Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Fusarium oxysporum f.sp. niveum
(Fusarium wilt of watermelon)

Toolbox

Datasheet

Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon)

Summary

  • Last modified
  • 31 March 2020
  • Datasheet Type(s)
  • Documented Species
  • Pest
  • Preferred Scientific Name
  • Fusarium oxysporum f.sp. niveum
  • Preferred Common Name
  • Fusarium wilt of watermelon
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Fungi
  •     Phylum: Ascomycota
  •       Subphylum: Pezizomycotina
  •         Class: Sordariomycetes

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); necrosis, with gummy exudate on a main vine of a watermelon plant. Note wilting of lateral vines and yellowing of leaves.
TitleSymptoms
CaptionFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); necrosis, with gummy exudate on a main vine of a watermelon plant. Note wilting of lateral vines and yellowing of leaves.
Copyright©Anthony P. Keinath/Clemson University
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); necrosis, with gummy exudate on a main vine of a watermelon plant. Note wilting of lateral vines and yellowing of leaves.
SymptomsFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); necrosis, with gummy exudate on a main vine of a watermelon plant. Note wilting of lateral vines and yellowing of leaves.©Anthony P. Keinath/Clemson University
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); wilting, yellowing and collapse of a susceptible watermeon vine.
TitleSymptoms
CaptionFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); wilting, yellowing and collapse of a susceptible watermeon vine.
Copyright©Anthony P. Keinath/Clemson University
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); wilting, yellowing and collapse of a susceptible watermeon vine.
SymptomsFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); wilting, yellowing and collapse of a susceptible watermeon vine.©Anthony P. Keinath/Clemson University
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); discloured xylem tissue in vascular bundles of a watermelon vine.
TitleSymptoms
CaptionFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); discloured xylem tissue in vascular bundles of a watermelon vine.
Copyright©Virginia B. DuBose/Clemson University
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); discloured xylem tissue in vascular bundles of a watermelon vine.
SymptomsFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); discloured xylem tissue in vascular bundles of a watermelon vine.©Virginia B. DuBose/Clemson University
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); symptoms on watermelon stem (Citrullus lanatus var. lanatus).
TitleSymptoms
CaptionFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); symptoms on watermelon stem (Citrullus lanatus var. lanatus).
Copyright©Clemson University/USDA Cooperative Extension Slide Series/Bugwood.org - CC BY 3.0 US
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); symptoms on watermelon stem (Citrullus lanatus var. lanatus).
SymptomsFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); symptoms on watermelon stem (Citrullus lanatus var. lanatus).©Clemson University/USDA Cooperative Extension Slide Series/Bugwood.org - CC BY 3.0 US
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); symptoms on watermelon stem (Citrullus lanatus var. lanatus).
TitleSymptoms
CaptionFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); symptoms on watermelon stem (Citrullus lanatus var. lanatus).
Copyright©Clemson University/USDA Cooperative Extension Slide Series/Bugwood.org - CC BY 3.0 US
Fusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); symptoms on watermelon stem (Citrullus lanatus var. lanatus).
SymptomsFusarium oxysporum f.sp. niveum (Fusarium wilt of watermelon); symptoms on watermelon stem (Citrullus lanatus var. lanatus).©Clemson University/USDA Cooperative Extension Slide Series/Bugwood.org - CC BY 3.0 US

Identity

Top of page

Preferred Scientific Name

  • Fusarium oxysporum f.sp. niveum (E.F. Sm.) Snyder & H.N. Hansen

Preferred Common Name

  • Fusarium wilt of watermelon

Other Scientific Names

  • Fusarium bulbigenum var. niveum (E.F. Sm.) Wollenw.
  • Fusarium niveum E.F. Sm.

International Common Names

  • English: wilt of watermelon
  • Spanish: anublo blanco; fusariosis; marchitez: sandia
  • French: fusariose vasculaire de la pasteque
  • Chinese: xiguakuweibing

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Fungi
  •         Phylum: Ascomycota
  •             Subphylum: Pezizomycotina
  •                 Class: Sordariomycetes
  •                     Subclass: Hypocreomycetidae
  •                         Order: Hypocreales
  •                             Family: Nectriaceae
  •                                 Genus: Fusarium
  •                                     Species: Fusarium oxysporum f.sp. niveum

Description

Top of page

The growth diameter of the fungus is 4.25-5.42 cm after a 4-day incubation at 25°C, and the substratum of PDA or PSA medium turns light yellow, purple or pale brown. The mycelium is delicate white with a purple tinge, sparse to abundant, then floccose, becoming felted and sometimes wrinkled in older cultures. Microconidia are borne on simple phialides arising laterally on the hyphae, or from short, sparsely branched conidiophores. Microconidia are generally abundant, variable, oval-ellipsoid, cylindrical, straight to curved, 5.50-11.82 x 2.81-4.30 µm. Macroconidia are borne on more elaborately branched conidiophores or on the surface of Tubercularia-like sporodochia. They are thin-walled, generally 1-5 septate, mostly 3-septate, fusoid-subulate and pointed at both ends, occasionally fusoid-falcate. Macroconidia are found with a somewhat hooked apex and a pedicellate base: 3-septate, 14.68-44.25 x 2.8-5.22 µm. Chlamydospores, both smooth and rough walled, are generally abundant, and found both terminally and intercalary, generally solitary but occasionally formed in pairs or in chains.

For further information, see CMI descriptions of F. oxysporum f.sp. niveum (Holliday, 1970) and F. oxysporum (Booth, 1970).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 20 Mar 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

EgyptPresentMichail et al. (1989); CABI/EPPO (2011)
South AfricaPresentCABI/EPPO (2011)
TunisiaPresentCABI/EPPO (2011)

Asia

ArmeniaPresentBabayan et al. (1960); CABI/EPPO (2011)
AzerbaijanPresentGasanov (1977); CABI/EPPO (2011)
BangladeshPresentMondal et al. (1994); CABI/EPPO (2011)
ChinaPresentCABI/EPPO (2011)
-AnhuiPresent, WidespreadLin (1990); CABI/EPPO (2011)
-FujianPresentLin (1990); CABI/EPPO (2011)
-GansuPresentCABI/EPPO (2011)
-GuangdongPresentLin (1990); CABI/EPPO (2011)
-GuangxiPresentLin (1990); CABI/EPPO (2011)
-GuizhouPresentLin (1990); CABI/EPPO (2011)
-HebeiPresentCABI/EPPO (2011)
-HeilongjiangPresentCABI/EPPO (2011)
-HenanPresentCABI/EPPO (2011); CABI (Undated)
-HunanPresentCABI/EPPO (2011)
-Inner MongoliaPresentCABI/EPPO (2011)
-JiangsuPresentLin (1990); CABI/EPPO (2011)
-JiangxiPresentLin (1990); CABI/EPPO (2011)
-JilinPresentCABI/EPPO (2011)
-LiaoningPresentLin (1990); CABI/EPPO (2011)
-NingxiaPresentJiang et al. (1983); CABI/EPPO (2011)
-QinghaiPresentCABI/EPPO (2011)
-ShaanxiPresentCABI/EPPO (2011)
-ShandongPresentLai and Zhang (1992); CABI/EPPO (2011)
-ShanghaiPresentGu WaiHong et al. (1994)
-SichuanPresentLin (1990); CABI/EPPO (2011)
-XinjiangPresentLin (1990); CABI/EPPO (2011)
-YunnanPresentLin (1990); CABI/EPPO (2011)
-ZhejiangPresentLin (1990); CABI/EPPO (2011)
IndiaPresentHolliday (1970); CABI/EPPO (2011)
-KarnatakaPresentCABI/EPPO (2011)
-PunjabPresentCABI/EPPO (2011)
-RajasthanPresentCABI/EPPO (2011)
-Uttar PradeshPresentCABI/EPPO (2011)
IranPresentAkhavizadegan (1983); CABI/EPPO (2011)
IraqPresentHolliday (1970); CABI/EPPO (2011)
IsraelPresentNetzer and Martyn (1989); CABI/EPPO (2011)
JapanPresentHolliday (1970); CABI/EPPO (2011)
LaosPresentCallaghan et al. (2016)
MalaysiaPresentCABI/EPPO (2011)
-SabahPresentCABI/EPPO (2011)
PakistanPresentHolliday (1970); CABI/EPPO (2011)
PhilippinesPresentHolliday (1970); CABI/EPPO (2011)
South KoreaPresentKim JiYoung et al. (1998); CABI/EPPO (2011)
TaiwanPresent, WidespreadSun and Huang (1977); CABI/EPPO (2011)
TurkeyPresentFİlİz and Turhan (1992); CABI/EPPO (2011)
VietnamPresentCABI/EPPO (2011)

Europe

BulgariaPresentKarajova et al. (1995); D'Amore et al. (1996); CABI/EPPO (2011)
CroatiaPresentMaric et al. (1971); CABI/EPPO (2011)
CyprusPresentIoannou and Poullis (1991); CABI/EPPO (2011)
Federal Republic of YugoslaviaPresentMijuskovic and Vucinic (1977)
GreecePresentCABI/EPPO (2011);
HungaryPresentCABI/EPPO (2011); CABI (Undated)
ItalyPresentFantino and Zengin (1974); Trentini and Maioli (1989); CABI/EPPO (2011)
MontenegroPresentCABI/EPPO (2011)
PolandPresentŚwiąder et al. (1996); CABI/EPPO (2011)
SerbiaPresentCABI/EPPO (2011)
SpainPresentCABI/EPPO (2011); CABI (Undated)
UkrainePresentCABI/EPPO (2011)
United KingdomPresentŚwiąder et al. (1996); CABI/EPPO (2011)

North America

CanadaPresentHolliday (1970); CABI/EPPO (2011)
-AlbertaPresentCABI/EPPO (2011)
-British ColumbiaPresentCABI/EPPO (2011)
-ManitobaPresentCABI/EPPO (2011)
-OntarioPresentCABI/EPPO (2011)
-QuebecPresentCABI/EPPO (2011)
MexicoPresentCABI/EPPO (2011)
PanamaPresentCABI/EPPO (2011)
United StatesPresentCABI/EPPO (2011)
-AlabamaPresentNorton et al. (1995); CABI/EPPO (2011)
-ArizonaPresentCABI/EPPO (2011)
-CaliforniaPresentPaulus et al. (1976); CABI/EPPO (2011)
-ColoradoPresentCABI/EPPO (2011)
-DelawarePresentCABI/EPPO (2011)
-FloridaPresentLarkin et al. (1993); CABI/EPPO (2011); Amaradasa et al. (2018)
-GeorgiaPresentCABI/EPPO (2011)
-HawaiiPresentCABI/EPPO (2011)
-IdahoPresentCABI/EPPO (2011)
-IndianaPresentCABI/EPPO (2011)
-IowaPresentCABI/EPPO (2011)
-MarylandPresentCABI/EPPO (2011)
-MichiganPresentCABI/EPPO (2011)
-MississippiPresentCABI/EPPO (2011)
-MontanaPresentCABI/EPPO (2011)
-New MexicoPresentCABI/EPPO (2011)
-North CarolinaPresentCABI/EPPO (2011)
-OklahomaPresentNetzer and Martyn (1989); CABI/EPPO (2011)
-OregonPresentCABI/EPPO (2011)
-South CarolinaPresentNepa et al. (1985); CABI/EPPO (2011)
-TexasPresent, WidespreadCrall (1990); CABI/EPPO (2011)
-WashingtonPresentCABI/EPPO (2011)
-WisconsinPresentCABI/EPPO (2011)

