Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Fusarium oxysporum f.sp. vasinfectum
(Fusarium wilt)

Toolbox

Datasheet

Fusarium oxysporum f.sp. vasinfectum (Fusarium wilt)

Summary

  • Last modified
  • 11 May 2020
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Fusarium oxysporum f.sp. vasinfectum
  • Preferred Common Name
  • Fusarium wilt
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Fungi
  •     Phylum: Ascomycota
  •       Subphylum: Pezizomycotina
  •         Class: Sordariomycetes

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing wilting, stunting and stand loss of cotton caused by caused by F. oxysporum f. sp. vasinfectum race 4. Note resistant variety in the background.
TitleField symptoms
CaptionFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing wilting, stunting and stand loss of cotton caused by caused by F. oxysporum f. sp. vasinfectum race 4. Note resistant variety in the background.
Copyright©Thomas Isakeit
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing wilting, stunting and stand loss of cotton caused by caused by F. oxysporum f. sp. vasinfectum race 4. Note resistant variety in the background.
Field symptomsFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing wilting, stunting and stand loss of cotton caused by caused by F. oxysporum f. sp. vasinfectum race 4. Note resistant variety in the background.©Thomas Isakeit
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing severe root rot caused by F. oxysporum f. sp. vasinfectum race 4.
TitleSymptoms
CaptionFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing severe root rot caused by F. oxysporum f. sp. vasinfectum race 4.
Copyright©Thomas Isakeit
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing severe root rot caused by F. oxysporum f. sp. vasinfectum race 4.
SymptomsFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing severe root rot caused by F. oxysporum f. sp. vasinfectum race 4.©Thomas Isakeit
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing black streak in stele of root caused by F. oxysporum f. sp. vasinfectum race 4.
TitleSymptoms
CaptionFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing black streak in stele of root caused by F. oxysporum f. sp. vasinfectum race 4.
Copyright©Thomas Isakeit
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing black streak in stele of root caused by F. oxysporum f. sp. vasinfectum race 4.
SymptomsFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing black streak in stele of root caused by F. oxysporum f. sp. vasinfectum race 4.©Thomas Isakeit
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing vascular discoloration of stem.
TitleSymptoms
CaptionFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing vascular discoloration of stem.
Copyright©Thomas Isakeit
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing vascular discoloration of stem.
SymptomsFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms, showing vascular discoloration of stem.©Thomas Isakeit
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms on cotton.
TitleSymptoms
CaptionFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms on cotton.
Copyright©Rory Hillocks
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms on cotton.
SymptomsFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); symptoms on cotton.©Rory Hillocks
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); macroconidia. Original x 500.
TitleMacroconidia
CaptionFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); macroconidia. Original x 500.
Copyright©CAB International
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); macroconidia. Original x 500.
MacroconidiaFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); macroconidia. Original x 500.©CAB International
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); microconidia. Original x 500.
TitleMicroconidia
CaptionFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); microconidia. Original x 500.
Copyright©CAB International
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); microconidia. Original x 500.
MicroconidiaFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); microconidia. Original x 500.©CAB International
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); chlamydospores. Original x 500.
TitleChlamydospores
CaptionFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); chlamydospores. Original x 500.
Copyright©CAB International
Fusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); chlamydospores. Original x 500.
ChlamydosporesFusarium oxysporum f.sp. vasinfectum (vascular cotton wilt); chlamydospores. Original x 500.©CAB International

Identity

Top of page

Preferred Scientific Name

  • Fusarium oxysporum f.sp. vasinfectum (G.F. Atk.) W.C. Snyder & H.N. Hansen

Preferred Common Name

  • Fusarium wilt

Other Scientific Names

  • Fusarium vasinfectum G.F. Atk.

International Common Names

  • English: Fusarium wilt of cotton
  • Spanish: marchitez del algodonero; pudricion de la raiz
  • French: flétrissement du cotonnier; flétrissement fusarien du cotonnier; fusariose

Local Common Names

  • Germany: Baumwollewelke

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Fungi
  •         Phylum: Ascomycota
  •             Subphylum: Pezizomycotina
  •                 Class: Sordariomycetes
  •                     Subclass: Hypocreomycetidae
  •                         Order: Hypocreales
  •                             Family: Nectriaceae
  •                                 Genus: Fusarium
  •                                     Species: Fusarium oxysporum f.sp. vasinfectum

Notes on Taxonomy and Nomenclature

Top of page

The causal organism of Fusarium wilt of cotton is Fusarium oxysporum f.sp. vasinfectum. The species, Fusarium oxysporum, is variable and contains a number of saprophytic and pathogenic forms which have morphological features in common and cannot be distinguished without the use of molecular tools and/or pathogenicity tests. The parasitic forms were grouped into formae speciales (f.sp.) by Snyder and Hansen (1940) on the basis of their selective pathogenicity to a particular plant species. The concept of formae speciales continues to evolve, especially with the advent of molecular approaches to characterize isolates (Edel-Hermann and Lecomte, 2019).

Within F. oxysporum f. sp. vasinfectum, six races of the pathogen are recognized on the basis of their selective pathogenicity to a range of differential hosts (Armstrong and Armstrong, 1958, Armstrong and Armstrong, 1960; Ibrahim, 1966; Armstrong and Armstrong, 1978; Sun et al., 1999; Edel-Hermann and Lecomte, 2019): 1, 2, 3, 4, 6 and 8. Previously-described races 5 and 7 were subsequently determined to be identical to races 3 and 4, respectively (Cianchetta and Davis, 2015). Some workers have used race A as a genetically-based combined designation of races 1, 2 and 6, as these races are differentiated on the basis of reactions of plants other than Gossypium spp. (Davis et al., 2006). There are two distinct biotypes of F. oxysporum f.sp. vasinfectum which are different from the races in other parts of the world (Kim et al., 2005). RAPD markers have been used to differentiate isolates of F. oxysporum f.sp. vasinfectum: 46 isolates from different geographical areas were tested and clustered into three groups corresponding to three of the races identified by inoculation into the differential hosts (Assigbetse et al., 1994). Isolates in China were divided into three RAPD sections one of which was similar to race 3 and two other races different from races known elsewhere, designated races 7 and 8. Isolates of race 7, the predominant race, were all placed in a single section while race 8 was divided into two RAPD sections (Feng et al., 1999). Vegetative compatibility groups have also been used to genetically distinguish isolates within races (Fernandez et al., 1994; Abo et al., 2005; Bell et al., 2016). Bell et al. (2016) recognized two pathotypes on the basis of plant symptoms and stem colonizing ability, specifically causing root rot but not colonizing the stem, or colonizing the stem but not causing root rot. The vascular-colonizing (‘vascular-competent’) pathotypes include races 1, 2, 6 and 8, while the root-rotting pathotypes include races 3, 4 and the Australian biotypes.

