional distribution.
-New South WalesRestricted distributionIntroduced Invasive Hnatiuk, 1990
-South AustraliaWidespreadIntroduced Invasive Hnatiuk, 1990
-TasmaniaRestricted distributionIntroduced Invasive DPIWE Tasmania, 2005
-VictoriaWidespreadIntroduced Invasive Hnatiuk, 1990
-Western AustraliaPresent, few occurrencesIntroducedHnatiuk, 1990; Parsons and Cuthbertson, 1992
New ZealandRestricted distributionIntroduced Invasive Webb et al., 1988

History of Introduction and Spread

Top of page Introductions of G. monspessulana are associated with the horticultural value of its fresh green leaves and showy flowers. It probably arrived in most countries from the mid-19th to early 20th century, associated with increases in international horticultural trade. A further possibility for introductions could be its perceived value as a fodder crop (Kahsay-Berhe and Tothill, 1997). Spread has been associated with agro-forestry. Most of the key infestations probably started in rural gardens.

Risk of Introduction

Top of page As G. monspessulana is an important horticultural species, risks remain for significant further spread both through fresh introductions into countries associated with uninformed horticultural practices and illicit passage of seeds through the post. Only a few horticultural varieties of broom show a capacity for naturalization and spread. The difficulty of clear identification of the different varieties by the inexperienced will remain a significant risk, however many official horticultural bodies are aware of the risks and discourage sales of varieties known to be invasive (Atkinson and Sheppard, 2000). Similarly horticultural use requires assessment of the risks biological control agents pose for the profitability of sales of harmless varieties. As with all weeds that spread by seed, phytosanitary measures are required to prevent the movement of seeds locally via the movement of livestock or of mechanical equipment through infestations during seed pod dehiscence or when seeds cover the soil. In key areas it co-occurs with other brooms (e.g., Cystisus scoparius) posing a risk of weed replacement following control efforts.

Habitat

Top of page G. monspessulana is native to the Mediterranean basin where it is a widespread, but only locally common, component of high rainfall (>600 mm) Mediterranean maquis plant communities on acid granite, schist or old river-based soils (Gibbs, 1968; Sheppard, 2000). As part of this community, it is present in the understorey of Mediterranean evergreen or semi-deciduous Quercus or Pinus woodland or in more open situations of Quercus coccifera scrub. It co-occurs typically with other shrubs including Arbutus unedo, Erica arborea, Cistus salviifolius or C. monspeliensis and other Genisteae and is not considered invasive, appearing as flushes only after disturbance, particularly fire, and along roadsides. Amongst other Genisteae, is it usually subdominant to Cytisus villosus, Calicotome villosa or Calicotome spinosa. Cytisus arboreus, Adenocarpus telonensis and Spartium juncaeum and, occasionally, C. scoparius can also co-occur with it.

In exotic communities, G. monspessulana appears less restricted by habitat type and soil pH. It has become a major widespread weed in native and commercial forest ecosystems, in disturbed habitats, and along water courses. Invaded habitats include sclerophyllous recreational and commercial forests, open woodland, along roadsides, railways and river systems from 0-1000 m altitude, coastal plains, mountain slopes, riverbanks, road cuts, forest clear-cuts, grassland and open canopy forest.

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedManaged forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Managed grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Disturbed areas Present, no further details Harmful (pest or invasive)
Rail / roadsides Present, no further details Harmful (pest or invasive)
Urban / peri-urban areas Present, no further details Harmful (pest or invasive)
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details Harmful (pest or invasive)
Natural grasslands Present, no further details Harmful (pest or invasive)
Riverbanks Present, no further details Harmful (pest or invasive)
Littoral
Coastal areas Present, no further details Harmful (pest or invasive)

Hosts/Species Affected

Top of page G. monspessulana is a significant weed of forestry, particularly in pine and eucalypt plantations, where it either smothers planted saplings and reduces their growth or prevents natural regeneration. In native woodland situations (e.g. Californian redwood forests, USA), it can reduce natural regeneration by shading. Natural regeneration in woodland can be reduced following the hotter natural fires which result from the higher fuel load provided by the infestation.

Biology and Ecology

Top of page Genetics

Significant morphological variation observed between infestations in different locations (variation in bushiness and leaf size) can largely be associated with habitat (i.e., in the open or understorey). While there is little outward morphological variation associated with geographic distribution (e.g. flower colour), natural populations scattered around the Mediterranean will have had significant long-term reproductive isolation, which is likely to be associated with degrees of genetic distance. In exotic populations, the historic horticultural importation and associated hybridization activities with other species in the Teline group suggest that exotic populations may nonetheless exhibit genetic variation and as such may not be identical to native G. monspessulana material (D Cooke, Department of Water, Land and Biodiversity Conservation, Adelaide, Australia, personal communication, 2005). A study of such variation is required to clarify such suppositions. Several commercially available broom varieties are of hybrid stock, e.g. Cytisus 'Porlock' is considered to be a hybrid between G. monspessulana and Cytisus x spachianus sensu hort. Cytisus x spachianus has a range of varietal names (Cytisus racemosus Hort, Cytisus 'Racemosus Nana', Cytisus praecox 'Nana', Cytisus 'Racemosus Scoparius Nanus', Genista racemosa Hort, Genista hispanica sensu Macoboy, and Genista x spachiana) and is considered to be a hybrid between G. canariensis and G. stenopetala (Rowell, 1991; Atkinson and Sheppard, 2000) and has also naturalized in some areas (Parsons and Cuthbertson, 1992).