Oceania

AustraliaPresentLarkin et al. (1990); CABI/EPPO (2011)
-Northern TerritoryPresentTran-Nguyen et al. (2013)
-Western AustraliaPresentCABI/EPPO (2011)
Federated States of MicronesiaPresentCABI/EPPO (2011)
New ZealandPresentCABI/EPPO (2011)
PalauPresentCABI/EPPO (2011)

South America

ArgentinaPresentHolliday (1970); CABI/EPPO (2011)
BrazilPresentCABI/EPPO (2011)
-PernambucoPresentCABI/EPPO (2011)
-Sao PauloPresentCABI/EPPO (2011)
ChilePresentHolliday (1970); CABI/EPPO (2011)

Risk of Introduction

Top of page

F. oxysporum f.sp. niveum is not a quarantine plant pathogen, because it occurs worldwide.

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedCultivated / agricultural land Principal habitat Harmful (pest or invasive)
Protected agriculture (e.g. glasshouse production) Secondary/tolerated habitat Harmful (pest or invasive)
Managed grasslands (grazing systems) Secondary/tolerated habitat Natural
Terrestrial ‑ Natural / Semi-naturalNatural grasslands Secondary/tolerated habitat Natural

Hosts/Species Affected

Top of page

F. oxysporum f.sp. niveum only infects watermelon (Citrullus lanatus).

Growth Stages

Top of page Flowering stage, Fruiting stage, Seedling stage, Vegetative growing stage

Symptoms

Top of page

F. oxysporum f.sp. niveum causes a widespread wilt of watermelon, damping off, cortical rot and stunting of seedlings, and sudden progressive wilt of older plants. Necrotic lesions occur on the roots and browning, gum and tyloses are found in the vascular system. In mature plants, the wilt may be confined to a particular part, depending on which portion of the root system has been invaded by inoculum in the soil. Chlorosis and stunting in mature plants can occur and sometimes there is temporary recovery from wilt. Sporulation may be found on dead stems in wet weather (Holliday, 1970; Martyn, 2014).

List of Symptoms/Signs

Top of page
SignLife StagesType
Leaves / leaves rolled or folded
Roots / cortex with lesions
Roots / fungal growth on surface
Roots / necrotic streaks or lesions
Stems / gummosis or resinosis
Stems / wilt
Whole plant / damping off
Whole plant / early senescence
Whole plant / plant dead; dieback

Biology and Ecology

Top of page

Transmission

F. oxysporum f.sp. niveum can be transmitted through seeds, animal manure, fertilizer, compost, tools, irrigation, soil, wind and rain. In China, transmission was reported through animal manure. The chlamydospores of the pathogen can survive in plant debris and infect watermelon roots after passing through the intestines of livestock or poultry and through compost processing. Another route of infection reported in China is through seed, which can transport the pathogen between fields and introduce it to new watermelon-growing areas (Chen et al., 1993). Injuries to the roots allow entry of the pathogen (LüGuiYun et al., 2014). In the USA, disease incidence (proportion of plants displaying symptoms) did not differ on cultivar Fascination (resistant to race 1, susceptible to race 2) in field plots infested with F. oxysporum f.sp. niveum race 2 alone or F. oxysporum f.sp. niveum together with southern root-knot nematode (Meloidogyne incognita) eggs or larvae (Keinath et al., 2019b). Contrary to these results, Hua et al. (2019) reported that co-inoculation of Fascination, Calhoun Gray and Plant Introduction (PI) 296341-FR with M. incognita and F. oxysporum f.sp. niveum race 1 or race 2 (PI 296341-FR only) resulted in earlier symptoms and increased severity.

Life-Cycle

The hyphae of the pathogen penetrate watermelon roots via the root tip meristematic zone and the epidermis of the zones of root elongation and maturation. Hyphae can also penetrate via ruptures caused by new lateral roots (Holliday, 1970; LüGuiYun et al., 2014). As the watermelon seedlings grow, hyphae of the pathogen enter the vascular system of the plant and, by growing and extending in or between the parenchymatous cells of the host, can infect the whole plant (Zhang et al., 2015). Watermelon fruits are infected through the vascular system or through wounds. Seed can be infected through the pistil (Petkar and Ji, 2017). Colonization of roots of the resistant cultivar Plant Introduction 296341-FR was reduced compared to colonization of the susceptible cultivar Black Diamond (LüGuiYun et al., 2014).

A latent period of 17 days, after soil inoculation, and 30 days, after inoculation of upper parts of the plant, at an optimal temperature of 25-27°C, is needed for infection. At late stages of colonization, conidia may be produced on the surfaces of diseased plants, especially the stems. The conidia can be transferred from one infected plant to another through irrigation and tools.

Factors affecting the survival of F. oxysporum f. sp. niveum have been extensively studied (Hopkins and Elmstrom, 1977; Huang and Sun, 1978, 1982; Bora et al., 1982).The pathogen may become saprophytic in the form of hyphae or dormant as chlamydospores in plant debris and soil, which become primary infection sources in the following season (Nishimura, 1971; Wang et al., 1993). Long-term persistence of the pathogen in infested soil has been reported by many authors (Smith, 1899; Mondal et al., 1994; Martyn, 2014).

Epidemiology

Epidemics of the disease are normally determined by the primary population of the pathogen, which is accumulated annually in the soil. The severity of the disease is influenced by soil type, irrigation, fertilizer application, crop management practices and seedling preparation. In the USA, the effect of inoculum density on the severity of the disease has been investigated (Summer, 1972; Martyn and McLaughlin, 1983). Watermelon cultivars that were slightly resistant or susceptible to F. oxysporum f.sp. niveum were severely wilted at 28 days, when grown in soil containing 10²-10³ propagules/g air-dry soil. Seedling emergence was reduced at inoculum densities above 10³ propagules/g. Similarly, when roots of watermelon cultivars were dipped in suspensions of 10³ to 106 microconidia/ml, more cultivars were rated susceptible, slightly resistant, or moderately resistant at lower concentrations than at higher concentrations.

Monoculture can increase disease severity. In the USA, a year-to-year increase in the disease was reported in 10 cultivars (Hopkins and Elmstrom, 1984), but in the fourth year of monoculture, the lowest level of wilt and the highest yields were recorded in all cultivars. This was explained as the induction of suppressive soil by monoculture (see section on Prevention and Control). In other soils, however, continuous cropping of susceptible cultivars or cultivars resistant to race 1 can increase the proportion of race 2 isolates in the local population (Hopkins et al., 1992).

The optimum soil temperature for the disease in seedlings is 27°C, but under heavy soil infestation, severe wilt can occur over 20-30°C. Infection declines rapidly at temperatures above 30°C and does not occur above 33°C (Walker, 1941). In the southern USA, the soil temperature at 5- to 10-cm depth averaged over the 4-week period after transplanting was negatively correlated with disease incidence (Keinath et al., 2019a).

Physiological Races

In the USA, Barnes (1972) discovered differential pathogenicity of F. oxysporum f.sp. niveum to certain wilt-resistant watermelon cultivars. Martyn and Bruton (1989) reported 42 isolates of F. oxysporum f.sp. niveum from eight states in the USA and Israel that were race-typed on the basis of disease reaction of three watermelon differential cultivars. Race 1 was identified from each of the eight states and accounted for 45% of the isolates. Race 2 was isolated from three states (Texas, Oklahoma and Florida) and accounted for 33% of the isolates. Race 0 was found in the same states as Race 2 but only accounted for 9% of the isolates.

Pathogenic differences within F. oxysporum f.sp. niveum (Zhang and Wang, 1991; Zhang and Rhodes, 1993) have also been reported in China. Zhou and Kang (1996) identified eight isolates of F. oxysporum f.sp. niveum, collected from watermelon growing areas of Beijing, using a root-dip inoculation with purified spore suspensions at 100,000/ml, on watermelon varieties, Sugar Baby, Charleston Gray, Calhoun Gray, Jingxin 1 and Sumi 1 as differential hosts. Results showed that all eight isolates belonged to physiological race 1. Gu et al. (1994) reported that the existence of physiological races of 10 isolates collected from the suburbs of Shanghai may differ from those reported in the USA and elsewhere. In three provinces in the Aegean region of Turkey,  races 0, 1, and 2 accounted for 5%, 92%, and 3% of the isolates collected (Filiz and Turhan, 1992).

Race 2 is now common within the southern USA states and other watermelon-producing regions of the world. In 2000 in Maryland and Delaware, USA, 21, 57 and 22% of the isolates recovered from symptomatic watermelon plants in commercial fields were race 0, 1 and 2, respectively, while 76% of the isolates from a research field in Maryland were race 2 (Zhou and Everts, 2003). In South Carolina, USA, 2, 26 and 72% of pathogenic isolates collected between 2005 and 2013 were races 0, 1 and 2, respectively (Keinath et al., 2020). Race 3, originally identified in Maryland, USA, is also present in Florida and Georgia (Zhou et al., 2010; Amaradasa et al., 2018; Petkar et al., 2019). In Georgia, USA, 5, 39 and 56% of isolates collected in 2012-2013 were identified as race 0, 2 and 3, respectively; no race 1 isolates were found (Petkar et al., 2019).

The standard set of differential cultivars to identify races of F. oxysporum f.sp. niveum includes Sugar Baby (or Black Diamond), susceptible to all races; Charleston Gray, resistant to race 0 and susceptible to races 1, 2 and 3; Calhoun Gray, highly resistant to race 1 and susceptible to races 2 and 3; and PI 296341-FR, resistant to races 0, 1 and 2, and susceptible to race 3. As seed of Calhoun Gray is not available commercially, the cultivars Dixielee or Allsweet may be substituted (Larkin et al., 1990; Zhou and Everts, 2003).