Description

Top of page

F. oxysporum f.sp. vasinfectum is an anamorphic fungus. No teleomorph is known. On potato dextrose agar (PDA), it produces a dense, white aerial mycelium and a red/purple pigment is produced in the medium. It produces two types of conidia. The microconidia are borne in false heads on short monophialides and are single celled or one-septate, oval, elliptical or kidney-shaped, and measure 5-20 x 2-3.5 µm. Macroconidia are fusiform-falcate in shape, three- to five-septate and 27-48 x 2.5-4.5 µm, with a foot-shaped basal cell and a curved, pointed apical cell, and are borne on monophialides on branched or unbranched conidiophores (Booth and Waterson, 1964; Booth, 1971). Macroconidia may be produced in orange sporodochia or from monophialides on hyphae. Chlamydospores are formed singly or in pairs and are roughly spherical in shape, 7-13 µm in diameter, with a thick wall. In PDA, brown, blue or black sclerotia may be formed by some isolates (Leslie and Summerell, 2006). F. oxysporum f.sp. vasinfectum cannot be morphologically distinguished from other formae speciales.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 05 May 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

AngolaPresent, LocalizedUK, CAB International (1982); Ragazzi et al. (1995)
Central African RepublicPresentIRCT (1977); UK, CAB International (1982)
Congo, Democratic Republic of thePresentUK, CAB International (1982)
Côte d'IvoirePresent, WidespreadAbo et al. (2005)
EgyptPresent, LocalizedUK, CAB International (1982); Nirenberg et al. (1994)
EthiopiaPresentUK, CAB International (1982)
MoroccoPresentUK, CAB International (1982)
SomaliaPresentUK, CAB International (1982)
South AfricaPresentUK, CAB International (1982)
SudanPresent, LocalizedUK, CAB International (1982); Yassin and Daffalla (1982)
TanzaniaPresent, WidespreadUK, CAB International (1982); Hillocks (1984)
TogoPresentGoebel and Vaissayre (1986)
UgandaPresentUK, CAB International (1982)
ZimbabwePresentUK, CAB International (1982); Hillocks (1992)

Asia

AfghanistanPresentUK, CAB International (1982)
BangladeshPresentUK, CAB International (1982)
ChinaPresentCABI (Undated a)Present based on regional distribution.
-AnhuiPresentGuo et al. (1993)
-HebeiPresentGuo et al. (1993)
-HenanPresentYang ZhiWei et al. (1995)
-JiangsuPresentGuo et al. (1993)
-ShaanxiPresentYang ZhiWei et al. (1995)
-ShandongPresentYang ZhiWei et al. (1995)
-SichuanPresent, WidespreadHe et al. (1994)
-XinjiangPresentTian (1981)
IndiaPresentUK, CAB International (1982)
-HaryanaPresentChopra and Chauhan (1993)
-MaharashtraPresentKhetmalas et al. (1989)
-PunjabPresentChopra and Chauhan (1993)
-Tamil NaduPresent, LocalizedShanmugam et al. (1977)
IndonesiaPresentUK, CAB International (1982)
IranPresentUK, CAB International (1982)
IraqPresentUK, CAB International (1982)
IsraelPresentDishon and Nevo (1970)
JapanPresentUK, CAB International (1982)
-HonshuPresentUK, CAB International (1982)
MyanmarPresentUK, CAB International (1982)
North KoreaPresentChung and Ser (1992)
PakistanPresentAnwar and Khan (1973); UK, CAB International (1982)
Saudi ArabiaPresentUK, CAB International (1982)
South KoreaPresentChung and Ser (1992)
TurkeyPresentUK, CAB International (1982)
TurkmenistanPresentSidorova and Akmuradov (1981); UK, CAB International (1982)
UzbekistanPresentUK, CAB International (1982); Tursanov and Aliev (1995)
VietnamPresentUK, CAB International (1982)
YemenPresentUK, CAB International (1982)

Europe

Federal Republic of YugoslaviaPresentUK, CAB International (1982)
Union of Soviet Socialist RepublicsPresentUK, CAB International (1982)
FrancePresentUK, CAB International (1982)
GreecePresentUK, CAB International (1982)
ItalyPresentUK, CAB International (1982); CABI (Undated)
RomaniaPresentUK, CAB International (1982)

North America

CubaPresentUK, CAB International (1982)
El SalvadorPresentUK, CAB International (1982)
GuatemalaPresentUK, CAB International (1982)
HaitiPresentSchotman (1989)
MexicoPresentUK, CAB International (1982)
NicaraguaPresentUK, CAB International (1982)
Puerto RicoPresentUK, CAB International (1982)
Saint Kitts and NevisPresentUK, CAB International (1982)
Saint LuciaPresentSchotman (1989)
Saint Vincent and the GrenadinesPresentUK, CAB International (1982)
Trinidad and TobagoPresentSchotman (1989)
United StatesPresentCABI (Undated a)Present based on regional distribution.
-AlabamaPresent, WidespreadBlasingame (1990)
-ArizonaPresentUK, CAB International (1982); Blasingame (1990)
-CaliforniaPresent, WidespreadBlasingame (1990); Kim et al. (2005)
-GeorgiaPresent, LocalizedBlasingame (1990)
-LouisianaPresent, LocalizedBlasingame (1990)
-MissouriPresent, WidespreadBlasingame (1990)
-New MexicoPresent, LocalizedZhu et al. (2020)
-North CarolinaPresentBlasingame (1990)
-OklahomaPresentBlasingame (1990)
-South CarolinaPresent, WidespreadBlasingame (1990)
-TexasPresent, LocalizedBlasingame (1990); Halpern et al. (2018)

Oceania

AustraliaPresentCABI (Undated a)Present based on regional distribution.
-QueenslandPresentKochman (1995)
FijiPresentUK, CAB International (1982)

South America

ArgentinaPresentUK, CAB International (1982)
BoliviaPresentUK, CAB International (1982)
BrazilPresent, LocalizedCia (1977); UK, CAB International (1982)
-Minas GeraisPresentChalfoun (1979)
-Sao PauloPresent, WidespreadGridi-Papp et al. (1984)
ChilePresentUK, CAB International (1982)
ColombiaPresentUK, CAB International (1982)
GuyanaPresentUK, CAB International (1982)
ParaguayPresentMathieson and Follin (1981)
PeruPresent, LocalizedUK, CAB International (1982); Delgado and Agurto (1984)
UruguayPresentUK, CAB International (1982)
VenezuelaPresentUK, CAB International (1982)

Risk of Introduction

Top of page

Risk Criteria Category

Economic Importance Moderate
Distribution Worldwide
Seedborne Incidence Moderate
Seed Transmitted Yes
Seed Treatment Yes

Overall Risk Moderate


Notes on Phytosanitary Risk

Fusarium wilt is spread locally when soil carrying chlamydospores is moved from one field to another on farm implements and crop residues, or movement of soil as a result of furrow irrigation or flood water movement. Long-distance spread occurs when infected seed is used for planting (see Seedborne Aspects) and it is essential to ensure that seed multiplication does not occur on land infested with the disease and that seed for planting is stored and ginned separately from that harvested from infested sites. This is particularly important in countries such as Tanzania, where farmers' fields are used for seed multiplication. Seed from an unknown source should not be used for planting. This is a potential problem in East Africa where seed cotton is sometimes carried across international boundaries for sale. In countries affected by the disease where seed is used for oil extraction by pressure and the remaining husk used for cattle feed, there is a risk that the husk may still contain viable chlamydospores. There is a risk of introducing another race of the pathogen by importing seed from growing areas in which wilt occurs, but the pathogen is of a different race to that of the importing growing area. This is particularly true of China and Australia, which appear to have races of the pathogen that do not occur elsewhere.

Hosts/Species Affected

Top of page

Investigations into the host range of vascular wilt fusaria revealed that they had a wider host range than was originally allowed for in the system of Snyder and Hansen (1940). A concept of primary and secondary hosts was developed for the cotton wilt Fusarium (Armstrong and Armstrong, 1968) in which cotton is the primary host, with numerous secondary hosts on which the fungus can multiply but produces only mild symptoms or none at all. However, a plant species may be a secondary host for one race of the pathogen but a non-host for another race. For example, natural infections by race 1 have been recorded on Abelmoschus esculentus, but races 3 and 4 did not reproduce on this host (Grover and Singh, 1970). Results from artificial inoculation may suggest a much wider host range (e.g. Wood and Ebbels, 1972) but should be interpreted with caution unless the same species has also been shown to support the growth of the pathogen in the field. Reports on new hosts for the cotton wilt pathogen are only useful where the race of the pathogen is specified and isolations have been made consistently from naturally infected plants. A complete list of the known hosts up until 1974 based on natural and artificial infection, is given by Ebbels (1975).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Abelmoschus esculentus (okra)MalvaceaeOther
Cajanus cajan (pigeon pea)FabaceaeMain
Capsicum (peppers)SolanaceaeOther
Capsicum annuum (bell pepper)SolanaceaeMain
Coffea (coffee)RubiaceaeOther
Gossypium (cotton)MalvaceaeMain
Hevea brasiliensis (rubber)EuphorbiaceaeOther
Hibiscus cannabinus (kenaf)MalvaceaeMain
Medicago (medic)FabaceaeOther
Nicotiana tabacum (tobacco)SolanaceaeOther
RicinusEuphorbiaceaeOther
Sesamum indicum (sesame)PedaliaceaeOther
Solanum (nightshade)SolanaceaeOther
Vigna (cowpea)FabaceaeOther

Growth Stages

Top of page Flowering stage, Seedling stage, Vegetative growing stage

Symptoms

Top of page

Symptoms of Fusarium wilt can appear at any stage of crop development. At high inoculum density or when infection initiates from the seed, plants may be killed at the seedling stage. In older plants, symptoms are first seen on the lower leaves. Leaf chlorosis begins at the margin and spreads between the main veins. More leaves become chlorotic as the disease spreads upwards in the plant and the leaves become flaccid, giving the plant a wilted appearance during the middle of the day. Symptomatic leaves may fall from the plant. Infected plants may also be stunted. As the infection progresses, all the leaves are affected and chlorosis turns to necrosis as the wilt becomes permanent and the plant dies from moisture stress.