Physiology and Phenology

G. monspessulana can live up to 13 years, but this is extremely rare with most mature plants dying between the ages of 3 and 7 years (Lloyd, 2000). Old plants are also rarer in the native range. Annual growth is such that axillary meristems, produced on the main axis, grow up into lateral vegetative shoots at the same time as extension of the main axis. The top of the vegetative shoots produces racemes of lateral axillary flower clusters in the subsequent year while the main axis of the shoot continues to grow and produce leaves above the flowering zone as the season progresses. Secondary flowers may be produced as part of a second flowering higher up the shoot a few months later in the same season on young actively growing plants. Photosynthesis occurs in the green stems and leaves. Young stems remain green for at least 1 year and the persistent leaves allow photosynthesis to occur throughout the growing season. Leaves are shed one year later as new leaves are produced in spring higher up the shoot. Shaded plants adapt by having lower branches and larger leaves.

Adult Montpellier broom is fairly drought tolerant, although the ca. 600 mm minimum rainfall required suggests some life stages, probably the seedlings, are relatively drought intolerant. Germination occurs following seasonal rains mainly in the spring and autumn (mainly in autumn in the native range). Big flushes of germination follow large-scale disturbance, droughts and fires after rain and can probably occur at any time of the year.

G. monspessulana is a typical Mediterranean species and is likely to have relatively high optimal temperatures for photosynthesis. The period of most rapid growth is in spring/summer, but plants can grow all year round if humidity and temperature conditions are suitable as there is no obligate winter dormancy typical of more temperate species such as Cytisus scoparius. Flowering is early season; February until early June (or July in Coastal California, USA; Bossard, 2000) with seed pod dehiscence in July in the northern hemisphere and August until November with seed pod dehiscence in January in the southern hemisphere.

Reproductive Biology

G. monspessulana reproduces only by seed from the second year and twice a year when young. Age structures in the native range are mostly bell shaped with age classes of 2-4 years dominant, few new recruits and few older plants (Lloyd, 2000). This is consistent with populations being generated by pulsed opportunities for recruitment associated with fire and other disturbance. Native populations appear to be mainly early successional, being replaced by later successional species. Age structures in the exotic range fit a 'reversed J' distribution better, with highest numbers in the youngest age class and numbers declining with increasing age. This indicates that invading alien populations, in contrast to the native range, have continuous recruitment with seedlings regaining spaces left by dying older plants in what are clearly more persistent populations. This agrees with observations that Montpellier broom in invading infestations tends to form dense monospecific stands.

Flowers can self pollinate, but the fertilization rate is 50% lower with autogamous pollen and successful fertilization requires that the flowers are tripped by a pollinator (Parker and Haubensak, 2002). Flower abortion rate in exotic stands varies from 70 to 95% and this could be only partially explained by pollen limitation, suggesting resources were the main factor limiting seed production (Parker and Haubensak, 2002). Seed production increases asymptotically with plant age for all populations, peaking at ca. 100,000 seeds per plant for 5- to 6-year-old individuals growing without competition (Lloyd, 2000). In the exotic range in California, USA, seedbanks, up to 9000 seeds/m² have been recorded (Parker and Kersner, 1989; Alexander and D'Antonio, 2003) and seed banks were found not to increase significantly with stand age suggesting annual seedbank losses quickly equalled annual seed rain (Alexander and D'Antonio, 2003). In Australia, annual seed rain can range from 2500 to 13,500 seeds/m², setting up seedbanks of between 30,000 and 100,000 m² with an annual seedbank decay rate of 23-50% largely resulting from failed germination.

The annual probability that a seed in the seedbank will become a seedling is about 0.01, while the probability of this seedling surviving the first year is about 0.07 following either anthropogenic disturbance or fire (Pareja, 1999). In the native Mediterranean range, the plant generates smaller seedbanks 500-900/m². In the native range, G. monspessulana suffers high levels of herbivory from goats, stem miners, insects in seedpods and post dispersal seed predation by rodents (J Lloyd, Weeds CRC, University of Adelaide, Australia, unpublished data).