Climate

Top of page
ClimateStatusDescriptionRemark
A - Tropical/Megathermal climate Tolerated Average temp. of coolest month > 18°C, > 1500mm precipitation annually
B - Dry (arid and semi-arid) Tolerated < 860mm precipitation annually
C - Temperate/Mesothermal climate Preferred Average temp. of coldest month > 0°C and < 18°C, mean warmest month > 10°C
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)
Cf - Warm temperate climate, wet all year Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
D - Continental/Microthermal climate Tolerated Continental/Microthermal climate (Average temp. of coldest month < 0°C, mean warmest month > 10°C)
Ds - Continental climate with dry summer Tolerated Continental climate with dry summer (Warm average temp. > 10°C, coldest month < 0°C, dry summers)
Dw - Continental climate with dry winter Tolerated Continental climate with dry winter (Warm average temp. > 10°C, coldest month < 0°C, dry winters)
Df - Continental climate, wet all year Tolerated Continental climate, wet all year (Warm average temp. > 10°C, coldest month < 0°C, wet all year)

Notes on Natural Enemies

Top of page

Bacillus subtilis is a bacterial antagonist which can colonize the rhizospheres of watermelon and produce substances that are antagonistic to F. oxysporum f.sp. niveum (Lin et al., 1990). Trichoderma viride and T. harzianum, fungal antagonists that can live in or colonize the rhizospheres of watermelon, inhibit F. oxysporum f.sp. niveum through the production of antagonistic substances, nutrient competition and/or hyper-parasitic action (Sivan and Chet, 1986; Zhao et al., 1998).

Seedborne Aspects

Top of page

Incidence

F. oxysporum f.sp. niveum has been recovered from watermelon seed lots in Egypt, Tunisia and the USA (McLaughlin and Martyn, 1982; Michail et al., 1989; Boughalleb and El Mahjoub, 2006). Tests on watermelon cultivars Xinhongbao, Xingqing No. 1, Zhemi No. 1 and Zhengza No. 7, bought from a local seed company in Zhejiang Province, China, indicated that 0.25, 0.49, 1.79 and 0.11% of the seed, respectively, contained F. oxysporum f.sp. niveum (Chen et al., 1993). When watermelon fruit pericarps were inoculated, 4.5% of the seed produced in inoculated fruits contained the pathogen (Petkar and Ji, 2017).

Effect on Seed Quality

There are no reports of any detrimental effects of the pathogen on seed appearance, germination and vigour.

Pathogen Transmission

An important route of transmission in China is through seed, which can transport the pathogen between fields and introduce it into new watermelon-growing areas (Chen et al., 1993). The fungus can enter watermelon fruits and the mature seed through the vessels. The population of mycelia and conidia in the hypocotyledonary axis and cotyledon node were found to be high after germination (Wang et al., 1993).

Seed Treatments

Geng et al. (2019) reported that fludioxonil as a seed treatment reduced the number of diseased seedlings produced by an infested seed lot by 67%. El-Shami et al. (1985) showed that garlic extract could inhibit spore germination and mycelial growth of the fungus in a similar manner to five fungicides. Soaking watermelon seeds in the extract gave better control of seedling wilt than seed treatment with benomyl, carboxin, carboxin/captan or carboxin/thiram.

Seed Health Tests

Seed tests for F. oxysporum f.sp. niveum could be adapted from seed-washing tests, seed-incubation methods and seedling symptoms because both the inside and outside of watermelon seeds can be contaminated with the conidia and mycelia of the pathogen. Isolates of the fungus can be obtained for assessing pathogenicity as follows:

Seedling inoculation in pots by the standard root-dip method (after Kleczewski and Egel, 2011; Jo et al., 2015):

Watermelon seedlings were germinated in vermiculite, sand, or other potting media under the conditions described for the continuous-dip inoculation technique. Seedlings with not more than two true leaves are removed and roots are washed with running water, then dipped in the conidial suspensions of Fusarium isolates for 30 seconds. Seedlings were transplanted into peat pots (10 x 10 x 15 cm). Disease incidence was observed after 10-21 days and expressed as the percentage of seedling mortality compared with that of uninoculated controls. Experiments consisted of four replicates with 10 seedling per treatment arranged in a completely random design. The minimum number of seedlings that should be inoculated per isolate is 10. Tests should be repeated to ensure reproducibility.

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Crop production Yes Yes , ; ,
Flooding and other natural disastersinfrequent Yes
Internet salesOn infested seed Yes
Seed tradeOn infested seed Yes , ; , ; , ; ,

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Clothing, footwear and possessionspossible, chlamydospores Yes
Germplasmpossible Yes , ; , ; , ; ,
Plants or parts of plantsDiseased seedlings, rare Yes , ; ,
Soil, sand and gravelpossible, chlamydospores Yes , ; , ; ,
Windpossible, chlamydospores in dust Yes , ; , ; ,

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Flowers/Inflorescences/Cones/Calyx hyphae Yes Pest or symptoms usually invisible
Fruits (inc. pods) hyphae Yes Yes Pest or symptoms usually invisible
Growing medium accompanying plants hyphae Yes Pest or symptoms not visible to the naked eye but usually visible under light microscope
Leaves hyphae Yes Pest or symptoms usually visible to the naked eye
Roots hyphae; spores Yes Yes Pest or symptoms not visible to the naked eye but usually visible under light microscope
Seedlings/Micropropagated plants hyphae Yes Yes Pest or symptoms usually visible to the naked eye
Stems (above ground)/Shoots/Trunks/Branches hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
True seeds (inc. grain) hyphae Yes Yes Pest or symptoms usually invisible
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs/Tubers/Corms/Rhizomes
Wood

Wood Packaging

Top of page
Wood Packaging not known to carry the pest in trade/transport
Loose wood packing material
Processed or treated wood
Solid wood packing material with bark
Solid wood packing material without bark

Impact Summary

Top of page
CategoryImpact
Crop production Negative
Economic/livelihood Negative

Impact: Economic

Top of page

Fusarium wilt of watermelon occurs throughout the world and is often a limiting factor in watermelon production. In China, 20-30% of watermelon production is normally lost in infested areas, and 100% mortality has been observed in fields planted with susceptible cultivars in Zhejiang Province (Lin, 1990). In a survey of 62 watermelon crops grown in plastic tunnels throughout the main production area of Cyprus, Fusarium wilt was found in all fields sampled despite the use of resistant cultivars (mainly Crimson Sweet). Mean incidence ranged from 37 to 70% in 1985 and 1986, and mean yields of marketable fruit were 38 and 10 t/ha, respectively (Ioannou and Poullis, 1991). In Aydin Province, Turkey, incidence ranged from 0.2 to 12% in fields in which the pathogen was isolated from symptomatic plants (Erİncİk and Döken, 2018). In Spain, in soil infested with unidentified races of F. oxysporum f.sp. niveum, yield loss in a triploid cultivar was 42 to 68% (Miguel et al., 2004). In South Carolina and Georgia, USA, yield losses in research fields naturally infested with race 2 averaged 62 and 83%, respectively, which represented a 91 and 55% loss in net returns per hectare, respectively, based on an average price of $USD 0.35 per kilogram of seedless watermelon fruit (Keinath et al., 2019a).

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Abundant in its native range
  • Tolerant of shade
  • Benefits from human association (i.e. it is a human commensal)
  • Long lived
  • Has propagules that can remain viable for more than one year
  • Reproduces asexually
  • Has high genetic variability
Impact outcomes
  • Changed gene pool/ selective loss of genotypes
  • Host damage
  • Negatively impacts agriculture
  • Negatively impacts livelihoods
  • Damages animal/plant products
Impact mechanisms
  • Pathogenic
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect as a commodity contaminant
  • Difficult/costly to control

Diagnosis

Top of page

One-sided wilting of watermelon plants that appears as vines begin to lengthen combined with a reddish-brown discoloration of the xylem in the main stem or at the base of main vines are diagnostic symptoms for rapid identification of Fusarium wilt in the field that can be used by scouts and agricultural advisors to make a preliminary diagnosis.

Fusarium oxysporum f.sp. niveum has been identified using polymerase chain reaction (PCR) assays, which can be used for rapid and reasonably accurate diagnosis and to distinguish pathogenic from non-pathogenic isolates of F. oxysporum (Lin et al., 2010). These primers correctly identified non-pathogenic isolates 96% of the time but correctly identified pathogenic isolates representing races 0, 1 and 2 from South Carolina, USA, only 71% of the time (Keinath et al., 2020). Other primers developed by Zhang et al. (2005) yielded non-specific reactions with several formae speciales in tests in another laboratory and are not accurate enough for diagnosis or identification of F. oxysporum f.sp. niveum ((W Patrick Wechter, unpublished data, USDA, Charleston, Souith Carolina, USA). A small sample of F. oxysporum f.sp. niveum race 0 and race 1 isolates was reported to contain copies of secreted-in-xylem (SIX) elicitor number 6, but this protein was absent in race 2 isolates (Niu et al., 2016). Primers designed to amplify this protein correctly identified non-pathogenic isolates and isolates of race 0, 1 and 2 from South Carolina, USA, 100, 33, 54 and 72% of the time, respectively (Keinath et al., 2020).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Host-Plant Resistance

One of the best control measures against Fusarium wilt of watermelon is the use of resistant cultivars (Hopkins and Elmstrom, 1984). The cultivar Calhoun Gray is highly resistant to Fusarium wilt caused by race 1 of the pathogen in many countries and regions, including Queensland, Australia (Inch et al., 1972), Bangladesh (Mondal and Rashid, 1990), Italy (Cirulli, 1974), Montenegro (Mijuskovic and Vucinic, 1977), California, USA (Paulus et al., 1976), Florida, USA (Hopkins and Elmstrom, 1975, 1981) and South Carolina, USA (Barnes, 1972). However, after race 2 appeared in Israel and Texas, USA, Calhoun Gray became susceptible (Nepa et al., 1985; Netzer and Martyn, 1989).

In certain locations, cultivars in addition to Calhoun Gray also performed well in Fusarium-infested soil or had improved horticultural characters. In the USA, Elmstrom and Crall (1979) reported that the content of soluble solids and resistance of Dixielee watermelon to F. oxysporum f.sp. niveum was higher than in Crimson Sweet or Charleston Gray. Elmstrom and Hopkins (1981) reported that Smokylee and Summit were highly resistant, with <20% seedling wilt, and produced adequate yields even under heavy infestation. Norton et al. (1985) reported that AU-Jubilant, an inbred line from the cross Jubilee X PI271778, and AU-Producer, an inbred line from the cross Crimson Sweet X PI189225, were high-yielding and had resistance to race 1 of the pathogen, and were adapted for the southeastern part of USA. In Florida, Crall and Elmstrom (1986) developed the 'icebox' (small fruited) cultivars Minilee and Mickylee, which are resistant to the pathogen; both had a long shelf-life and appeared to be suitable for year-round production in Florida.