With races that colonize the vascular system of the stem, plants with foliar or wilting symptoms will have brown to black discoloration of the xylem, seen when stems are cut. Roots will not be affected. 

With root-rotting races, plants with foliar or wilting symptoms will have very limited vascular discoloration of the stem, limited to the lower stem and seen when there is also substantial root rot. Root rot can be seen as early as the one to true leaf growth stage and range from brown to black streaks in the centre of the root, to more extensive internal root rot, along with prominent external root rot symptoms. Often, there is no external root rot and diagnosis requires slicing the roots lengthwise. Susceptible Pima varieties tend to show more severe symptoms than susceptible Upland varieties. In some susceptible varieties, internal root rot may be present when there is no visible foliar or external root symptoms.

List of Symptoms/Signs

Top of page
SignLife StagesType
Leaves / abnormal colours
Leaves / necrotic areas
Whole plant / dwarfing

Biology and Ecology

Top of page

F. oxysporum f.sp. vasinfectum is a soil-invading (Garrett, 1956), weak saprophyte that can remain dormant in the soil for long periods in the form of chlamydospores. The fungus is spread locally when soil carrying chlamydospores is moved from one field to another on farm implements and crop residues, or by water from flooding or furrow-irrigation. Spores in the soil germinate when fungistasis is overcome by exogenous nutrients provided by root exudates from a nearby root. The germ tube grows towards the cotton root and enters through a fissure in the epidermis or by direct penetration.

The fungus grows through the cortex to the stele and sporulates only when it has invaded the xylem. Conidia are then carried upwards in the transpiration stream, the fungus grows through the vessel end plates and then sporulates again in the adjoining vessel. Systemic spread within the plant occurs by spore transport; mycelial growth occurs in the vessels and later, to some extent, in the surrounding cortex. As the plant becomes completely infected, wilting and senescence occur as a result of water stress induced by the combined effect of mycelial growth in the xylem, fungal toxins and vascular occlusion by the host in an attempt to prevent systemic spread of the fungus. As the plant dies and tissues become moribund, the pathogen produces chlamydospores and the disease cycle is completed when host residues decay and spores are returned to the soil.

Cotton plants are predisposed to infection by vascular-colonizing F. oxysporum f.sp. vasinfectum isolates when the roots are invaded by nematodes (Smith and Dick, 1960; Jorgenson et al., 1978). The main predisposing nematodes are Meloidogyne spp. (Hillocks and Bridge, 1992), Belonolaimus longicaudatus (Cooper and Brodie, 1963) and Rotylenchulus spp. (Khadr et al., 1972). The predisposing effect is due to root wounding and nutrient accumulation at the nematode feeding site. In the case of Meloidogyne, the nematode affects the physiology of the host, interfering with resistance mechanisms against systemic infection by the wilt fungus, resulting in increased susceptibility (Hillocks, 1985). Root-rotting isolates of F. oxysporum f.sp. vasinfectum do not require nematode injury to infect roots and produce symptoms.

Seedborne Aspects

Top of page

Incidence

Infection of cotton seed by F. oxysporum f.sp. vasinfectum, at an incidence of 5%, was first demonstrated by Elliot (1923). It has also been detected on cotton seeds in East Africa (Perry, 1962), India (Kulkarni, 1934), the former Soviet Union (Gubanov and Sabirov, 1972) and West Africa (Lagiére, 1952). In Tanzania, most of the infected seed was derived from plants which developed wilt symptoms late in the growing season. Seed cotton harvested from these plants had infection levels of up to 21%. Susceptible varieties produced more infected seeds than resistant ones (Hillocks, 1983). Infection of seed with race 4 at less than 0.1% incidence was confirmed in California fields (Bennett et al., 2008).

F. oxysporum f.sp. vasinfectum is also seedborne in okra (Gangopadhyay and Kapoor, 1977).

Pathogen Transmission

Seed

F. oxysporum f.sp. vasinfectum can be seedborne and seed certification is recommended to avoid movement of the pathogen to non-infested areas (Robbs et al., 1972). In the absence of formal certification or regulatory programmes, growers should be aware and cautious if seed is originating from areas where the disease occurs. Hillocks (1981) showed that spread of the pathogen in Tanzania is reduced by issuing seed produced in Fusarium wilt-free areas. However, no quantitative estimates are available as to the proportion of infected seeds which give rise to infected plants.

According to Hillocks and Kibani (2002), the above phytosanitary measures instituted at the cotton ginneries to prevent the distribution, for planting, of seed infected with the wilt fungus have become difficult to apply since economic liberalization and the entry of the private sector into cotton ginning and lint marketing. Surveys of cotton fields, ginneries and cotton-buying posts were conducted in 1997 to determine the factors affecting disease incidence and spread. In affected fields, disease incidence was generally less than 5%. Where it was greater than this, wilt symptoms were associated with root damage caused by the root-knot nematode (Meloidogyne incognita). At a number of ginneries, herdsmen were allowed to remove seed husks that accumulate at the ginneries as a by-product of oil extraction. The husks are used as cattle feed and this was identified as a potential source of disease spread. At the buying posts visited, there was no system for separating cotton varieties or for identifying seed cotton purchased from villages infected with fusarium wilt. As a result, seed subsequently distributed for planting is likely to be a source of infection for the spread of this disease.

Other sources

Soil is the primary inoculum source for F. oxysporum f.sp. vasinfectum. The pathogen is a soil-invading, weak saprophyte that can remain dormant in the soil for long periods in the form of chlamydospores (Garrett, 1956). The pathogen can also infect non-host plants without causing symptoms and perpetuate indefinitely.

The fungus could be associated with gin trash, as well as the manure from livestock fed contaminated cottonseed or gin trash.

Seed Treatments

Biological or chemical seed treatments have not been sufficiently effective or economical. Previous research evaluated chemical seed treatment with carbendazim, thiophanate-methyl and ethylene thiosulphonate (Shen, 1985; Sharma and Sandhu, 1989) and biological treatments with Trichoderma spp. (Charati et al., 1998).

Thermotherapy with hot water can substantially reduce seed contamination of Fusarium oxysporum f.sp. vasinfectum, but it also reduces seed viability and vigour (Bennett and Colyer, 2010; Doan and Davis, 2015).