Environmental Requirements

G. monspessulana can be found at up to ca. 1000 m altitude. Altitudinal and latitudinal limits are set by persistent low winter temperatures and rainfall on seedling survival (González-Andrés and Ortiz, 1996a). It is also poorly adapted to consistently cold temperate winters, showing little capacity to shut down growth over winter. In a Mediterranean climate, however, it will quickly overtop more winter dormant temperate species, like C. scoparius, because it can grow as soon as conditions are suitable such as during warm weeks in winter. In Spain it was found to grow 140 cm in two growing seasons and faster than other brooms (González-Andrés and Ortiz, 1996a). The plant appears able to tolerate windy conditions and will occur on steep, sparsely vegetated slopes. G. monspessulana seedlings require persistent moisture to survive and seedlings are less frost tolerant than those of Cytisus scoparius (González-Andrés and Ortiz, 1996a). G. monspessulana infestations do not collectively senesce in the way C. scoparius populations do (Peterson and Prasad, 1998), instead individuals die and drop out of the stand over a broad age range and are quickly replaced by juveniles (exotic range) or other species (native range). In drier climates broom can remain a highly invasive species associated with the banks or braided riverbeds of watercourses or along drainage lines. In its native range, broom is a calcifuge (Polunin and Smythies, 1973). In the exotic range, however, this broom occurs on a broader range of soils derived from a wide variety of substrates, particularly river sand, schist, granite, basalt or siliceous soils, and can even grow reasonably well on alkaline soils up to pH 8 (González-Andrés and Ortiz , 1996b). It does not flourish on calcareous soils. Plants establish best after soil or vegetation disturbance, caused by animals, fire or herbicide treatments, for example. Montpellier broom is quite tolerant of heavy shade as it persists as an understorey plant at least in forest gaps and trails even with quite dense canopy cover. Seedlings can tolerate up to 80% shade (C Bossard, St Mary's College, Moraga, California, USA, unpublished data) allowing broom to persist in woodland and forests. Seedling survival tends to be significantly lower beneath parental or other relatively dense canopy cover.

Associations

G. monspessulana is associated with specific nitrogen-fixing bacteria of the genus Bradyrhizobium (González-Andrés and Ortiz, 1999). Bacterial associations in root nodules allow this plant to grow faster survive better and have higher nitrogen content assisting competition and invasion on nitrogen-poor soils.

Air Temperature

Top of page
Parameter Lower limit Upper limit
Absolute minimum temperature (ºC) -15
Mean annual temperature (ºC) 10 20
Mean maximum temperature of hottest month (ºC) 20 40
Mean minimum temperature of coldest month (ºC) 2 10

Rainfall

Top of page
ParameterLower limitUpper limitDescription
Dry season duration012number of consecutive months with <40 mm rainfall
Mean annual rainfall6003000mm; lower/upper limits

Rainfall Regime

Top of page Bimodal
Summer
Uniform
Winter

Soil Tolerances

Top of page

Soil drainage

  • free

Soil reaction

  • acid
  • neutral

Soil texture

  • light
  • medium

Special soil tolerances

  • infertile
  • shallow

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Agrilus antiquus Herbivore Roots/Stems
Agrilus cinctus Herbivore Roots/Stems
Arytinnis hakani Herbivore Growing point/Leaves
Bruchus villosus Herbivore Seeds
Chyliza leptogaster Herbivore Roots/Stems
Lepidapion Herbivore Seeds
Oryxolaemus Herbivore Leaves
Pachytychius sparsutus Herbivore Seeds
Trifurcula serotinella Herbivore Leaves
Uresiphita ornithopteralis Herbivore Leaves
Uresiphita polygonalis Herbivore Leaves
Uresiphita reversalis Herbivore Leaves
Uromyces genistae Pathogen Leaves

Notes on Natural Enemies

Top of page The arthropod natural enemies of G. monspessulana have been the subject of recent studies (Sheppard, 2000, 2003; Sheppard and Thomann, 2004). At least 90 arthropod species are associated with Montpellier broom in Europe, and several other generalist species are now found on broom in its exotic range (Sheppard, 2003; Sheppard and Thomann, 2004). Of these, 52 species are considered specific at least to the level of the tribe. Currently only four species seem likely to be specific to G. monspessulana; the psyllid Arytinnis hakani, the apionids (Lepidapion sp. nov. and Oryxolaemus sp. nov.) and the nepticuliid (Trifurcula serotinella). The eriophyid mite Aceria genistae has also been recorded from G. monspessulana in the USA (Chan and Turner, 1998). Natural enemies that have caused noticeable damage in the native range sufficient to affect Montpellier broom growth and spread are listed in the table. In the native range, this broom is regularly defoliated by the moth Uresiphita polygonalis and a combination of stem boring insects regularly kills immature plants in eastern France. The pathogen Uromyces genistae attacks the older leaves in spring/summer in Europe and the USA (Guynot and Massenot, 1958; Sheppard, 2000).

In the native range, goats are probably another significant factor limiting the abundance of this plant, given their ubiquitous occurrence, and that most Mediterranean species in the Genisteae are spiny. No published data are available on the impact of natural enemies of Montpellier broom in the native range. In the USA, Uresiphita reversalis can defoliate G. monspessulana, but plants just regrow leaves after larval stages finish development (Montllor et al., 1990, 1995).

Means of Movement and Dispersal

Top of page All movement and spread of G. monspessulana occurs through the movement of seeds. Most widespread movement is considered to have occurred rapidly due to poor human practice (Bossard et al., 1995).

Natural Dispersal (Non-Biotic)

Several cases of broom spread have resulted from movement from the top of water catchments, down river systems and out into the surrounding landscape, particularly during flood conditions (McClintock, 1985).

Vector Transmission (Biotic)

Wild or feral animals and birds are important agents of short-distance dispersal in pasture and upland areas, both by carrying seeds and creating disturbance that assists germination and recruitment. Some secondary local dispersal may be due to ants (McClintock, 1985).

Agricultural Practices

Spread is known to have occurred via movement of farm equipment, and through the activities of grazing livestock through semi-natural vegetation systems (Parsons and Cuthbertson, 1992).

Accidental Introduction
Dispersal of seeds may occur in mud attached to all-terrain vehicles and ramblers' boots (Parsons and Cuthbertson, 1992).