In China, the cultivar Calhoun was found to have resistance to Fusarium wilt (Zhang et al., 1995; Zhou and Kang, 1996a). The cultivar Jingkang 2 is resistant to Fusarium wilt and yields up to 60-75 ton/ha (Zhou, 1995). In order to quicken the procedure to find resistant breeding lines to Fusarium wilt, Huang et al. (1981) and Yu and Wang (1990) developed a simple, rapid and effective method using toxic metabolites extracted from the pathogen to screen resistant cultivars. Results showed that resistance to the toxin was correlated with resistance of the cultivars to the pathogen. A method for identifying resistance in watermelon to Fusarium wilt was recommended; this procedure combined root dip inoculation and spore culturing at the seedling stage with evaluation in the field at a later stage (Wang and Zhang, 1988; Zhang and Wang, 1991). The results of Yu et al. (1995) showed that the inheritance of resistance conformed to the additive-dominance model. The additive effect was major and the susceptibility was partially dominant.

The ability to map resistance genes coupled with marker-assisted selection is accelerating breeding watermelon cultivars resistant to race 2. Several research groups in China and the USA have identified quantitative-trait loci (QTL) located on different chromosomes and linked to resistance to race 1 or race 2. Resistance to race 1 in most modern hybrid cultivars, including Calhoun Gray, has been mapped to chromosome 1 (Yi et al., 2015; Fall et al., 2018). Branham et al. (2019) reported another race 1 resistance gene located on chromosome 9. QTLs for race 2 resistance have been mapped to chromosomes 9, 10, and 11 (Yi et al., 2015; Meru and McGregor, 2016; Branham et al., 2017).

Resistant Rootstocks

In Japan, the new bottle gourd cultivar Renshi was bred for use as a rootstock for watermelon, which prevented acute wilt of watermelon grafted on bottle gourd. It is tolerant of both very dry and wet soil. Graft compatibility with watermelon was good and the growth, quality and cropping characteristics of watermelons grafted onto Renshi were similar to those on other rootstocks (Matsuo et al., 1985).

In Korea, 19 cultivars, including Cucurbita moschata cv. Choseun, C. maxima cv. HA Sintojwa and C. pepo cv. Vegetable Spaghetti were selected as resistant to F. oxysporum f.sp. cucumerinum, niveum and melonis. A number of cultivars were selected as promising breeding lines for rootstocks, including Taeyang, Kangryeog, Strong Ilhwi and Vegetable Spaghetti. These cultivars grew at low temperatures and were resistant to Fusarium wilt (Kim et al., 1997).

In China, watermelon rootstock ChaoFeng F1 was found to be immune to Fusarium wilt, and watermelons grafted onto this rootstock matured early. Yields were 15-17.6% higher than those of watermelons grafted on a common gourd rootstock. The grafted watermelons had thinner skins and more deeply-coloured flesh (Zheng, 1995).

In Italy, D’Amore et al. (1996) reported that grafting watermelon onto rootstocks of the genera Cucurbita or Lagenaria gave protection from F. oxysporum f.sp. niveum and improved the absorption of water and nutritive elements. Yields were increased and there was an improvement in the quality of fruits.

In Bangladesh, watermelon cv. Top Yield was grafted onto nine different cucurbit rootstock seedlings: C. moschata cultivars Mammoth King, Round and Oblong; three Lagenaria leucantha (L. siceraria) cultivars; Benincasa hispida; and wild watermelon (C. maxima). Comparison was made with ungrafted watermelons. Fruit yields ranged from 13.6 kg/plant on B. hispida to 29.6 kg/plant on L. leucantha cv. Summerking, compared with 15.4 kg/plant in the ungrafted controls. Fusarium wilt was a problem only in plants on wild watermelon rootstocks (10% were affected) and in ungrafted plants (46% affected) (Mondal et al., 1994).

In the absence of watermelon cultivars resistant to Fusarium wilt caused by race 2, grafting susceptible cultivars onto interspecific hybrid squash rootstocks (C. maxima × C. moschata) or bottle gourd (L. siceraria) rootstocks protects grafted scions from Fusarium wilt (Miguel et al., 2004; Davis et al., 2008; Keinath and Hassell, 2014b). Interspecific hybrid squash and bottle gourd possess nonhost resistance to F. oxysporum f. sp. niveum races 1 and 2 (Yetıșır et al., 2003; Keinath and Hassell, 2014a). Thus, grafting is effective regardless of which race is present or predominates in a field. In Turkey, grafting ‘Crimson Tide,’ a diploid watermelon cultivar resistant to race 1, onto bottle gourd increased yields in soil infested with race 2 of F. oxysporum f.sp. niveum (Yetıșır et al., 2003). In Spain, in soil infested with unidentified races of F. oxysporum f.sp. niveum, grafting triploid watermelon onto interspecific hybrid squash ‘Shintoza’ increased yields over threefold (Miguel et al., 2004). In Mexico, grafting triploid watermelon susceptible to Fusarium wilt onto interspecific hybrid squash consistently increased total weight of fruit produced in Fusarium-infested soil (Álvarez-Hernández et al., 2015).

Biological Control

In experiments conducted in Florida, USA, soil suppressiveness of F. oxysporum f.sp. niveum occurred through more than five successive greenhouse plantings of the watermelon cultivar Florida Giant (susceptible to F. oxysporum f.sp. niveum). The authors suggested that cultivar differences were responsible for the promotion of differences in rhizosphere microflora populations associated with soil suppressiveness (Hopkins et al., 1987; Larkin et al., 1993b). Specific isolates of non-pathogenic F. oxysporum from suppressive soil were the only organisms consistently effective in reducing the disease (35-75% reduction) The mode of action of these saprophytic isolates of F. oxysporum was induced systemic resistance with biological control potential (Larkin et al., 1996).

In Taiwan, Huang et al. (1989) reported that five saprophytic isolates of fungi and 10 isolates of bacteria were obtained from watermelon roots planted in eight soils from Taiwan. F. oxysporum, F. solani and Trichoderma sp. suppressed watermelon wilt caused by F. oxysporum f.sp. niveum.

In Egypt, Michail et al. (1989) reported that Fusarium wilt of watermelon could be controlled by cross protection. Prior inoculation of plants with F. oxysporum f.sp. cucumerinum, which causes cucumber wilt disease, followed by the pathogen 5 days later resulted in no apparent wilt symptoms on watermelon. Yu and Wang (1989) also reported cross protection using a weakly virulent isolate of F. oxysporum f.sp. niveum or an isolate of F. solani to inoculate plants 5 to 15 days before challenging them with the pathogen.

Soil Minerals

Calcium, phosphate and potassium deficiencies induce a higher incidence of Fusarium wilt. Calcium compounds and phosphate salts such as Ca(OH)2, Ca(NO3)2.4H2O, CaCO3, CaSO4, K2HPO4 and NaH2PO4.2H2O were strongly inhibitory to chlamydospore germination and promoted lysis of germ tubes. Mycelial growth of F. oxysporum f.sp. niveum in conducive soil was inhibited by Ca(OH)2, K2HPO4 and NaH2PO4.2H2O. Raising soil pH in Florida to 7.2-7.5 with hydrated lime reduced Fusarium wilt and increased yields of watermelon (Jones et al., 1975). To avoid decreasing the pH, nitrogen fertilizer must be applied as nitrate, not as ammonium. However, Tsao and Zentmyer (1979) reported that the population of F. oxysporum f.sp. niveum was reduced from 96.45 to 66.0 and 71.4%, respectively, by the application of 1% urea plus Ca-superphosphate and potassium nitrate plus Ca-superphosphate, in sandy loam soil. Results from these studies taken together suggest that calcium could play an important role in suppressing F. oxysporum f.sp. niveum in soil.

However, this conclusion is contradicted by results of Lin et al. (1996), which indicate that CaCl2 improved the germination and germ tube growth of chlamydospores of the pathogen in vitro. In addition, Hopkins and Elstrom (1976) found no significant differences in Florida in wilt incidence or yields between treatments of high soil pH (7-7.3) and all nitrate nitrogen, and lower soil pH (5.2-6) and 25% ammonia nitrogen.

Chemical Control

In China, homodemycine, a copper complex of several different amino acids which is non-residual and has low toxicity, was more effective at controlling F. oxysporum f.sp. niveum on watermelons in field trials than carbendazim and thiophanate-methyl. It was also shown to stimulate growth of uninfected plants and could be used to increase production (Li and Liu, 1990).

Applications of prothioconazole at transplanting as a drench or applied after transplanting through drip irrigation or a foliar spray reduced Fusarium wilt in multiple locations. Prothioconazole combined with thiophanate-methyl was slightly more effective than prothioconazole in one experiment (Everts et al., 2014; Miller et al., 2020). A new fungicide, pydiflumetofen was more effective than prothioconazole in North Carolina, USA, and also increased weight and number of marketable fruit when applied twice, once as a drench at transplanting and 14 days later as a foliar spray (Miller et al., 2020).

Soil Solarization

In Korea, Kye and Kim (1985) reported that Fusarium wilt of watermelon may be effectively controlled by soil solarization in a closed plastic house during the hot summer season.

In the USA, Martyn and Hartz (1986) also reported that soil solarization for either 30 or 60 days delayed the onset of wilt symptoms and reduced total disease incidence in a F. oxysporum f.sp. niveum-susceptible cultivar Sugar Baby, but did not provide complete control of the disease. The effects lasted over two growing seasons, control being best during the first year.

Freeman and Katan (1988) reported that sublethal heating of conidia and chlamydospores of F. oxysporum f.sp. niveum at 38-42°C caused up to 33% reduction in propagule viability and weakened the surviving propagules. This weakening effect was expressed as a delay in germination, reduction in the growth of conidial and chlamydospore germ tubes and an enhanced decline of the population density of viable conidia in soil. Disease incidence in watermelon seedlings inoculated with heat-treated conidia of the pathogen was reduced by 35-82%.

In field trials conducted in Cyprus during 1984-86 on soil naturally infested with F. oxysporum f.sp. niveum, solarization raised the soil temperature by 7-10°C and reduced soil inoculum density by ca 90% (Ioannou and Poullis, 1990).