Seed Health Tests

Culture plate (Hillocks, 1983)

- Cotton seed must be acid-delinted in concentrated sulphuric acid and surface sterilized to remove surface contamination.
- The seeds are placed on water agar or PDA in a Petri dish and incubated at 25°C for 5-7 days.
- Any fungus growing from the seeds should be subcultured onto fresh PDA for identification.
- Cultures confirmed as F. oxysporum are then inoculated into cotton seedlings to distinguish the pathogenic strains from the saprophytes.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
True seeds (inc. grain) hyphae; spores Yes Yes Pest or symptoms usually invisible

Impact

Top of page

F. oxysporum f.sp. vasinfectum causes significant crop losses in several of the main cotton-producing countries. The disease is widespread in the USA, the former Soviet Union (Menlikiev, 1962) and China. In Africa, Tanzania is the worst affected country (Hillocks, 1981). Although losses nationally may not be great, estimated for instance at 0.2% for the whole of the USA in 1989 (Blasingame, 1990), losses are much greater in localized areas and for individual farmers in areas where the disease is endemic. The presence of a pathogen in a field can exclude the planting of a variety with desirable agronomic characteristics (.e.g. yield) if it is susceptible to the pathogen.

Diagnosis

Top of page

The plant tissue to be used for isolations depends upon which plant parts are showing symptoms. With a root-rotting F. oxysporum f.sp. vasinfectum strain, there would be root rot or black streaking in the pith and this tissue should be targeted for isolations. With a vascular-colonizing strain, there would be browning of the xylem in stems and this tissue should be targeted for isolations. To isolate the fungus from an infected plant, cut a 1 cm section of  tissue and surface sterilize in 70% ethyl alcohol or 1% NaOCl, then rinse in sterile water and place on PDA in a Petri dish. Incubate at 25°C for 3 days, by which time the fungus should be growing from the cut ends of the tissue and can be subcultured to fresh PDA for identification on the basis of cultural pigmentation, microconidia produced on a short conidiophore and the production of chlamydospores as the culture ages. Refer to Leslie and Summerell (2006) for details on morphological identification.

Fungus morphology, together with isolation from a cotton plant with wilt symptoms, should provide a good indication that the disease is Fusarium wilt. However, final confirmation requires the completion of Koch's postulates with the inoculation of the pathogen into a healthy cotton plant to produce symptoms of the disease. This can be done by growing the fungus on PDA and rinsing the surface of the culture with sterile water to bring the conidia into suspension. A spore suspension containing from 100,000 to 10,000,000 conidia/ml will produce symptoms in 7-10 days after inoculation by one of several methods. The most effective inoculation method is to dip the roots of a cotton seedling in the suspension and carefully repot the plant and keep it at a mean temperature above 25°C.

 A PCR-based technique was developed which was capable of detecting the pathogen within host tissues, even when symptoms were absent (Moricca et al., 1998). A PCR protocol specific for race 4 was developed by Ortiz et al. (2017) and there is a PCR-based detection kit available specific for race 4 (Doan et al., 2014). These protocols are useful for detection from plants growing in the field but, to date, there are no effective diagnostic methods for analysing soil or seed.

Detection and Inspection

Top of page

With root-rotting F. oxysporum f.sp. vasinfectum, bare spots within a field will have seedlings that have been killed. Wilting symptoms develop later in the season and root rot symptoms are easier to find at this time. With vascular-infecting strains, the disease is detectable in the field when foliar symptoms appear, usually 6-10 weeks after planting, and a tentative field diagnosis can be made with the finding of xylem browning in cut stems. Other pathogens or abiotic injuries and nutrient deficiencies can cause symptoms resembling Fusarium wilt, so additional laboratory tests are necessary for confirmation (see Diagnosis).

Similarities to Other Species/Conditions

Top of page

The symptoms of Fusarium wilt on cotton are similar to those of Verticillium wilt (Verticillium dahliae). Seedling death can be caused by other soilborne pathogens, such as Rhizoctonia solani.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Introduction

A more detailed review of control approaches can be found in Cianchetta and Davis (2015) and Davis et al. (2006). Control of F. oxysporum f.sp. vasinfectum is necessary in a number of countries, including China, the former Soviet Union, northern Brazil, Israel, Sudan, Egypt, Tanzania and some states in the USA. Once established in the soil, the fungus is practically impossible to eradicate. The most effective and practical means of control is exclusion from non-infested soils and where the pathogen is present and the use of resistant varieties.

Host-Plant Resistance

Efforts for breeding resistance to F. oxysporum f.sp. vasinfectum are reviewed in Zhang et al. (2015) and include summaries of breeding activities in several countries. There is considerable variability for wilt resistance in the genus Gossypium; major gene resistance is found in some of the Sea Island (G. barbadense) cottons but not in the Upland types (G. hirsutum). Some of the Sea Island varieties are almost immune to the disease and the more resistant Upland cottons may have been derived from crosses or introgression with G. barbadense. The G. barbadense variety, Seabrook Sea Island, is a useful source of resistance (Wilhelm, 1981). However, it has proved difficult to retain high levels of resistance in lines derived from hybridization programmes between G. hirsutum and G. barbadense because resistance seems to be linked to barbadense characters which are undesirable in Upland varieties and are lost during selection for Upland agronomic traits. Furthermore, F. oxysporum f.sp. vasinfectum exists in a number of races (Armstrong and Armstrong, 1958; Armstrong and Armstrong, 1960; Ibrahim, 1966; Armstrong and Armstrong, 1978) and resistance to one race does not necessarily confer resistance to others.

The first wilt-resistant cottons were produced in the USA by mass selection on heavily infested land. Several states and private seed companies in the USA run evaluation programmes for resistance to the Fusarium wilt/Meloidogyne spp. nematode complex and new wilt-resistant varieties are continually being produced (Kappelman, 1980). More emphasis is now placed on selection for resistance to root-knot nematode in material with some resistance to Fusarium wilt as the best way to improve the level of resistance to the disease complex (Kappelman, 1975; Hyer et al., 1979). This has resulted in a series of lines derived from Auburn 56 known as Auburn RNR lines (Shepherd, 1982).

Commercially successful, wilt-resistant varieties have also been produced elsewhere. In Tanzania, UK77 and UK91 are Upland cottons derived from Albar 51 which have good levels of resistance to wilt but become susceptible in the presence of root-knot nematode (Hillocks, 1984; Hillocks and Bridge, 1992). Some of the Giza and Barakat varieties in Egypt are wilt resistant (Abdel-Raheem et al., 1974) and in the Sudan varieties for the areas of the Gezira which are affected by Fusarium wilt have to be selected for resistance to the disease (Yassin et al., 1986). The Egyptian long-staple varieties Ashmouni and Menoufi have been used in wilt resistance breeding programmes in the former Soviet Union (Wilhelm, 1981). 'Pima' cultivars, derived from G. barbadense are grown in parts of the USA, Israel, Peru and elsewhere. Some 'Pima' cultivars are wilt-resistant, such as L-60 DSV-UNP from Peru (Rodríguez-Gálvez and Maldonado, 1998).

Most of these breeding programmes rely on evaluation of wilt resistance using 'wilt-sick plots' of lines selected for other characters in the main breeding programme. Where single plant selection is to be practised then plants can be inoculated by root dip or stem puncture with a conidial suspension of the fungus (Hillocks, 1984; Hillocks, 1992).

Regulatory Control

As the pathogen cannot be eradicated from the soil once established, it is best to prevent its introduction by planting seed which is certified free of wilt (see Risk of Introduction and Seedborne Aspects). Do not plant seed originating from infested fields and the most cautious approach is to not plant seed originating from areas where Fusarium wilt is widespread.

Cultural Control and Sanitary Methods

F. oxysporum f.sp. vasinfectum can survive in the soil in the absence of its main host, cotton, by remaining dormant in the form of chlamydospores and by localized infection of the roots of a number of non-host plants among crop species and weeds (Wood and Ebbels, 1972; Smith and Snyder, 1975). Crop rotations are often ineffective at reducing the soil inoculum. However, in the former Soviet Union, rotations with barley and other crops reduced the incidence of wilt in cotton planted the following season (Goshaev, 1971). In California, a weed-free, dry, summer fallowing is recommended to reduce damage to future cotton crops.

Soil solarization is effective in decreasing the population of soilborne pathogens and has been shown to decrease the incidence of Fusarium wilt in Israel (Katan et al., 1983) but this approach, along with the chemical fumigation of soil, is not generally employed.