Intentional Introduction

G. monspessulana was introduced into most countries for its floral interest (Parsons and Cuthbertson, 1992). Many infestations initially result from garden escapes, followed by other biotic or non-biotic factors assisting spread (Bossard et al., 1995).

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Land vehicles Yes
Mailseed catalogues; internet Yes
Plants or parts of plants Yes
Soil, sand and gravelriver sand Yes

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Fruits (inc. pods) fruits; seeds
Growing medium accompanying plants seeds
True seeds (inc. grain) seeds
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs/Tubers/Corms/Rhizomes
Flowers/Inflorescences/Cones/Calyx
Leaves
Stems (above ground)/Shoots/Trunks/Branches
Wood

Impact Summary

Top of page
CategoryImpact
Animal/plant collections None
Animal/plant products None
Biodiversity (generally) Negative
Crop production None
Environment (generally) Negative
Fisheries / aquaculture None
Forestry production Negative
Human health None
Livestock production Negative
Native fauna None
Native flora Negative
Rare/protected species Negative
Tourism Negative
Trade/international relations None
Transport/travel None

Impact

Top of page No economic assessment of G. monspessulana broom has been carried out. Costs of spraying in state forests in South Australia are more than A$100K per year (D McGuire, Forestry South Australia, Meadows, Australia, personal communication, 2005). Much higher costs would be required in Jackson State Forest in California, USA, however public pressure prevents the use of herbicides and so the costs are associated with the salaries of staff paid to mechanically remove it.

G. monspessulana foliage and seeds are toxic containing a wide variety of quinolizidine alkaloids especially in young leaves (Montllor et al., 1990). Ingestion of the plant can cause staggering followed by paralysis in some livestock (McClintock, 1985). Foliage can also cause digestive disorders in horses (Parsons and Cuthbertson, 1992).

Environmental Impact

Top of page The problems caused by G. monspessulana in its exotic range result from its tendency to form monospecific stands that shade out native species, slow reforestation, increase fire frequency and intensity and alter water cycling that may have dramatic impacts on ecosystem function (Parsons and Cuthbertson, 1992). The capacity of brooms to fix nitrogen is thought to alter soil nitrogen profiles and, through this change, the suitability of infested localities to support certain native species that are adapted to low nitrogen soils and allow invasion by other species (Smith, 2000). Broom stands can also encourage other exotic feral animals and birds (Smith, 2000).

Impact: Biodiversity

Top of page In South Australia, G. monspessulana poses a direct threat to remnant habitats occupied by rare and endangered native species including Pultenaea involucrata, Boronia edwardsii and Correa decumbens in the Mount Lofty Ranges, and the only known large population of Pterostylis cucullata in South Australia (Groves and Hosking, 1997). Arthropod biodiversity was found to be reduced by a third in the Golden Gate Recreational Area, California, USA, by the presence of Montpellier broom (Lanford and Nelson, 1992).

Threatened Species

Top of page
Threatened SpeciesConservation StatusWhere ThreatenedMechanismReferencesNotes
Chorizanthe pungens (Monterey spineflower)NatureServe NatureServe; USA ESA listing as threatened species USA ESA listing as threatened speciesCaliforniaCompetition (unspecified)US Fish and Wildlife Service, 2009a
Cupressus goveniana var. goveniana (Gowen cypress)EN (IUCN red list: Endangered) EN (IUCN red list: Endangered); NatureServe NatureServe; USA ESA listing as threatened species USA ESA listing as threatened speciesCaliforniaCompetition - monopolizing resources
Hesperolinon congestum (Marin dwarf-flax)NatureServe NatureServe; USA ESA listing as threatened species USA ESA listing as threatened speciesCaliforniaCompetition - monopolizing resourcesUS Fish and Wildlife Service, 2011
Holocarpha macradenia (Santa Cruz tarplant)NatureServe NatureServe; USA ESA listing as threatened species USA ESA listing as threatened speciesCaliforniaCompetition - monopolizing resources; Ecosystem change / habitat alterationUS Fish and Wildlife Service, 2014
Platanthera yadonii (Yadon's piperia)VU (IUCN red list: Vulnerable) VU (IUCN red list: Vulnerable); NatureServe NatureServe; USA ESA listing as endangered species USA ESA listing as endangered speciesCaliforniaCompetition - monopolizing resourcesUS Fish and Wildlife Service, 2009b
Streptanthus glandulosus subsp. niger (Tiburon jewelflower)USA ESA listing as endangered species USA ESA listing as endangered speciesCaliforniaCompetition - stranglingUS Fish and Wildlife Service, 2010
Polygonum hickmanii (Scotts Valley polygonum)NatureServe NatureServe; USA ESA listing as endangered species USA ESA listing as endangered speciesCaliforniaCompetition - stranglingUS Fish and Wildlife Service, 2009c

Social Impact

Top of page G. monspessulana is a weed that infests areas of natural beauty and National Parks (Gillespie, 1991) and is therefore likely to have a negative effect on the aesthetic value of certain sites and perhaps their frequency as destinations for tourism. Broom infestations on farms are likely to affect land values and potential returns on the land, impacting on the livelihood of resident farmers. Along roadsides, G. monspessulana obstructs driver view and therefore requires expensive and perpetual road maintenance efforts (Mountjoy, 1979).