References

Top of page

Akhavizadegan MDj, 1983. Occurrence of Fusarium wilt of watermelon in Guilan province of Iran. Entomologie et Phytopathologie Appliquees, 50(1/2):67-73; 17-18

Álvarez-Hernández, J. C., Castellanos-Ramos, J. Z., Aguirre-Mancilla, C. L., Huitrón-Ramírez, M. V., Camacho-Ferre, F., 2015. Influence of rootstocks on Fusarium wilt, nematode infestation, yield and fruit quality in watermelon production. Ciência e Agrotecnologia, 39(4), 323-330. doi: 10.1590/S1413-70542015000400002

Amaradasa, B. S., Beckham, K., Dufault, N., Sanchez, T., Ertek, T. S., Iriarte, F., Paret, M., Ji, P., 2018. First report of Fusarium oxysporum f. sp. niveum race 3 causing wilt of watermelon in Florida, U.S.A. Plant Disease, 102(5), 1029. http://apsjournals.apsnet.org/loi/pdis doi: 10.1094/pdis-10-17-1649-pdn

Antoniou, P. P., Tjamos, E. C., Giannakou, J. O., 2014. Low-cost and effective approaches of soil disinfestation of plastic house or open field crops in Greece. Acta Horticulturae, (No.1044), 29-41. http://www.actahort.org/books/1044/1044_2.htm

Babayan AA, Khodzhayan EA, Grigoryan NF, Stepanyan TG, 1960. As Fusarium oxysporum on melon, watermelon and cucumber. Ararat plain. Izv. Min. sel. Khoz. Armyan., Ser. Agric, 7:57-66

Barnes GL, 1972. Differential pathogenicity of Fusarium oxysporum f.sp. niveum to certain wilt-resistant watermelon cultivars. Plant Disease Reporter, 56(12):1022-1026

Booth C, 1970. Fusarium oxysporum. CMI Descriptions of Pathogenic Fungi and Bacteria, No. 211. Wallingford, UK: CAB International

Bora T, Yildiz M, Akinci C, Nemli T, 1982. Investigations on fungistasis with respect to wilt diseases in important cultivated soils of the western pgean region. Journal of Turkish Phytopathology, 11(1-2):1-13

Boughalleb, N., El Mahjoub, M., 2006. In vitro determination of Fusarium spp. infection on watermelon seeds and their localization. Plant Pathology Journal, 5, 178-182.

Boughalleb, N., El-Mahjoub, M., 2005. Detection of races 0, 1 and 2 of Fusarium oxysporum f. sp. niveum and their distribution in the watermelon-growing regions of Tunisia. (Détection des races 0, 1 et 2 de Fusarium oxysporum f. sp. niveum et leur distribution dans les régions de production de la pastèque en Tunisie). EPPO Bulletin, 35(2), 253-260. http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=epp

Branham, S. E., Levi, A. , Wechter, W. P., 2019. QTL mapping identifies novel source of resistance to Fusarium wilt race 1 in Citrullus amarus. Plant Disease, 103(5), 984-989.

Branham, S. E., Levi, A., Farnham, M. W., Wechter, W. P., 2017. A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides. TAG Theoretical and Applied Genetics, 130(2), 319-330. doi: 10.1007/s00122-016-2813-0

Bruton BD, Patterson CL, Martyn RD, 1988. Fusarium wilt (F. oxysporum f.sp. niveum race 2) of watermelon in Oklahoma. Plant Disease, 72(8):734; 2 ref

CABI/EPPO, 2011. Fusarium oxysporum f.sp. niveum. [Distribution map]. Distribution Maps of Plant Diseases, No.April. Wallingford, UK: CABI, Map 1101 (Edition 1)

Callaghan SE, Puno VI, Williams AP, Weir BS, Balmas V, Sengsoulichan K, Phantavong S, Keovorlajak T, Phitsanoukane P, Xomphouthilath P, Phapmixay KS, Vilavong S, Liew ECY, Duckitt GS, Burgess LW, 2016. First report of fusarium oxysporum f.sp. niveum in the Lao PDR. Australasian Plant Disease Notes, 11(1):9. http://link.springer.com/article/10.1007/s13314-016-0191-8

Chen X, Chen HK, Zhu ZX, 1993. Watermelon Diseases and Their Control. Shanghai, China: Shanghai Science and Technology Press

Chiu AL, Huang JW, 1997. Effect of composted agricultural and industrial wastes on the growth of vegetable seedlings and suppression of their root diseases. Plant Pathology Bulletin, 6:67-75

Cirulli M, 1974. Watermelon wilt. Italia Agricola, 111:115-120

Crall JM, 1990. 'Charlee' watermelon. HortScience, 25(7):812-813

Crall JM, Elmstrom GW, 1986. Florida "icebox" cultivars as a factor in watermelon production in Florida and other producing states. Proceedings, Soil and Crop Science Society of Florida, 45:132-134

Crall JM, Montelaro J, 1973. Fusarium wilt resistance in Jubilee watermelon. Proceedings of the Florida State Horticultural Society, 85:102-105

D'Amore R, Morra L, Parisi B, 1996. Grafted watermelon: production results. Colture Protette, 25(9):29-31

Davis, A. R., Perkins-Veazie, P., Sakata, Y., Pez-Galarza, S. L., Maroto, J. V., Lee SangGyu, Huh YunChan, Sun ZhanYong, Miguel, A., King, S. R., Cohen, R., Lee JungMyung, 2008. Cucurbit grafting. Critical Reviews in Plant Sciences, 27(1), 50-74. doi: 10.1080/07352680802053940

Egel, D. E., Martyn, R. D., 2013. Fusarium wilt of watermelon and other cucurbit crops. In: Plant Health Instructor doi: 10.1094/PHI-I-2007-0122-01

Elmstrom GW, Crall JM, 1979. Dixielee' watermelon: disease resistance, quality and yield evaluations. HortScience, 14:122

Elmstrom GW, Hopkins DL, 1981. Resistance of watermelon cultivars to Fusarium wilt. Plant Disease, 65(10):825-827

El-Shami MA, Fadl FA, Tawfick KA, Sirry AR, El-Zayat MM, 1985. Anti-fungal property of garlic clove juice compared with fungicidal treatments against Fusarium wilt of watermelon. Egyptian Journal of Phytopathology, 17(1):55-62; 15 ref

Erİncİk, B. G., Döken, M. T., 2018. Prevalence and incidence of Fusarium wilt of watermelon in the Aydın Province. (Aydın İlinde karpuz Fusarium solgunluğu hastalığının yaygınlık ve bulunma oranı). Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 15(1), 83-89. https://dergipark.org.tr/download/article-file/520570

Everts, K. L., Egel, D. S., Langston, D., Zhou, X. G., 2014. Chemical management of Fusarium wilt of watermelon. Crop Protection, 66, 114-119. doi: 10.1016/j.cropro.2014.09.003

Fall, L. A., Clevenger, J., McGregor, C., 2018. Assay development and marker validation for marker assisted selection of Fusarium oxysporum f. sp. niveum race 1 in watermelon. Molecular Breeding, 38(11), 130. doi: 10.1007/s11032-018-0890-2

Fantino MG, Zengin H, 1974. Research on the causal agents of watermelon and melon wilt. Informatore Fitopatologico, 24(7):7-10

Fehér T, 1986. Evaluation of some new Kecskemét F watermelons, with special reference to Fusarium resistance. Zöldségtermesztési Kutató Intézet Bulletinje, 19:35-39; 12 ref

Filiz N, Turhan G, 1992. Investigations on the determination of Fusarium oxysporum f.sp. niveum races in the Aegean region of Turkey. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 99(1):56-61; 9 ref

Freeman S, Katan J, 1988. Weakening effect of propagules of Fusarium by sublethal heating. Phytopathology, 78(12, II):1656-1661; 20 ref

Freeman S, Rodriguez RJ, 1993. A rapid inoculation technique for assessing pathogenicity of Fusarium oxysporum f.sp. niveum and F. o. melonis on cucurbits. Plant Disease, 77(12):1198-1201; 14 ref

Fursa TB, Malinina MI, Artyugina ZD, 1978. Collection of cucurbit crops in breeding. Byulleten' Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Instituta Rastenievodstva Imeni N.I. Vavilova, 85:64-74

Gao YongYang, Wang Nan, Gao GuanPeng, Wang Wei, 2010. Triplex PCR detection of Cladosporium cucumerinum, Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues. Acta Phytopathologica Sinica, 40(4):343-350. http://zwblxb.periodicals.net.cn/default.html

Gasanov GM, 1977. For the suppression of Fusarium disease of watermelon. Zashchita Rastenii, 4:53

Geng LiHua, Gong GuoYi, Song ShunHua, Xu XiuLan, Wu Ping, Meng ShuChun, 2019. Identification and control of seed-borne pathogen of watermelon wilt disease. Journal of Plant Protection, 46(2), 330-336.

Gia Khuong Hoang Hua, Timper, P., Ji PingSheng, 2019. Meloidogyne incognita intensifies the severity of Fusarium wilt on watermelon caused by Fusarium oxysporum f. sp. niveum. Canadian Journal of Plant Pathology, 41(2), 261-269. doi: 10.1080/07060661.2018.1564939

Gonzalez Torres R, Jímenez-Díaz RM, Gomez Vazquez J, 1988. Incidence and distribution of Fusarium wilts of melon and watermelon in Andalucía. Investigación Agraria, Producción y Protección Vegetales, 3(3):377-392; 18 ref

Gu WH, Wang YH, Song RH, 1994. Studies on differentiation of physiological races of F. oxysporum f.sp. niveum in Shanghai. Acta Agriculturae Shanghai, 10(3):63-67

Holliday P, 1970. Fusarium oxysporum f.sp. niveum. CMI Descriptions of Pathogenic Fungi and Bacteria, No. 219. Wallingford, UK: CAB International

Hopkins DL, Elmstrom GW, 1975. Chemical control of Fusarium wilt of watermelon. Proceedings of the Florida State Horticultural Society, 88:196-200

Hopkins DL, Elmstrom GW, 1976. Effect of soil pH and nitrogen source on Fusarium wilt of watermelon on land previously cropped in watermelons. Proceedings of the Florida State Horticultural Society, 89:141-143

Hopkins DL, Elmstrom GW, 1979. Evaluation of soil fumigants and application methods for the control of Fusarium wilt of watermelon. Plant Disease Reporter, 63(12):1003-1006

Hopkins DL, Elmstrom GW, 1984. Effect of nonhost crop plants on watermelon Fusarium wilt. Plant Disease, 68(3):239-241; [2 tab.]; 11 ref

Hopkins DL, Elmstrom GW, 1984. Fusarium wilt in watermelon cultivars grown in a 4-year monoculture. Plant Disease, 68(2):129-131; [3 tab.]; 5 ref

Hopkins DL, Larkin RP, Elmstrom GW, 1987. Cultivar-specific induction of soil suppressiveness to Fusarium wilt of watermelon. Phytopathology, 77(4):607-611; 16 ref

Hopkins DL, Lobinske RJ, Larkin RP, 1992. Selection for Fusarium oxysporum f.sp. niveum race 2 in monocultures of watermelon cultivars resistant to Fusarium wilt. Phytopathology, 82(3):290-293; 15 ref