In localities with some infested fields, vehicles and farm implements need to be washed free of adhering soil prior to moving to non-infested fields. The use of detergents improves the effectiveness of washing (Bennett et al., 2011).

When furrow irrigation is used, limit tail water movement from infested fields.

Gin trash from infested fields should not be applied to non-infested fields. The manure of cattle fed cottonseed or gin trash from infested fields should not be applied to non-infested fields, nor should livestock grazing in infested fields be allowed into non-infested fields.

IPM Programmes

An IPM approach specifically for the control of Fusarium wilt on cotton has not been described but effective control of the disease in cotton requires that the use of resistant varieties is integrated with regulatory measures to prevent the use of infected seed for planting and, where applicable, the use of cropping systems which decrease the incidence of root-knot nematodes.

References

Top of page

Abdel-Raheem A, Haggag MEA, Abou-Daoud MS, 1974. The reaction of some Egyptian cotton varieties and their crosses to Fusarium wilt. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 81(9):516-521

Abo, K., Klein, K. K., Edel-Hermann, V., Gautheron, N., Traore, D., Steinberg, C., 2005. High genetic diversity among strains of Fusarium oxysporum f. sp. vasinfectum from cotton in Ivory Coast. Phytopathology, 95(12), 1391-1396. doi: 10.1094/PHYTO-95-1391

Allen SJ, Lonergan PA, 1997. Diseases of cotton in Australia. Proceedings Beltwide Cotton Conferences, New Orleans, LA, USA. Memphis, USA: National Cotton Council, 90-92

Anwar SA, Khan IU, 1973. Some studies on cotton-wilt complex. Journal of Agricultural Research, Punjab, 11(4):94-98

Armstrong GM, Armstrong JK, 1958. A race of the cotton wilt fusaria causing wilt of Yelredo soybean and flue-cured tobacco. Plant Disease Reporter 42:147-151

Armstrong GM, Armstrong JK, 1960. American, Egyptian and Indian cotton wilt fusaria: their pathogenicity and relationship to other fusaria. US Department of Agriculture Technical Bulletin No. 1219, 1-19

Armstrong GM, Armstrong JK, 1968. Formae specialis and races of Fusarium oxysporum causing tracheomycosis in the syndrome of disease. Phytopathology 58:1242-1246

Armstrong GM, Armstrong JK, 1978. A new race (race 6) of the cotton-wilt Fusarium from Brazil. Plant Disease Reporter, 62(5):421-423

Assigbetse KB, Fernandez D, Dubois MP, Geiger JP, 1994. Differentiation of Fusarium oxysporum f.sp. vasinfectum races on cotton by random amplified polymorphic DNA (RAPD) analysis. Phytopathology, 84(6):622-626; 29 ref

Atkinson GF, 1892. Some diseases of cotton. 3. Frenching. Bulletin of Alabama Agricultural Experimental Station, 41:19-29

Bell, A. A., Liu, J., Ortiz, C. S., Quintana, J., Stipanovic, R. D., Crutcher, F. K. , 2016. Population structure and dynamics among Fusarium oxysporum isolates causing wilt of cotton. In: Proceedings of the 2016 Beltwide Cotton Conferences [ed. by Boyd, S., Huffman, M.]. Memphis, USA: National Cotton Council of America. 153-158.

Bennett, R. S., Colyer, P. D., 2010. Dry heat and hot water treatments for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum. Plant Disease, 94(12), 1469-1475. doi: 10.1094/PDIS-01-10-0052

Bennett, R. S., Hutmacher, R. B., Davis, R. M., 2008. Seed transmission of Fusarium oxysporum f. sp. vasinfectum race 4 in California. Journal of Cotton Science, 12(2), 160-164. http://www.cotton.org/journal/2008-12/2/upload/JCS12-160.pdf

Bennett, R. S., O'Neill, W., Smith, L., Hutmacher, R. B., 2011. Activity of commercial detergents against conidia and chlamydospores of Fusarium oxysporum f. sp. vasinfectum. Journal of Cotton Science, 15(2), 162-169. http://journal.cotton.org/journal/2011-15/2/162.cfm

Blasingame D, 1990. Disease loss estimate committee report. In: Proceedings of the Beltwide Cotton Production Research Conference, National Cotton Council, Memphis, Tennessee, 4

Booth C, 1971. The Genus Fusarium. Wallingford, UK: CAB International

Booth C, Waterson JM, 1964. Fusarium oxysporum f.sp. vasinfectum. CMI Descriptions of Pathogenic Fungi and Bacteria No 28. Wallingford, UK: CAB International

Chalfoun SM, 1979. Occurrence of Fusarium wilt on cotton (Gossypium hirsutum L.) in the State of Minas Gerais. Fitopatologia Brasileira, 4(3):517-518

Charati SN, Mali JB, Pawar NB, 1998. Bio-control of Fusarium wilt of cotton by Trichoderma spp. Journal of Maharashtra Agricultural Universities, 23(3):304-305; 7 ref

Chopra BL, Chauhan MS, 1993. Progress of important cotton diseases during crop period in North Zone. Journal of Cotton Research and Development, 7(2):297-306; 7 ref

Chung BK, Ser SO, 1992. Identification of antagonistic Streptomyces species on Phytophthora nicotianae var. parasitica and Fusarium oxysporum f.sp. vasinfectum causing sesame wilt and blight. Korean Journal of Mycology, 20(1):65-71; 28 ref

Cia E, 1977. Occurrence and knowledge of annual cotton (Gossypium hirsutum L.) diseases in Brazil. Summa Phytopathologica, 3(3):167-193

Cianchetta, A. N., Davis, R. M., 2015. Fusarium wilt of cotton: management strategies. Crop Protection, 73, 40-44. doi: 10.1016/j.cropro.2015.01.014

Cooper, W. E, Brodie, B. B., 1963. A comparison of Fusarium-wilt indices of Cotton varieties with root-knot and sting nematodes as predisposing agents. Phytopathology, 53(9), 1077-1080.

Corato de U, Carlucci A, Frisullo S, Lopos F, 1999. The wilting of kenaf by Fusarium oxysporum. Petria, 9(1/2):53-60

Davis, R. M., Colyer, P. D., Rothrock, C. S., Kochman, J. K., 2006. Fusarium wilt of cotton: population diversity and implications for management. Plant Disease, 90(6), 692-703. doi: 10.1094/PD-90-0692

Delgado MA, Agurto VR, 1984. Estimation of losses caused by root and fibrovascular pathogens by means of sampling, analysis and periodic evaluation of the plant population in different cotton growing areas of Piura. Fitopatología, 19(1):27-38; 16 ref

Dishon I, Nevo D, 1970. The appearance of fusarium wilt in the Pima cotton cultivar. Hassadeh 56:2281-2283 (in Hebrew)

Doan, H. K., Davis, R. M., 2015. Efficacy of seed treatments on viability of Fusarium oxysporum f. sp. vasinfectum race 4 in infected cotton seed. Crop Protection, 78, 178-184. doi: 10.1016/j.cropro.2015.09.017

Doan, H. K., Zhang, S. L., Davis, R. M., 2014. Development and evaluation of AmplifyRP Acceler8 diagnostic assay for the detection of Fusarium oxysporum f. sp. vasinfectum race 4 in cotton. Plant Health Progress, (No.March), PHP-RS-13-0115. http://www.plantmanagementnetwork.org/php/elements/sum2.aspx?id=10741

Ebbels DL, 1975. Fusarium wilt of cotton: a review, with special reference to Tanzania. Cotton Growing Review, 52(4):295-339

Edel-Hermann, V., Lecomte, C., 2019. Current status of Fusarium oxysporum Formae Speciales and races. Phytopathology, 109, 512-530.

Elliot JA, 1923. Cotton wilt: a seed borne disease. Journal of Agricultural Research, 23:387-393

Feng J, Sun-Wen J, Shi-Lei Y, Ma C, 1999. RAPD analysis of physiologic races of Fusarium oxysporum f.sp. vasinfectum in China. Acta Gossypii Sinica, 11(5):230-234

Fernandez, D., Assigbetse, K., Dubois, M. P., Geiger, J. P., 1994. Molecular characterization of races and vegetative compatibility groups in Fusarium oxysporum f.sp. vasinfectum. Applied and Environmental Microbiology, 60(11), 4039-4046.