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Highly adaptable to different environments
  • Highly mobile locally
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
Impact outcomes
  • Damaged ecosystem services
  • Ecosystem change/ habitat alteration
  • Negatively impacts agriculture
  • Negatively impacts animal health
  • Negatively impacts tourism
  • Reduced amenity values
  • Reduced native biodiversity
Impact mechanisms
  • Competition - monopolizing resources
  • Competition - strangling
  • Competition
Likelihood of entry/control
  • Highly likely to be transported internationally deliberately
  • Difficult to identify/detect in the field
  • Difficult/costly to control

Uses

Top of page By far the most widespread use of G. monspessulana and its hybrids is in the horticultural industry because its large-coloured flowers and dark-green foliage are attractive (Atkinson and Sheppard, 2000). Its value as a fodder crop has been explored in upland Ethiopia (Kahsay-Berhe and Tothill, 1997). It can be an effective hedge and windbreak (Parsons and Cuthbertson, 1992). Parsons and Cuthbertson (1992), allude to its use by Mexican Indians for smoking etc., however this is incorrect as they confuse Montpellier broom with Canary broom (G. canariensis).

Uses List

Top of page

Environmental

  • Agroforestry

General

  • Ornamental

Similarities to Other Species/Conditions

Top of page Many other exotic weed species occur in the same tribe as G. monspessulana. These include five other Genista species and members of the genera Cytisus (four species), Retama (two species), Calicotome (one species), Spartium (one species) and Ulex (one species) (Holm et al., 1979; Jepson, 1979). All Genista species recorded as invasive weeds outside their native range are within the Teline group and occur predominantly in Mediterranean climates on acid soils with relatively high rainfall (>600 mm). Of these G. stenopetala, G. canarinesis and G. linifolia are the most widespread and problematic, but other species (e.g., Genista maderensis and G. tinctoria and horticultural hybrids) have also naturalized (Groves and Hosking, 1997). G. canariensis grows to 2 m with leaves borne on short petioles (1-6 mm) and intense yellow flowers (to 12.5 mm long) with a pubescent standard in compact terminal racemes. G. stenopetala is a taller shrub (to 6 m) but with terminal (and lateral) 5- to 26-flowered racemes, 2-9 cm long; petioles 4-12 mm long; leaflets obovate to oblanceolate, 18-50 mm; and flowers 12.5-15.5 mm (Gibbs and Dingwall, 1971). G. stenopetala is from the Canary Islands and may hybridize with G. monspessulana in some exotic infestations (native distributions are allopatric). G. linifolia is quite different from G. monspessulana with long narrow sessile leaves and leaflets (9-61 x 2-10 mm) with flowers in terminal racemes (4-20 flowers) with the standard uniformly sericeous (silky). Although many other species of Genista have been moved around the world for botanical gardens etc., the prevalence of weeds within the Teline group may be explained by their horticultural attractiveness and hence more widespread importation and planting.

Prevention and Control

Top of page Cultural Control

Unpublished work in Australia, New Zealand and the USA on broom management with goats, suggests this is a potential option. It can be effective on disturbed/agricultural land where native regeneration is not being encouraged. Meat or dairy goats should be used because these are the easiest to handle and cannot jump the fences. Goats can be trained to be quite selective at least within the vegetation structure, for example they can effectively strip flowers. Goat management may require the provision of access trails and follow-up herbicide treatments on resprouts once the goats have been moved on.

Burning uncut broom in late spring/early summer can be used successfully (Boyd, 1994), although appropriate conditions for an effective burn are hard to obtain safely. Burnt sites showed >80% loss in seedbank density (Alexander and D'Antonio, 2003). Reburning the same site 2-4 years later may also help if there is a sufficient fuel load and the frequent fires do not prevent native bush regeneration. However, reburning does not further reduce the seedbank (Alexander and D'Antonio, 2003). Fire is best used as part of an integrated strategy and post-fire monitoring is a key requirement.

Mechanical Control

Mechanical removal of G. monspessulana is labour intensive and so best applied to small infestations amongst desirable vegetation. Mower or bush hogs are sometimes a viable option for monospecific stands but there are often problems of accessibility. Slashing, whacking or brush cutting are other alternatives (Archbald, 1996). Bulldozing is not recommended due to the soil disturbance generated and the effect this has on burying and prolonging the seedbank. Cut individuals can resprout if not cut at ground level. For individual large plants, weed wrenches assist targeted removal, but can disturb the soil prolonging the need for monitoring for regeneration (Bossard, 2000). Hand removal of individuals prior to seed fall in sensitive areas, particularly for isolated individuals at flowering is an effective strategy in National Parks where the walking public can be trained to recognize and remove broom. Mechanical control does not deal with the long-lived seedbank and so integrated strategies associated with reseeding desirable species, or at least allowing those present to seed effectively, are often required (Bossard, 2000). Over-sowing with a perennial grass layer has been suggested for other brooms and may also be effective following fire. All forms of mechanical removal require monitoring of treated areas for regrowth from stumps and the seedbank. Sites should be visited once every 1-2 years after treatment in late spring for 5-10 years and every 2 years thereafter to treat any new patches and flowering individuals prior to seed set.