Huang JM, Sun SK, Ko WH, 1983. A medium for chlamydospore formation in Fusarium.. Annals of the Phytopathological Society of Japan, 49(5):704-708; [2 fig., 2 tab.]; 12 ref

Huang JW, Sun SK, 1978. Factors affecting survival of watermelon wilt pathogen, Fusarium oxysporum (Schl.) f. sp. niveum (E.F. Sm.) Snyder & Hansen, in soils. Plant Protection Bulletin, Taiwan, 20(1):56-66

Huang JW, Sun SK, 1982. The effects of nitrogenous fertilizers on disease development of watermelon fusarial wilt. Plant Protection Bulletin, Taiwan, 24(2):101-110

Huang JW, Sun SK, 1991. Factors affecting S-H mixture for controlling watermelon Fusarium wilt. Plant Protection Bulletin, Taiwan, 33(3):231-238; 15 ref

Huang JW, Sun SK, Hsieh TF, 1989. Characteristics of suppressive soil and its application to watermelon Fusarium wilt disease management. Plant Protection Bulletin, Taiwan, 31(1):104-118; 40 ref

Huang J-W, Sun S-K, Lo C-T, 1981. Screening for fusarial wilt resistance in watermelon seedlings with toxic metabolites extracted from Fusarium oxysporum f.sp. niveum. Plant Protection Bulletin, Taiwan, 23(3):143-152

Inch AJ, Pegg KG, Alcorn JL, 1972. Wilt resistance watermelons. Queensland Agricultural Journal, 98:338-340

Ioannou N, Poullis CA, 1990. Evaluation of soil solarization for control of Fusarium wilt of watermelon. Technical Bulletin - Cyprus Agricultural Research Institute, No. 121:8 pp.; 8 ref

Ioannou N, Poullis CA, 1991. Fusarium wilt of resistant watermelon cultivars associated with a highly virulent local strain of Fusarium oxysporum f.sp. niveum.. Technical Bulletin - Cyprus Agricultural Research Institute, No. 129:9 pp.; 19 ref

Jhamaria SL, 1972. Nutritional requirement of Fusarium oxysporum f. niveum. Indian Phytopathology, 25(1):29-32

Jiang MX, Zhang LD, Yang XH, 1983. The occurrence of cucumber Phytophthora blight and Fusarium wilt in Yinchuan City and some ideas for their control. Ningxia Agricultural Science and Technology, No.3:27-28

Jo EunJu, Lee JiHyun, Choi YongHo, Kim JinCheol, Choi GyungJa, 2015. Development of an efficient method of screening for watermelon plants resistant to Fusarium oxysporum f. sp. niveum. Korean Journal of Horticultural Science & Technology, 33(3), 409-419. http://www.horticulture.or.kr

Jones JP, Woltz SS, Everett PH, 1975. Effect of liming and nitrogen source on Fusarium wilt of cucumber and watermelon. Proceedings of the Florida State Horticultural Society, 88:200-203

Jones JP, Woltz, SS, 1969. Fusarium wilt (race 2) of tomato: calcium, pH, and micronutrient effects on disease development. Plant Disease Reporter, 53:276-279

Karajova Y, Mladenov M, Moutsemo S, 1995. Fusarium species in melons and watermelons in Bulgaria. Bulgarian Journal of Agricultural Science, 1(4):439-445; 15 ref

Keinath, A. P., Coolong, T. W., Lanier, J. D., Ji PingSheng, 2019. Managing Fusarium wilt of watermelon with delayed transplanting and cultivar resistance. Plant Disease, 103(1), 44-50. doi: 10.1094/pdis-04-18-0709-re

Keinath, A. P., DuBose, V. B., Katawczik, M. M., Wechter, W. P., 2020. Identifying races of Fusarium oxysporum f. sp. niveum in South Carolina recovered from watermelon seedlings, plants, and field soil. Plant Disease, 104. https://doi.org/10.1094/PDIS-1

Keinath, A. P., Hassell, R. L., 2014. Suppression of Fusarium wilt caused by Fusarium oxysporum f. sp. niveum race 2 on grafted triploid watermelon. Plant Disease, 98(10), 1326-1332. doi: 10.1094/PDIS-01-14-0005-RE

Keinath, A. P., Wechter, W. P., Rutter, W. B., Agudelo, P. A., 2019. Cucurbit rootstocks resistant to Fusarium oxysporum f. sp. niveum remain resistant when co-infected by Meloidogyne incognita in the field. Plant Disease, 103, 1383-1390.

KHODZHAYAN EA, BABAYAN AA, 1963. On the specialization of forms of F. oxysporum, the causal agent of wilt in Cucurbit culture. (O spetsializatsii form Fusarium oxy-sporum Schl. vozbuditelya uvyadaniya tykvennykh kultur.) Izvestiya Akademii Nauk Armyanskoi SSR, 16(8):65-72

Kim HT, Kang NJ, Kang KY, Cheong JW, Jung HJ, Kim BS, 1997. Characteristics of Cucurbita spp. for use as cucumber rootstock. Journal of Horticulture Science, 39(2):8-14

Kim JY, Yi YK, Song YH, 1998. Plant diseases on green-house crops in Kyeongbuk areas. Korean Journal of Plant Pathology, 14:41-45

Kleczewski, N. M., Egel, D. S., 2011. A diagnostic guide for Fusarium wilt of watermelon. Plant Health Progress, (No.November), PHP-2011-1129-01-DG. http://www.plantmanagementnetwork.org/php/elements/sum.aspx?id=10109&photo=5496

Kye UK, Kim KC, 1985. Possibility of soil solarization in Korea. Korean Journal of Plant Protection, 24(2):107-114; [6 fig., 7 tab.]; 20 ref

Lai LY, Zhang SD, 1992. Disease resistance identification of cucumber varietal resources in Shandong. Journal of Shandong Agricultural Science, No. 1:20-25; 2 ref

Larkin RP, Hopkins DL, Martin FN, 1990. Vegetative compatibility within Fusarium oxysporum f.sp. niveum and its relationship to virulence, aggressiveness and race. Canadian Journal of Microbiology, 36(5):353-358; 35 ref

Larkin RP, Hopkins DL, Martin FN, 1993. Ecology of Fusarium oxysporum f.sp. niveum in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology, 83(10):1105-1116; 54 ref

Larkin RP, Hopkins DL, Martin FN, 1993. Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology, 83(10):1097-1105; 44 ref

Larkin RP, Hopkins DL, Martin FN, 1996. Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology, 86(8):812-819; 43 ref

Leach, J. G., Currence, T. M., 1938. Technical Bulletin. Minnesota Agricultural Experiment Station, (129), 32 pp.

Li ZC, Liu CQ, 1990. A new fungicide - HDE and its application in controlling wilt disease of cucurbits. Pesticide Science, 28(4):413-418; 3 ref

Lin FC, 1990. Screening of antagonistic bacteria to Fusarium oxysporum f.sp. niveum (FON) and testing of some characteristics of the antagonistic substances produced by Bacillus subtilis. MSc thesis. Hangzhou, China: Zhejiang Agricultural University

Lin FC, Chen WL, Xu JP, Gong HF, Ge QX, Li DB, 1997. Effective screening of antagonistic bacteria to Fusarium oxysporum f.sp. niveum by WSA medium. Acta Phytopathologica Sinica, 27:369-375

Lin FC, Zhang BX, Ge QX, 1990. Effects of antagonistic substances produced by three isolates of Bacillus subtilis on conidia of Fusarium oxysporum f.sp. niveum.. Acta Agriculturae Universitatis Zhejiangensis, 16(Suppl. 2):235-240; 14 ref

Lin FuChen, Ge QiXin, Shi LingRong, 1996. Effect of bivalent metallic cations on germination and tube growth of chlamydospores of Fusarium oxysporum f.sp. niveum. Journal of Zhejiang Agricultural University, 22(6):651-655; 8 ref

Lin YingHong, Chen KanShu, Chang JingYi, Wan YuLing, Hsu ChingChi, Huang JennWen, Chang PiFang [Chang PFL], 2010. Development of the molecular methods for rapid detection and differentiation of Fusarium oxysporum and F. oxysporum f. sp. niveum in Taiwan. New Biotechnology, 27(4):409-418. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B8JG4-502V74F-1&_user=10&_coverDate=09%2F30%2F2010&_rdoc=20&_fmt=high&_orig=browse&_srch=doc-info(%23toc%2343660%232010%23999729995%232229889%23FLA%23display%23Volume)&_cdi=43660&_sort=d&_docanchor=&_ct=24&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=3522021ade7c937a81cd7edeb8c58b87

Lumsden RD, Lewis JA, Locke JC, 1993. Managing soilborne plant pathogens with fungal antagonists. In: Lumsden RD, Vaugh JL, eds. Pest Management: Biologically Based Technologies. Washington DC, USA: American Chemical Society, 196-203

LüGuiYun, Guo ShaoGui, Zhang HaiYing, Geng LiHua, Martyn, R. D., Xu Yong, 2014. Colonization of Fusarium wilt-resistant and susceptible watermelon roots by a green-fluorescent-protein-tagged isolate of Fusarium oxysporum f.sp. niveum. Journal of Phytopathology, 162(4), 228-237. doi: 10.1111/jph.12174

Maric A, Balaz F, Jasnic S, 1971. Fusarium wilt of watermelon, Fusarium oxysporum f. niveum, and possibilities for its control. Zastita Bilja, 22:115-116, 269-282

Martyn RD, Bruton BD, 1989. An initial survey of the United States for races of Fusarium oxysporum f.sp. niveum.. HortScience, 24(4):696-698; 16 ref

Martyn RD, Hartz TK, 1986. Use of soil solarization to control Fusarium wilt of watermelon. Plant Disease, 70(8):762-766; 21 ref

Martyn, R. D., 2014. Fusarium wilt of watermelon: 120 years of research. Horticultural Reviews, 42, 349-441. http://onlinelibrary.wiley.com/advanced/search/results

Martyn, R. D., McLaughlin, R. J., 1983. Effects of inoculum concentration on the apparent resistance of watermelon to Fusarium oxysporum f.sp. niveum. Plant Disease, 67(5), 493-495. doi: 10.1094/PD-67-493

Matsuo S, Ishiuchi D, Koyama T (Kohyama-T), 1985. Breeding the new bottle gourd cultivar Renshi for use as a rootstock for watermelon. Bulletin, Vegetable and Ornamental Crops Research Station, C Kurume, 8, 1-21

McLaughlin, R., Martyn, R. D., 1982. Identification and pathogenicity of Fusarium species isolated from surface-disinfected watermelon seed. Journal of Seed Technology, 7, 97-107.