Gangopadhyay S, Kapoor KS, 1977. Control of Fusarium wilt of okra with seed treatment. Indian Journal of Mycology and Plant Pathology, 7(2):147-149

Garrett SD, 1956. Biology of Root Infecting Fungi. Cambridge, UK: Cambridge University Press

Goebel S, Vaissayre M, 1986. A rapid method of testing varietal resistance of cotton to Fusarium disease. Coton et Fibres Tropicales, 41(1):63-65; [2 tab.]

Goshaev D, 1971. The role of Preceding crops of cotton in the suppression of Fusarium wilt. Review of Plant Pathology, 51:2513

Goshaev D, 1986. Biological and ecological features of Fusarium oxysporum Schl. f.sp. vasinfectum in the Murgab oasis. Zashchita sel'skokhozaistvennykh kul'tur, 1986:48-52

Gridi-Papp IL, Fuzatto MG, Cavaleri PA, Cia E, Silva NM da, Ferraz CAM, Scmidt W, Neves O da, Rodrigues- Filho FSO, Chiavegato EJ, Sabino NP, Martinelli ES, Lazzarini JF, Correa FA, Grossi JMM, 1984. Cotton breeding in Sao Paulo State: origins of the varieties IAC RM3, IAC RM4, IAC16 and IAC 17. Bragantia, 43:405-423

Grover RK, Singh G, 1970. Pathology of wilt of okra (Abelmoschus esculentus) caused by Fusarium oxysporum f.sp. vasinfectum (Atk) Sny. & Hans., its host range and histopathology. Indian Journal of Agricultural Science 40:989-996

Gubanov RK, Sabirov BG, 1972. Transmission of fusarium wilt infection by cotton seed. Khlopkovodstvo 22(3):22-23

Guo DC, Wang QF, Yan SZ, Dai KS, 1993. A study on a new kind fungicide - zhiweiling. Scientia Agricultura Sinica, 26(3):63-68; 13 ref

Halpern, H. C., Bell, A. A., Wagner, T. A., Liu, J., Nichols, R. L., Olvey, J., Woodward, J. E., Sanogo, S., Jones, C. A., Chan, C. T., Brewer, M. T., 2018. First report of Fusarium wilt of cotton caused by Fusarium oxysporum f. sp. vasinfectum race 4 in Texas, U.S.A. Plant Disease, 102(2), 446. doi: 10.1094/PDIS-07-17-1084-PDN

He ZX, Liu GZ, Deng XM, 1994. Effect of polyethylene film mulching on the incidence of Fusarium oxysporum f.sp. vasinfectum. Journal of Southwest Agricultural University, 16(5):419-421; 8 ref

Hillocks RJ, 1981. Cotton disease research in Tanzania. Tropical Pest Management, 27(1):1-12

Hillocks RJ, 1983. Infection of cotton seed by Fusarium oxysporum f.sp. vasinfectum in cotton varieties resistant or susceptible to Fusarium wilt. Tropical Agriculture, 60(2):141-143

Hillocks RJ, 1984. Production of cotton varieties with resistance to Fusarium wilt with special reference to Tanzania. Tropical Pest Management, 30(3):234-246, 333; [7 fig., 3 tab.]; 60 ref

Hillocks RJ, 1985. The effect of root-knot nematode on vascular resistance to Fusarium oxysporum f. sp. vasinfectum in the stems of cotton plants. Annals of Applied Biology, 107(2):213-218; 20 ref

Hillocks RJ, 1992. Fusarium wilt. Cotton diseases., 127-160; 8 pp. of ref

Hillocks RJ, Bridge J, 1992. The role of nematodes in Fusarium wilt of cotton in Tanzania. Afro-Asian Journal of Nematology, 2(1-2):35-40; 25 ref

Hillocks RJ, Kibani THM, 2002. Factors affecting the distribution, incidence and spread of fusarium wilt of cotton in Tanzania. Experimental Agriculture, 38(1):13-27; 14 ref

Holdeman, Q. L., Graham, T. W., 1954. Effect of the sting nematode on expression of fusarium wilt in cotton. Phytopathology, 44(12), 683-685.

Hyer, A. H., Jorgenson, E. C., Garber, R. H., Smith, S., 1979. Resistance to root-knot nematode in control of root-knot nematode-fusarium wilt disease complex in cotton. Crop Science, 19(6), 898-901. doi: 10.2135/cropsci1979.0011183X001900060036x

Ibrahim FM, 1966. A new race of cotton wilt Fusarium in the Sudan Gezira. Empire Cotton Growing Review, 43:296-299

Ibrahim G, Nirenberg HI, 1993. Response of some Sudanese cotton cultivars to race 1 and 5 of Fusarium oxysporum f.sp. vasinfectum. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 100(6):645-651; 11 ref

IRCT, 1977. Work of the Research Institute for Cotton and Exotic Textiles in 1975 - 1976. Cotton et fibres Tropicales, 32:101-111

Jorgenson EC, Hyer AH, Garber RH, Smith SN, 1978. Influence of soil fumigation on the fusarium-root-knot nematode disease complex of cotton in California. Journal of Nematology, 10(3):228-231

Kappelman AJ, 1980. The Fusarium wilt-nematode evaluation programme at Talassee, Alabama - progress through the years. In: Proceedings of the Beltwide Cotton Production Research Conference, Memphis, Tennessee, USA: National Cotton Council of America, Memphis, USA, 302-303

Kappelman, A. J., Jr., 1975. Correlation of Fusarium wilt of cotton in the field and greenhouse. Crop Science, 15(2), 270-272. doi: 10.2135/cropsci1975.0011183X001500020038x

Katan J, Fishler G, Grinstein A, 1983. Short- and long-term effects of soil solarization and crop sequence on Fusarium wilt and yield of cotton in Israel. Phytopathology, 73(8):1215-1219; 19 ref

Khadr AS, Salem AA, Oteifa BA, 1972. Varietal susceptibility and significance of the reniform nematode Rotylenchulus reniformis, in Fusarium wilt of cotton. Plant Disease Reporter, 56(12):1040-1042

Khetmalas MB, Kadam VC, Hande YK, More WD, 1989. Reaction of certain deshi cotton cultivars to Fusarium wilt. Journal of Maharashtra Agricultural Universities, 14(3):369-371; 2 ref

Kim, Y., Hutmacher, R. B., Davis, R. M., 2005. Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum. Plant Disease, 89(4), 366-372. doi: 10.1094/PD-89-0366

Kochman JK, 1995. Fusarium wilt in cotton - a new record in Australia. Australasian Plant Pathology, 24(1):74; 1 ref

Kulkarni GS, 1934. Studies in the wilt disease of cotton in the Bombay Presidency. Indian Journal of Agricultural Science 4:976-1045

Lagiére R, 1952. Possibilities of transmission of Fusarium wilt of cotton by the seed. Cotton et Fibres Tropicales, 15:146-148

LaMondia JA, 2015. Fusarium wilt of tobacco. Crop Protection, 73:73-77. http://www.sciencedirect.com/science/journal/02612194

Leslie, J. F., Summerell, B. A., 2006. The Fusarium laboratory manual, [ed. by Leslie, J. F., Summerell, B. A.]. Oxford, UK: Blackwell Publishing.xii + 388 pp.