Chemical Control

The main chemicals used to control brooms are picloram, triclopyr, glyphosate, fluroxypyr and metsulfuron (Parsons and Cuthbertson, 1992). Specific chemicals are appropriate for specific situations, such as proximity to water courses. The addition of some surfactants to glyphosate and metsulfuron increase the level of control achieved by these chemicals. Triclopyr ester in Hasten or Penevator oil in low volume basal bark application with a wick has proved very effective at killing mature plants (Bossard et al., 1995). Herbicide injection (drilling, filling and frilling) has also been trialed (Gillespie, 1991). Chemical control of G. monspessulana is most usually applied as a high-volume foliar spray. Applications need to be made in periods of active growth after flower formation, but before seed dehiscence. Seedlings are least resistant to hormonal herbicides at the 10- to 15-cm size (Bossard, 2000). Regular follow-up spraying is essential for effective control, but standing dead biomass also presents a major fire hazard.

Biological Control

Work on the biological control of G. monspessulana started in 1998. So far only one agent, Arytinnis hakani, has received a release permit and, as yet, only in Australia (Sheppard, 2003). Several other species are being considered. No releases have been made. Bruchidius villosus has recently been introduced into a number of countries to control Cytisus scoparius (Syrett et al., 1999) and is also likely to feed on G. monspessulana.

Integrated Control

Only two studies have been found that look in depth at possible management strategies for G. monspessulana and both these are unpublished. The first relates to an experiment carried out in Jackson State Experimental Forest in California, USA (Bossard, 1995), while the second was a similar study carried out in the Adelaide hills, South Australia (Lloyd, 2000). The results were similar. Management is most effective using fire-based integrated weed management in areas that cannot wait for the long-term biocontrol solution. Before burning, curing the broom using herbicides (triclopyr basal applications or glyphosate to protect natives) increases fire intensity, thereby stimulating or killing a maximum amount of the resident weed seed bank. Fire is most effective on pre-sprayed or slashed broom because this also keeps fire low to the ground. Lloyd (2000) also found that smoke stimulated seed germination in plots not directly affected by the fire. Targeting the seed bank in this way with fire achieved 85-95% losses of G. monspessulana in both trials even with quite low intensity burns. Follow-up treatments must be carried regularly to kill regenerating plants just before seed set, i.e. about 2 years after the fire. Such follow-up treatments kept broom cover to <5% after 3 years in California. Many land managers perceive management with fire as too risky and also little is known about the effects of such control burns on the native species that should be encouraged to replace the weed.

Best practice in broom management will require a specific strategy for each situation. Areas should be designated for containment versus treatment where resources are limiting. Fire or goats can be the basis of integrated broom management strategies depending on the situation. Without these options (e.g., in containment areas) biological control remains the only solution. All successful management requires a communication strategy to explain and encourage adoption and adaptive management (trying new ideas in parallel to traditional wisdom) should be encouraged at all times.

References

Top of page

Adamson RS, Salter TM, 1950. Flora of the Cape Peninsula. Capetown, South Africa: Juta

Alexander JM, D’Antonio CM, 2003. Seed bank dynamics of French broom in coastal California grasslands: effects of stand age and prescribed burning on control and restoration. Restoration Ecology, 11:185-197

Archbald G, 1996. A French broom control method. CalEPPC News, summer/fall:4-6. Sacramento, USA: CalEPPC

Atkinson I, Sheppard AW, 2000. Broom biocontrol: conflicts of interest with the Australian Nursery Industry. Plant Protection Quarterly, 15:176-178

Boissier PE, 1856. Diagnoses plantarum orientalium novarum, Lipsiae & Parisiis. Series 1, 2:8

Bolòs O de, Vigo J, 1974. Butlleti de la Institucio Catalana d’Historia Natural, Barcelona. Sect. Bot. 1, 38:69

Bossard C, 1995. A test of removal/control techniques for French broom. CalEPPC Broom Control Working Group. Unpublished report. Sacramento, USA: CalEPPC

Bossard C, 2000. Genista monspessulana (L.) L. Johnson. In: Bossard CC, Randall JM, Hoshovsky MC, eds. Invasive Plants of California’s Wildlands. Berkeley, USA: University of California Press, 203-208

Bossard C, Alverez M, Archbald G, Gibson R, Glusernkamp D, Kuo E, Jones S, Nelson L, Smith D, 1995. A French broom control project. Proceedings of the CalEPPC symposium. Sacramento, USA: CalEPPC

Boyd D, 1994. Prescribed burning of French broom. Proceedings of the CalEPPC symposium. Sacramento, USA: CalEPPC

Burkart A, 1952. Las Leguminosas Argentinas Silvestres y Cultivadas. 2nd edition. Buenos Aires, Argentina: Acme Agency

Candolle AP de, 1805. In: Lamarck and de Candolle. Flore francaise, 2, Paris, France

Chan KL, Turner CE, 1998. Discovery of the gall mite Aceria genistae (Nalepa) (Acarina: Eriophyidae) on gorse and French broom in the United States. Pan-Pacific Entomologist, 74(1):55-57

Crossman ND, Kochergen J, 2002. Mapping environmental weeds in the Mount Lofty Ranges, South Australia, using high resolution infrared aerial photography. 13th Australian Weeds Conference: weeds "threats now and forever?", Sheraton Perth Hotel, Perth, Western Australia, 8-13 September 2002: papers and proceedings, 579-582; 9 ref