Meru, G., McGregor, C. E., 2016. A genetic locus associated with resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus-type watermelon. Journal of the American Society for Horticultural Science, 141(6), 617-622. doi: 10.21273/JASHS03890-16

Michail SH, Sheir HM, Rasmy MR, 1989. Cross protection of watermelon and cucumber plants against wilt by prior inoculation with an irrespective forma specialis of Fusarium oxysporum. Acta Phytopathologica et Entomologica Hungarica, 24(3-4):301-309; 13 ref

Miguel, A., Maroto, J. V., San Bautista, A., Baixauli, C., Cebolla, V., Pascual, B., López, S., Guardiola, J. L., 2004. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 103(1), 9-17. doi: 10.1016/j.scienta.2004.04.007

Mijuskovic M, Vucinic Z, 1977. Fusarium wilt of watermelon in Montenegro and the possibility of its control. Glasnik Odjelenja Prirodnih Nauka, 2:229-250

Miller, N. F., Standish, J. R., Quesada-Ocampo, L. M., 2020. Sensitivity of Fusarium oxysporum f. sp. niveum to Prothioconazole and Pydiflumetofen in vitro and efficacy for Fusarium wilt management in watermelon. Plant Health Progress, 21, 13-18. https://doi.org/10.1094/PHP-08-19-0056-RS

Mondal SN, Hossain AKMA, Hossain AE, Islam MA, Bashar MA, 1994. Effect of various rootstocks in the graft culture of watermelon in Bangladesh. Punjab Vegetable Grower, 29:15-19; 3 ref

Mondal SN, Rashid MA, 1990. Varietal resistance of watermelon to Fusarium wilt. Bangladesh Journal of Agricultural Research, 15(1):75-76; 8 ref

Nepa GAW, Rhodes BB, Witcher W, 1985. Interaction of commercial watermelon cultivars with regional isolates of Fusarium oxysporum f. sp. niveum.. Report, Cucurbit Genetics Cooperative, USA, No. 8:62-64; 7 ref

Netzer D, 1982. Inheritance of resistance to Fusarium oxysporum in watermelon and cotton; mechanism of resistance in cotton. La selection des plantes pour la resistance aux maladies. Paris, France: Institut National de la Recherche Agronomique, 137-142

Netzer D, Martyn RD, 1989. PI 296341, a source of resistance in watermelon to race 2 of Fusarium oxysporum f.sp. niveum.. Plant Disease, 73(6):518; 2 ref

Nishimura S, 1971. Observation on wilting mechanism of Fusarium-infected watermelon plants. Review of Plant Protection Research, 4:71-80

Niu XiaoWei, Zhao XiaoQiang, Ling KaiShu, Levi, A., Sun YuYan, Fan Min, 2016. The FonSIX6 gene acts as an avirulence effector in the Fusarium oxysporum f. sp. niveum-watermelon pathosystem. Scientific Reports, 6(1), 28146. doi: 10.1038/srep28146

Norton JD, Boyhan GE, Smith DA, Abrahams BR, 1995. 'AU-Sweet Scarlet' watermelon. HortScience, 30(2):393-394; 11 ref

Norton JD, Cosper RD, Smith-DA, Rymal KS, 1985. AU-Jubilant & AU-Producer. Quality, disease-resistant watermelon varieties for the south. Circular, Agricultural Experiment Station, Auburn University, 1985, No. 280

Pan YuanYong, 1996. Effects of using Xigualing to control main fungal diseases [Colletotrichum orbiculare, Fusarium oxysporum f.sp. niveum and Didymella bryoniae] on watermelon. Zhejiang Nongye Kexue, No. 5:234-236

Parris, G. K., 1949. Watermelon breeding. Economic Botany, 3, 193-212. doi: 10.1007/BF02859526

Paulus AO, Harvey OA, Nelson J, Shibuya F, 1976. Fusarium-resistant watermelon cultivars. California Agriculture, 30(9):5-6

Petkar, A., Harris-Shultz, K., Wang HongLiang, Brewer, M. T., Sumabat, L., Ji PingSheng, 2019. Genetic and phenotypic diversity of Fusarium oxysporum f. sp. niveum populations from watermelon in the southeastern United States. PLoS ONE, 14(7), e0219821. doi: 10.1371/journal.pone.0219821

Petkar, A., Ji PingSheng, 2017. Infection courts in watermelon plants leading to seed infestation by Fusarium oxysporum f. sp. niveum. Phytopathology, 107(7), 828-833. doi: 10.1094/PHYTO-12-16-0429-R

Qureshi SH, Yildiz M, 1982. A study of the prevalence, pathogenicity and physiological races of Fusarium wilt of watermelon and the effect of macroelements nutrition of host on disease development in relation to the production of pectolytic enzymes. Journal of Turkish Phytopathology, 11(1-2):15-32

Ren Yi, Jiao Di, Gong GuoYi, Zhang HaiYing, Guo ShaoGui, Zhang Jie, Xu Yong, 2015. Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp. niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.). Molecular Breeding, 35(9), 183. doi: 10.1007/s11032-015-0375-5

Sárdi é, Tyihák E, 1995. Measurement of formaldehyde and potential generators in the seeds of water-melon (Citrullus vulgaris L.) varieties and F hybrids of different Fusarium sensitivity. Horticultural Science, 27(1/2):66-70; 19 ref

Simon AM, Galaev MKh, 1985. A modification of the microhydroponic method of determining disease resistance in vegetable crops as applied to watermelon. Sbornik Nauchnykh Trudov po Prikladnoi Botanike, Genetike i Selektsii, 92:118-119; 3 ref

Sivan A, Chet I, 1986. Possible mechanisms for control of Fusarium spp. by Trichoderma harzianum.. 1986 British Crop Protection Conference. Pests and Diseases. Vol.2., 865-872; 18 ref

Smith, E. F., 1899. US. Dep. Agric. Div. Veg. Physiol. Pathol. Bull, (No. 17), 1-54.

Summer DR, 1972. The effect of inoculum density on severity of Fusarium wilt of watermelon. Phytopathology, 62:807

Sumner DR, Johnson AW, 1973. Effect of root-knot nematodes on Fusarium wilt of watermelon. Phytopathology, 63(7):857-861

Sun S-K, Huang J-W, 1977. Survival of watermelon wilt pathogen, Fusarium oxysporum (Schl.) f. sp. niveum (E.F. Sm.) Snyder & Hansen in soil. Plant Protection Bulletin, Taiwan, 19(4):257-264

Sun SK, Huang JW, 1979. Variation in the watermelon wilt pathogen, Fusarium oxysporum f. sp. niveum. Plant Protection Bulletin, Taiwan, 21:313-322

Sun SK, Huang JW, 1984. Effect of soil amendments on Fusarium Wilt of watermelon. Soilborne Crop Diseases in Asia FFTC Book Series. Taipei, Taiwan: Food and Fertilizer Technology Center for the Asian and Pacific Region, 94-103

Sun SK, Huang JW, 1985. Mechanisms of control of Fusarium wilt diseases by amendment of soil with S-H mixture. Plant Protection Bulletin, Taiwan, 27(3):159-169; [2 fig., 8 tab.]; 16 ref

Sun SK, Huang JW, 1989. Natural adjuvants for biocontrol of soil-borne diseases. Adjuvants and agrochemicals. Volume I. Mode of action and physiological activity., 193-202; 15 ref

Swiader M, Pronczuk M, Niemirowicz-Szczytt K, 1996. A comparison of methods for assessing pathogenicity of Fusarium oxysporum isolates on watermelon. Plant Breeding and Seed Science, 40(1/2):167-171; 6 ref

Tran-Nguyen LTT, Condé BD, Smith SH, Ulyatt LI, 2013. Outbreak of Fusarium wilt in seedless watermelon seedlings in the Northern Territory, Australia. Australasian Plant Disease Notes, 8(1):5-8. http://rd.springer.com/article/10.1007/s13314-012-0053-y/fulltext.html

Trentini L, Maioli B, 1989. The technique of grafting for aubergine and melon. Colture Protette, 18(2):48-51; [8 col. pl.]

Tsao PH, Zentmyer GA, 1979. In: Schippers B, Gams W, eds. Soilborne Plant Pathogens. New York, USA: Academic Press, 191-199

Walker, M. N., 1941. Fusarium wilt of watermelons. I. Effect of soil temperature on the wilt disease and the growth of watermelon seedlings. Bulletin. Florida Agricultural Experiment Station, 363, 29 pp.

Wang JM, Zheng JW, He YC, Li ZG, 1993. A study on the existing form, number of distribution and fluctuation laws of Fusarium oxysporum f.sp. niveum in watermelon plants. Scientia Agricultura Sinica, 26(3):69-74; 5 ref

Wang M, Zhang X, 1988. Studies on watermelon germplasm sources resistant to Fusarium wilt disease at the seedling stage. Report of the Cucurbit Genetics Cooperative, USA, 11:68

Wardle DA, Parkinson D, Waller JE, 1993. Interspecific competitive interactions between pairs of fungal species in natural substrates. Oecologia, 94(2):165-172; 49 ref

Xue BD, Li JA, Chen YX, 1995. Studies on antagonism of Trichoderma sp. against 6 pathogenic fungi and biological control. Journal of Nanjing Agricultural University, 18:31-36

Yetıșır, H., Sarİ, N., Yücel, S., 2003. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica, 31(2), 163-169.