Li GX, Yang FX, 1989. Regional Fusarium and Verticillium wilt resistant cotton variety tests over 16 years in China. China Cottons, No. 5:26-27

Li JK, Guo DC, 1999. A preliminary report on the synergism mechanism of Miejuncazhangji. Scientia Agricultura Sinica, 32(2):66-71

Liu, J. G., Bell, A. A., Wheeler, M. H., Stipanovic, R. D., Puckhaber, L. S., 2011. Phylogeny and pathogenicity of Fusarium oxysporum isolates from cottonseed imported from Australia into California for dairy cattle feed. Canadian Journal of Microbiology, 57(11), 874-886. doi: 10.1139/w11-080

Mathieson T, Follin J-C, 1981. Fungi and bacteria observed on cotton in Paraguay. Principal diseases. Coton et Fibres Tropicales, 36(3):265-269

Menlikiev NY, 1962. Fusarium wilt of fine-staple cotton and a study of Fusarium oxysporum f.sp. vasinfectum strains as the causal agent of the disease in the conditions of the Vakash Valley. Izvestiya Akademii Nauk Tadzhikskoi S. S. R. 4(11)48-59

Moricca S, Ragazzi A, Kasuga T, Mitchelson KR, 1998. Detection of Fusarium oxysporum f.sp. vasinfectum in cotton tissue by polymerase chain reaction. Plant Pathology, 47(4):486-494; 34 ref

Nirenberg HI, Ibrahim G, Michail SH, 1994. Race identity of three isolates of Fusarium oxysporum Schlecht. f.sp. vasinfectum (Atk.) Snyd. & Hans. from Egypt and the Sudan. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 101(6):594-597; 6 ref

Ortiz, C. S., Bell, A. A., Magill, C. W., Liu JingGao, 2017. Specific PCR detection of Fusarium oxysporum f. sp. vasinfectum California race 4 based on a unique Tfo1 insertion event in the PHO gene. Plant Disease, 101(1), 34-44. doi: 10.1094/PDIS-03-16-0332-RE

Perry DA, 1962. Fusarium wilt of cotton in the Lake province of Tanganyika. Empire Cotton Growing Review, 39:14-16

Perry DA, 1963. Interaction of root-knot and Fusarium wilt of cotton. Empire Cotton Growing Review, 40:41-47

Ragazzi A, Moricca S, Dellavalle I, Gonnelli T, 1995. Behaviour of Fusarium oxysporum f.sp. vasinfectum isolates from Angola on callus tissue of cotton. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 102(5):493-501; 19 ref

Robbs CF, Ribeiro R de LD, Akiba F, Sudo S, 1972. Note on the occurrence of 'fusariosis' of okra (Hibiscus esculentus L.) in the Baixada Carioca-Fluminense. Agronomia, Brazil, 30(1):23-26

Rodríguez-Gálvez, E., Maldonado, E., 1998. Reaction of three Pima cotton cultivars (Gossypium barbadense L.) to Fusarium oxysporum f. sp. vasinfectum. (Reaccion de tres cultivares peruanos de algodonero pima (Gossypium barbadense L.) a Fusarium oxysporum f.sp. vasinfectum). Fitopatología, 33(2), 127-132.

Salmond G, 2000. Fusarium wilt spreads through cotton industry. Australian Cottongrower, 21(2):4-9

Santos FH, 1969. Wilt disease of cotton, Fusarium oxysporum f.sp. vasinfectum (Atk.) Snyder & Hansen. Agronomia Angolana, 29:145-157

Schotman CYL, 1989. Plant pests of quarantine importance to the Caribbean. RLAC-PROVEG, No. 21:80 pp

Shanmugam N, Vinayagamurthy A, Rajendran G, Muthukrishnan TS, Kandaswamy TK, 1977. Occurrence of nematode-fungus interactions on cotton around Coimbatore. Science and Culture, 43(8):346-348

Sharma YR, Sandhu BS, 1989. Efficacy of seed treatment to control fusarial wilt on arboreum cotton. Pesticides, 23(9):50-51; 3 ref

Shen CY, 1985. Integrated management of Fusarium and Verticillium wilts of cotton in China. Crop Protection, 4(3):337-345; [5 tab.]; 33 ref

Shepherd RL, 1982. Registration of eight germplasm lines of frego-bract cotton (Reg. Nos. GP167 to GP174). Crop Science, 22(3):692-693

Sidorova SF, Akmuradov B, 1981. Virulence of Turkmenian strains of the pathogen of Fusarium wilt of cotton to foreign differential varieties. Mikologiya i Fitopatologiya, 15(4):314-317

Smith SN, Dick JB, 1960. Inheritance of resistance to Fusarium wilt in Upland and Sea Island cottons as complicated by nematodes under field conditions. Phytopathology, 67:476-481

Smith SN, Snyder WC, 1975. Persistence of Fusarium oxysporum f.sp. vasinfectum in fields in the absence of cotton. Phytopathology, 65(2):190-196

Snyder WC, Hansen HN, 1940. The species concept in Fusarium. American Journal of Botany, 27:64-67

Song FM, Zheng Z, 1995. Effect of presowing application of trifluralin on cotton seedling diseases and Fusarium wilt. Acta Phytophylactica Sinica, 4:361-366

Sun W, Jian G, Chen Q, 1999. Study on monitoring of physiologiocal races of cotton Fusarium wilt in China. Scientia Agricultura Sinica, 32:51-57

Tian F, 1981. Studies on specialized biotypes of cotton Fusarium wilt fungus in Xinjiang. Acta Phytopathologica Sinica, 11(1):27-30

Tursanov T, Aliev SH, 1995. Fusariose of the medium-staple cotton cultivars. Zachchita Rastenii Moskva, 8:15

UK CAB International, 1982. Fusarium oxysporum f.sp. vasinfectum. [Distribution map]. Distribution Maps of Plant Diseases, October (Edition 4). Wallingford, UK: CAB International, Map 362

Wang B, Dale ML, Kochman JK, 1999. Studies on a pathogenicity assay for screening cotton germplasms for resistance to Fusarium oxysporum f. sp. vasinfectum in the glasshouse. Australian Journal of Experimental Agriculture, 39(8):967-974; 25 ref

Wilhelm S, 1981. Sources and genetics of host resistance in field and fruit crops. In: Mace ME, Bell AA, Beckman CH, eds. Fungal Wilt Diseases of Plants. New York and London: Academic Press, 300-376

Wood CM, Ebbels DL, 1972. Host range and survival of Fusarium oxysporum f.sp, vasinfectum in N. W. Tanzania. Cotton Growing Review, 49:79-82

Yang ZW, Wang RX, Gao YW, 1995. Effect of root effusion of different cotton varieties on Fusarium oxysporum f.sp. vasinfectum. Scientia Agricultura Sinica, 28:87-88

Yarovenko GI, ed. , 1972. Agrotechnical measures against cotton wilt. Agrotekhnicheskie mery bor'by s viltom khlopchatnika. Minist. Agric. USSR. Tashkent USSR, 135 pp

Yassin AM, Daffalla GA, 1982. A preliminary note on the present status of cotton wilt syndrome in the Sudan. Cotton et Fibres Tropicales, 4:379-383

Yassin AM, Khalifa H, Abbas IM, 1986. A quick method for effective screening of cotton cultivars against pathogenic wilt: a useful tool for the breeder. Tropical Pest Management, 32(2):115-117; 11 ref

Yuan HX, Li HL, Wang ZY, Wang SZ, Wang Y, 1998. Studies on the control of cotton fusarium wilt by soil antagonists. Chinese Journal of Biological Control, 14(4):156-158

Zhang JF, Lu FB, Nie YC, Guo JH, Sun JZ, Liu JL, 1995. Analysis of Fusarium wilt resistance in F1 hybrids of Upland cotton. Journal of Huazhong Agricultural University, 14:15-20

Zhang, J. F., Sanogo, S., Ma ZhiYing, Qu YanYing, 2015. Breeding, genetics, and quantitative trait locus mapping for Fusarium wilt resistance in cotton. Crop Science, 55(6), 2435-2452. doi: 10.2135/cropsci2015.01.0056

Zhu, Y., Lujan, P. A., Wedegaertner, T., Nichols, R., Abdelraheem, A., Zhang, J. F., Sanogo, S., 2020. First Report of Fusarium oxysporum f. sp. Vasinfectum Race 4 ausing Fusarium Wilt of Cotton in New Mexico, USA. Plant Disease, 104, 588.