DPIWE Tasmania, 2005. Online Montpellier broom statutory management plan. Department of Primary Industries Water and Environment, Hobart, Australia. http://www.dpiwe.tas.gov.au/inter.nsf/WebPages/TPRY-5GS64R?open

Garcia-Barriga H, Forero E, 1968. Catalogo Ilustrado de las Plantas de Cundinamarca, 3:1-136

Gibbs PE, 1968. Teline, Leguminosae. In: Tutin TG, ed. Flora Europaea, Vol. 2. Cambridge, UK: Cambridge University Press

Gibbs PE, Dingwall I, 1971. A review of the genus Teline. Boletim da Sociedade Broteriana, 45:269:231

Gillespie P, 1991. Woody weed control in the Dandenong Ranges National Park. Plant Protection Quarterly, 6(3):130-131

González-Andrés F, Ortiz JM, 1996. Potential of Cytisus and allied genera (Genisteae: Fabaceae) as forage shrubs. 1. Seed germination and agronomy. New Zealand Journal of Agricultural Research, 39(2):195-204; 28 ref

González-Andrés F, Ortiz JM, 1996. Potential of Cytisus and allied genera (Genisteae: Fabaceae) as forage shrubs. 2. Chemical composition of the forage and conclusions. New Zealand Journal of Agricultural Research, 39(2):205-213; 22 ref

Gonzßlez-AndrTs F, Ortiz JM, 1999. Specificity of rhizobia nodulating Genista monspessulana and Genista linifolia in vitro and in field situations. Arid Soil Research and Rehabilitation, 13(3):223-237; 26 ref

Greuter W, Burdet HM, Long G, 1989. Med-Checklist Vol. 4. Conservatoire et Jardin botaniques de la Ville de Genève

Grossheim AA, 1952. Flora Caucasus. Leningrad, Russia: Academia Nauk Leningrad

Groves RH, Hosking JR, 1997. Recent incursions of weeds to Australia 1971-1995. Technical Series No. 38. Adelaide, Australia: CRC for Weed Management Systems

Guyot AL, Massenot M, 1958. Les rouilles des gOnets et des cytises (Uromyces genistae-tinctoriae (Pers.) Wint. sensu lato). Uridineana, 5:507-523

Hickman JC, 1993. The Jepson manual: higher plants of California. Berkeley, CA, USA: University of California Press, 1400 pp

Hnatiuk RJ, 1990. Census of Australian vascular plants. 1990, xvi + 650 pp.; Australian flora and fauna series No. 11; 10 ref

Hodkinson ID, Hollis D, 1987. The legume-feeding psyllids (Homoptera) of the west Palparctic Region. Bulletin of the British Museum (Natural History), Entomology, 56(1):1-86

Holm LG, Pancho JV, Herberger JP, Plucknett DL, 1979. A Geographical Atlas of World Weeds. New York, USA: Wiley

ILDIS, 2004. International Legume Database and Information Service. University of Southamptom, UK. http://www.ildis.org/

Jepson WL, 1979. Flora of California, Vol. 2. University of California

Johnson L, 1962. Contributions from the New South Wales National Herbarium, 3:98

Kahsay-Berhe, Tothill JC, 1997. Dry matter yield, P response and nutritive value of selected accessions of Chamaecytisus palmensis (tagasaste) and Teline monspessulana (Montpellier broom) in the Ethiopian highlands. Tropical Grasslands, 31(1):49-57; 31 ref

Komarov VL, 1945. Flora of the USSR Vol XI [English translation 1972]. Moscow and Leningrad, Russia

Kunze G, 1846. Flora, oder allgemeine botanische Zeitung. Regensburg, Marburg, 47:737

Kuznetsov VI, 1989. Leaf-rollers (Lepidoptera: Tortricidae) of the southern part of the Soviet Far East and their seasonal cycles. In: Kryzhanovskii OL, ed. Lepidopterous Fauna of the USSR and Adjacent Countries. Brill, Leiden, Netherlands, 57-249

Käss E, Wink M, 1997. Phylogenetic relationships in the Papilionoideae (family Leguminosae) based on nucleotide sequences of cpDNA (rbcL) and ncDNA (ITS 1 and 2). Molecular Phylogenetics and Evolution, 8:65-88

Lane D, Riches K, Combellack H, 1980. A survey of the distribution of the noxious weeds in Victoria. Unpublished file report. Victoria, Australia: Department of Crown Lands and Survey

Lanford J, Nelson L, 1992. Arthropod populations at three Golden Gate habitats compared. Park Science, Spring Issue. Washington DC, USA: National Park Service

Leys A, 1998. Survey of distribution and importance of Genista brooms in NSW. Unpublished file report (al290-9). Hurstville, Australia: New South Wales National Parks and Wildlife Service

Lloyd J, 2000. Biology and management of Genista monspessulana (L.) L. A. S. unpublished PhD Thesis. Adelaide, Australia: University of Adelaide

McClintock E, 1985. Status reports on invasive weeds: brooms. Fremontia, 12:17-18

Montllor CB, Bernays EA, Barbehenn RV, 1990. Importance of quinolizidine alkaloids in the relationship between larvae of Uresiphita reversalis (Lepidoptera: Pyralidae) and a host plant, Genista monspessulana. Journal of Chemical Ecology, 16(6):1853-1865