Yu Li, Xu RunFang, Zhao YouWei, 1995. The inheritance of resistance to Fusarium wilt in watermelon. Jiangsu Journal of Agricultural Sciences, 11(1):45-48; 9 ref

Yu SQ, Wang SZ, 1989. Study on the biological control of watermelon Fusarium wilt. Journal of Fruit Science, 6(4):223-228; 14 ref

Yu SQ, Wang SZ, 1990. Study on appraisal methods for assessing resistance to fusarial wilt disease in watermelon. Scientia Agricultura Sinica, 23(1):31-36; 8 ref

Zhang GF, Kong J, Shen XC, Liu QY, Zhang S, Zhang LB, Wang TP, 1990. Studies on control of watermelon wilt (Fusarium oxysporum var. niveum) with Agricultural Antibiotic 120. Chinese Journal of Biological Control, 6(4):170-172

Zhang XP, Rhodes B, 1993. Inheritance of resistance to races 0, 1, and 2 of Fusarium oxysporum f.sp. niveum in watermelon (Citrullus sp. PI 296341). Report - Cucurbit Genetics Cooperative, No. 16:77-78; 2 ref

Zhang XP, Wang M, 1991. Pathogenic differences of Fusarium oxysporum f.sp. niveum isolates collected in different areas of China. Journal of Fruit Science, 8(1):31-34; 5 ref

Zhang XW, Huang XS, Gu QS, Jiao DL, Na-L, Zhu DW, 1995. A preliminary report on screening the resistance of watermelon varieties to Fusarium wilt. International Symposium on Cultivar Improvement of Horticultural Crops. Part I: Vegetable Crops, held at Beijing, China, on September 6-10, 1993. Acta Horticulturae, 402:45-47

Zhang XW, Qian XL, Gu QS, 1991. Studies of methods for identifying resistance in watermelon to Fusarium wilt. Journal of Fruit Science, 8(4):219-224; 5 ref

Zhang ZhengGang, Zhang JingYu, Wang YuChao, Zheng XiaoBo, 2005. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil. FEMS Microbiology Letters, 249(1):39-47. http://www.sciencedirect.com/science/journal/03781097

Zhang, M., Xu, J. H., Liu, G., Yao, X. F., Li, P. F., Yang, X. P., 2015. Characterization of the watermelon seedling infection process by Fusarium oxysporum f. sp. niveum. Plant Pathology, 64(5), 1076-1084. http://onlinelibrary.wiley.com/doi/10.1111/ppa.12355/full

Zhao G, Lin F, Chen W, Tong X, Chen L, 1998. Biocontrol of seedling disease caused by Fusarium oxysporum f.sp. niveum with Trichoderma viride. Acta Agriculturae Zhejiangensis, 10(4):206-209

Zheng GF, 1995. A fine watermelon stock, ChaoFeng F, and its cultivation. Henan Nongye Kexue, No. 3:24-25

Zhou FengZhen, Kang GuoBin, 1996. On the inheritance of resistance to Fusarium wilt in Calhoun cv. of watermelon [F. oxysporum f.sp. niveum]. Acta Phytopathologica Sinica, 26(3):261-262

Zhou FZ, 1995. Breeding of a new hybrid watermelon with good quality and disease resistance - Jingkang 2. Acta Agriculturae Boreali Sinica, 10(2):38-42

Zhou, F. Z., Kang, G. B., 1996. Physiological races of causal agent of watermelon Fusarium wilt in Beijing. Plant Protection, 22(4), 14-16.

Zhou, X. G., Everts, K. L., 2003. Races and inoculum density of Fusarium oxysporum f.sp. niveum in commercial watermelon fields in Maryland and Delaware. Plant Disease, 87(6), 692-698. doi: 10.1094/PDIS.2003.87.6.692

Zhou, X. G., Everts, K. L., Bruton, B. D., 2010. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Disease, 94(1), 92-98. doi: 10.1094/PDIS-94-1-0092

Distribution References

Akhavizadegan M Dj, 1983. Occurrence of Fusarium wilt of watermelon in Guilan province of Iran. Entomologie et Phytopathologie Appliquees. 50 (1/2), 67-73; 17-18.

Amaradasa B S, Beckham K, Dufault N, Sanchez T, Ertek T S, Iriarte F, Paret M, Ji P, 2018. First report of Fusarium oxysporum f. sp. niveum race 3 causing wilt of watermelon in Florida, U.S.A. Plant Disease. 102 (5), 1029. http://apsjournals.apsnet.org/loi/pdis DOI:10.1094/pdis-10-17-1649-pdn

Babayan AA, Khodzhayan EA, Grigoryan NF, Stepanyan TG, 1960. As Fusarium oxysporum on melon, watermelon and cucumber. In: Ararat plain. Izv. Min. sel. Khoz. Armyan., Ser. Agric, 7 57-66.

CABI, Undated. Compendium record. Wallingford, UK: CABI

CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

CABI/EPPO, 2011. Fusarium oxysporum f.sp. niveum. [Distribution map]. In: Distribution Maps of Plant Diseases, Wallingford, UK: CABI. Map 1101 (Edition 1).

Callaghan S E, Puno V I, Williams A P, Weir B S, Balmas V, Sengsoulichan K, Phantavong S, Keovorlajak T, Phitsanoukane P, Xomphouthilath P, Phapmixay K S, Vilavong S, Liew E C Y, Duckitt G S, Burgess L W, 2016. First report of fusarium oxysporum f.sp. niveum in the Lao PDR. Australasian Plant Disease Notes. 11 (1), 9. http://link.springer.com/article/10.1007/s13314-016-0191-8

Crall J M, 1990. 'Charlee' watermelon. HortScience. 25 (7), 812-813.

D'Amore R, Morra L, Parisi B, 1996. Grafted watermelon: production results. (Anguria innestata: i risultati produttivi.). Colture Protette. 25 (9), 29-31.

Fantino M G, Zengin H, 1974. Research on the causal agents of watermelon and melon wilt. (Richerche sull'agente dell'avvizamento del cocomero e del melone.). Informatore Fitopatologico. 24 (7), 7-10.

Fİlİz N, Turhan G, 1992. Investigations on the determination of Fusarium oxysporum f.sp. niveum races in the Aegean region of Turkey. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. 99 (1), 56-61.

Gasanov G M, 1977. For the suppression of Fusarium disease of watermelon. (Dlya podavleniya fuzarioza arbuza.). Zashchita Rastenii. 53.

Gu WaiHong, Wang YanHua, Song RongHao, 1994. Studies on differentiation of physiological races of F. oxysporum f.sp. niveum in Shanghai. Acta Agriculturae Shanghai. 10 (3), 63-67.

Holliday P, 1970. Fusarium oxysporum f.sp. niveum. [Descriptions of Fungi and Bacteria]. In: IMI Descriptions of Fungi and Bacteria, Wallingford, UK: CAB International. Sheet 219.

Ioannou N, Poullis C A, 1991. Fusarium wilt of resistant watermelon cultivars associated with a highly virulent local strain of Fusarium oxysporum f.sp. niveum. In: Technical Bulletin - Cyprus Agricultural Research Institute, 9 pp.

Jiang M X, Zhang L D, Yang X H, 1983. The occurrence of cucumber Phytophthora blight and Fusarium wilt in Yinchuan City and some ideas for their control. Ningxia Agricultural Science and Technology. 27-28.

Karajova Y, Mladenov M, Moutsemo S, 1995. Fusarium species in melons and watermelons in Bulgaria. Bulgarian Journal of Agricultural Science. 1 (4), 439-445.

Kim JiYoung, Yi YoungKeun, Song YooHan, 1998. Plant diseases on green-house crops in Kyeongbuk areas. Korean Journal of Plant Pathology. 14 (1), 41-45.

Lai L Y, Zhang S D, 1992. Disease resistance identification of cucumber varietal resources in Shandong. Journal of Shandong Agricultural Science. 20-25.

Larkin R P, Hopkins D L, Martin F N, 1990. Vegetative compatibility within Fusarium oxysporum f.sp. niveum and its relationship to virulence, aggressiveness and race. Canadian Journal of Microbiology. 36 (5), 353-358. DOI:10.1139/m90-061

Larkin R P, Hopkins D L, Martin F N, 1993. Ecology of Fusarium oxysporum f.sp. niveum in soils suppressive and conducive to Fusarium wilt of watermelon. Phytopathology. 83 (10), 1105-1116. DOI:10.1094/Phyto-83-1105

Lin FC, 1990. Screening of antagonistic bacteria to Fusarium oxysporum f.sp. niveum (FON) and testing of some characteristics of the antagonistic substances produced by Bacillus subtilis., Hangzhou, China: Zhejiang Agricultural University.

Maric A, Balaz F, Jasnic S, 1971. Fusarium wilt of watermelon, Fusarium oxysporum f. niveum, and possibilities for its control. Zastita Bilja. 22 (115/116), 269-282.

Michail S H, Sheir H M, Rasmy M R, 1989. Cross protection of watermelon and cucumber plants against wilt by prior inoculation with an irrespective forma specialis of Fusarium oxysporum. Acta Phytopathologica et Entomologica Hungarica. 24 (3-4), 301-309.

Mijuskovic M, Vucinic Z, 1977. Fusarium wilt of watermelon in Montenegro and the possibility of its control. (Fuzariozno uvenuce lubenica u Crnoj Gori i mogucnost njegovog zuzbijanja.). Glasnik Odjelenja Prirodnih Nauka. 229-250.

Mondal S N, Hossain A K M A, Hossain A E, Islam M A, Bashar M A, 1994. Effect of various rootstocks in the graft culture of watermelon in Bangladesh. Punjab Vegetable Grower. 15-19.

Nepa G A W, Rhodes B B, Witcher W, 1985. Interaction of commercial watermelon cultivars with regional isolates of Fusarium oxysporum f. sp. niveum. Report, Cucurbit Genetics Cooperative, USA. 62-64.

Netzer D, Martyn R D, 1989. PI 296341, a source of resistance in watermelon to race 2 of Fusarium oxysporum f.sp. niveum. Plant Disease. 73 (6), 518. DOI:10.1094/PD-73-0518E

Norton J D, Boyhan G E, Smith D A, Abrahams B R, 1995. 'AU-Sweet Scarlet' watermelon. HortScience. 30 (2), 393-394.

Paulus A O, Harvey O A, Nelson J, Shibuya F, 1976. Fusarium-resistant watermelon cultivars. California Agriculture. 30 (9), 5-6.

Sun S-K, Huang J-W, 1977. Survival of watermelon wilt pathogen, Fusarium oxysporum (Schl.) f. sp. niveum (E.F. Sm.) Snyder & Hansen in soil. Plant Protection Bulletin, Taiwan. 19 (4), 257-264.

Świąder M, Prończuk M, Niemirowicz-Szczytt K, 1996. A comparison of methods for assessing pathogenicity of Fusarium oxysporum isolates on watermelon. Plant Breeding and Seed Science. 40 (1/2), 167-171.

Tran-Nguyen L T T, Condé B D, Smith S H, Ulyatt L I, 2013. Outbreak of Fusarium wilt in seedless watermelon seedlings in the Northern Territory, Australia. Australasian Plant Disease Notes. 8 (1), 5-8. http://rd.springer.com/article/10.1007/s13314-012-0053-y/fulltext.html DOI:10.1007/s13314-012-0053-y

Trentini L, Maioli B, 1989. The technique of grafting for aubergine and melon. (La tecnica dell'innesto in melanzana e melone.). Colture Protette. 18 (2), 48-51.

Links to Websites

Top of page
WebsiteURLComment
Fusarium wilt of watermelon and other cucurbitshttps://www.apsnet.org/edcenter/disandpath/fungalasco/pdlessons/Pages/FusariumWatermelon.aspx

Contributors

Top of page

30/03/20 Reviewed by:

Anthony Keinath, Professor of Plant Pathology, Clemson University, Coastal Research and Education Center, Charleston, SC, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map