Distribution References

Abo K, Klein K K, Edel-Hermann V, Gautheron N, Traore D, Steinberg C, 2005. High genetic diversity among strains of Fusarium oxysporum f. sp. vasinfectum from cotton in Ivory Coast. Phytopathology. 95 (12), 1391-1396.

Anwar S A, Khan I U, 1973. Some studies on cotton-wilt complex. Journal of Agricultural Research, Punjab. 11 (4), 94-98.

Blasingame D, 1990. Disease loss estimate committee report. [Proceedings of the Beltwide Cotton Production Research Conference], Memphis, Tennessee, National Cotton Council. 4.

CABI, Undated. Compendium record. Wallingford, UK: CABI

CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI

CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

Chalfoun S M, 1979. Occurrence of Fusarium wilt on cotton (Gossypium hirsutum L.) in the State of Minas Gerais. (Ocorrencia de murcha de Fusarium em algodoeiro (Gossypium hirsutum L.) no Estado de Minas Gerais.). Fitopatologia Brasileira. 4 (3), 517-518.

Chopra B L, Chauhan M S, 1993. Progress of important cotton diseases during crop period in North Zone. Journal of Cotton Research and Development. 7 (2), 297-306.

Chung B K, Ser S O, 1992. Identification of antagonistic Streptomyces species on Phytophthora nicotianae var. parasitica and Fusarium oxysporum f.sp. vasinfectum causing sesame wilt and blight. Korean Journal of Mycology. 20 (1), 65-71.

Cia E, 1977. Occurrence and knowledge of annual cotton (Gossypium hirsutum L.) diseases in Brazil. (Ocorrencia e conhecimento das doencas de algodoeiro anual Gossypium hirsutum L. no Brasil.). Summa Phytopathologica. 3 (3), 167-193.

Delgado M A, Agurto V R, 1984. Estimation of losses caused by root and fibrovascular pathogens by means of sampling, analysis and periodic evaluation of the plant population in different cotton growing areas of Piura. (Estimado del monto de daños producidos por patógenos radiculares y fibrovasculares mediante muestreos, análisis y evaluaciones periódicas de la población de plantas de diferentes zonas algodoneras de Piura.). Fitopatología. 19 (1), 27-38.

Dishon I, Nevo D, 1970. The appearance of fusarium wilt in the Pima cotton cultivar. Hassadeh. 2281-2283.

Goebel S, Vaissayre M, 1986. A rapid method of testing varietal resistance of cotton to Fusarium disease. (Mise au point d'un test rapide de résistance variétale à la fusariose du cotonnier.). Coton et Fibres Tropicales. 41 (1), 63-65.

Gridi-Papp IL, Fuzatto MG, Cavaleri PA, Cia E, Silva NM da, Ferraz CAM, Scmidt W, Neves O da, Rodrigues- Filho FSO, Chiavegato EJ, Sabino NP, Martinelli ES, Lazzarini JF, Correa FA, Grossi JMM, 1984. Cotton breeding in Sao Paulo State: origins of the varieties IAC RM3, IAC RM4, IAC16 and IAC 17. In: Bragantia, 43 405-423.

Guo D C, Wang Q F, Yan S Z, Dai K S, 1993. A study on a new kind fungicide - zhiweiling. Scientia Agricultura Sinica. 26 (3), 63-68.

Halpern H C, Bell A A, Wagner T A, Liu J, Nichols R L, Olvey J, Woodward J E, Sanogo S, Jones C A, Chan C T, Brewer M T, 2018. First report of Fusarium wilt of cotton caused by Fusarium oxysporum f. sp. vasinfectum race 4 in Texas, U.S.A. Plant Disease. 102 (2), 446.

He Z X, Liu G Z, Deng X M, 1994. Effect of polyethylene film mulching on the incidence of Fusarium oxysporum f.sp. vasinfectum. Journal of Southwest Agricultural University. 16 (5), 419-421.

Hillocks R J, 1984. Production of cotton varieties with resistance to Fusarium wilt with special reference to Tanzania. Tropical Pest Management. 30 (3), 234-246, 333.

Hillocks R J, 1992. Fusarium wilt. In: Cotton diseases. [ed. by Hillocks RJ]. Wallingford, UK: CAB International. 127-160.

IRCT, 1977. Work of the Research Institute for Cotton and Exotic Textiles in 1975 - 1976. In: Cotton et fibres Tropicales, 32 101-111.

Khetmalas M B, Kadam V C, Hande Y K, More W D, 1989. Reaction of certain deshi cotton cultivars to Fusarium wilt. Journal of Maharashtra Agricultural Universities. 14 (3), 369-371.

Kim Y, Hutmacher R B, Davis R M, 2005. Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum. Plant Disease. 89 (4), 366-372.

Kochman J K, 1995. Fusarium wilt in cotton - a new record in Australia. Australasian Plant Pathology. 24 (1), 74. DOI:10.1071/APP9950074

Mathieson T, Follin J-C, 1981. Fungi and bacteria observed on cotton in Paraguay. Principal diseases. (Champignons et bacteries observes sur le cotonnier au Paraguay. Maladies principales.). Coton et Fibres Tropicales. 36 (3), 265-269.

Nirenberg H I, Ibrahim G, Michail S H, 1994. Race identity of three isolates of Fusarium oxysporum Schlecht. f.sp. vasinfectum (Atk.) Snyd. & Hans. from Egypt and the Sudan. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. 101 (6), 594-597.

Ragazzi A, Moricca S, Dellavalle I, Gonnelli T, 1995. Behaviour of Fusarium oxysporum f.sp. vasinfectum isolates from Angola on callus tissue of cotton. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. 102 (5), 493-501.

Schotman C Y L, 1989. Plant pests of quarantine importance to the Caribbean. In: RLAC-PROVEG, 80 pp.

Shanmugam N, Vinayagamurthy A, Rajendran G, Muthukrishnan T S, Kandaswamy T K, 1977. Occurrence of nematode-fungus interactions on cotton around Coimbatore. Science and Culture. 43 (8), 346-348.

Sidorova S F, Akmuradov B, 1981. Virulence of Turkmenian strains of the pathogen of Fusarium wilt of cotton to foreign differential varieties. (Virulentnost' turkmenskikh shtammov vozbuditelya fuzarioznogo uvyadaniya khlopchatnika k zarubezhnym sortam-differentsiatoram.). Mikologiya i Fitopatologiya. 15 (4), 314-317.

Tian F, 1981. Studies on specialized biotypes of cotton Fusarium wilt fungus in Xinjiang. Acta Phytopathologica Sinica. 11 (1), 27-30.

Tursanov T, Aliev SH, 1995. Fusariose of the medium-staple cotton cultivars. In: Zachchita Rastenii Moskva, 8 15.

UK, CAB International, 1982. Fusarium oxysporum f.sp. vasinfectum. [Distribution map]. In: Distribution Maps of Plant Diseases, Wallingford, UK: CAB International. Map 362.

Yang ZhiWei, Wang RuXian, Gao YanWei, 1995. Effects of root effusion of different cotton varieties on Fusarium oxysporum f.sp. vasinfectum. Scientia Agricultura Sinica. 28 (1), 87-88.

Yassin AM, Daffalla GA, 1982. A preliminary note on the present status of cotton wilt syndrome in the Sudan. In: Cotton et Fibres Tropicales, 4 379-383.

Zhu Y, Lujan PA, Wedegaertner T, Nichols R, Abdelraheem A, Zhang JF, Sanogo S, 2020. First Report of Fusarium oxysporum f. sp. Vasinfectum Race 4 ausing Fusarium Wilt of Cotton in New Mexico, USA. Plant Disease. 588.

Contributors

Top of page

06/03/20 Review by:

Thomas Isakeit, Department of Plant Pathology, Texas A&M AgriLife Extension, College Station, Texas, USA.

Distribution Maps

Top of page
You can pan and zoom the map
Save map