Montllor CB, Bernays EA, Hamai J, Graham M, 1995. Regional differences in the distribution of the pyralid moth Uresiphita reversalis (GuenTe) on French broom, an introduced weed. Pan-Pacific Entomologist, 71(2):92-104; 12 ref

Mountjoy JH, 1979. Broom a threat to native plants. Fremontia, 6:11-15

Oregon State University Herbarium, 2005. Oregon Vascular Plants Online Database. Botany and Plant Pathology, Corvallis, USA. http://ocid.nacse.org/cgi-bin/qml/herbarium/plants/vherb.qml

Pareja M, 1999. Modelling the biological control of French broom, (Genista monspessulana). Unpublished M.Sc. Thesis. Silwood Park, UK: Imperial College

Parker IM, Haubensak KA, 2002. Comparative pollinator limitation of two non-native shrubs: do mutualisms influence invasions?. Oecologia, 130(2):250-258; many ref

Parker VT, Kersner R, 1989. Regeneration potential in French broom, Cytisus monspessulanus, and its possible management. Report to the land management division of the Marin municipal water district (unpublished). California, USA: Corte Madera

Parsons WT, Cuthbertson EG, 1992. Noxious Weeds of Australia. Melbourne, Australia: Inkata Press

Percy DM, Cronk QCB, 2002. Different fates of Island brooms: contrasting evolution in Adenocarpus, Genista, and Teline (Genesee, Fabaceae) in the Canary Islands and Madeira. American Journal of Botany, 89:854-864

Peterson DJ, Raj Prasad, 1998. The biology of Canadian weeds. 109. Cytisus scoparius (L.) Link. Canadian Journal of Plant Science, 78(3):497-504

Pignatti S, 1982. Flora of Italy. [Flora d'Italia.]. Bologna, Italy: Edagricole

Polunin O, Smythies BE, 1973. Flowers of south west Europe: a field guide. Oxford University Press

Rowell RJ, 1991. Ornamental flowering shrubs in Australia. Kensington, Australia: New South Wales University Press

Sheppard AW, 2000. Selection and testing of Biological Control Agents for Control of French Broom Genista monspessulana (L.) L. Johnson. Contracted Research Report No. 58. Canberra, Australia: CSIRO Entomology

Sheppard AW, 2003. Foreign exploration and host specificity testing of biological control agents of French broom in California. Phase 2. International Broom Initiative 2002-2003 Project Final Report. Canberra, Australia: CSIRO Entomology

Sheppard AW, Thomann T, 2004. Quantitative field surveys for the selection of biological control agents for Genista monspessulana based on host range and efficacy assessment. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JS, eds. Proceedings XIth International. Symposium on Biological Control of Weeds. Canberra, Australia: CSIRO Entomology, 162-174

Smith JMB, 2000. An introduction to the biogeography and ecology of broom (Cytisus scoparius) in Australia. Plant Protection Quarterly, 15(4):140-144; 30 ref

Syrett P, Fowler SV, Coombs EM, Hosking JR, Markin GP, Paynter QE, Sheppard AW, 1999. The potential for biological control of Scotch broom (Cytisus scoparius) (Fabaceae) and related weedy species. Biocontrol News and Information, 20(1):17N-34N; 4 pp. of ref

US Fish and Wildlife Service, 2009. Monterey Spineflower (Chorizanthe pungens var. pungens). 5-Year Review: Summary and Evaluation. In: Monterey Spineflower (Chorizanthe pungens var. pungens). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.21 pp. http://ecos.fws.gov/docs/five_year_review/doc2393.pdf

US Fish and Wildlife Service, 2009. Piperia yadonii (Yadon's piperia). 5-Year Review: Summary and Evaluation. In: Piperia yadonii (Yadon's piperia). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.22 pp.

US Fish and Wildlife Service, 2009. Polygonum hickmanii (Scotts Valley Polygonum). 5-Year Review: Summary and Evaluation. In: Polygonum hickmanii (Scotts Valley Polygonum). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.30 pp.

US Fish and Wildlife Service, 2010. Streptanthus niger (Tiburon jewelflower). 5-Year Review: Summary and Evaluation. In: Streptanthus niger (Tiburon jewelflower). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.19 pp.

US Fish and Wildlife Service, 2011. Hesperolinon congestum (Marin dwarf-flax). 5-Year Review: Summary and Evaluation. In: Hesperolinon congestum (Marin dwarf-flax). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.32 pp. http://ecos.fws.gov/docs/five_year_review/doc3961.pdf

US Fish and Wildlife Service, 2014. Holocarpha macradenia (Santa Cruz tarplant). 5-Year Review: Summary and Evaluation. In: Holocarpha macradenia (Santa Cruz tarplant). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.48 pp. http://ecos.fws.gov/docs/five_year_review/doc4365.pdf

USDA-ARS, 2005. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

Webb CJ, Sykes WR, Garnock-Jones PJ, 1988. Flora of New Zealand Volume IV. Naturalised Pteridophytes, Gymnosperms and Dicotyledons. Christchurch, New Zealand: DSIR Botany Division, 1365 pp. http://floraseries.landcareresearch.co.nz/pages/Book.aspx?fileName=Flora%204.xml

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.

Distribution Maps

Top of page
You can pan and zoom the map
Save map