Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Rhyacionia buoliana
(European pine shoot moth)

Toolbox

Datasheet

Rhyacionia buoliana (European pine shoot moth)

Summary

  • Last modified
  • 14 July 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Rhyacionia buoliana
  • Preferred Common Name
  • European pine shoot moth
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • R. buoliana is a European species, accidentally introduced to several American countries. So far, it has spread to Canada, USA, Uruguay, Argentina and Chile. In all these countries it has adapted to the environmental conditions and has established....

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Adult moth of R. buoliana.
TitleAdult
CaptionAdult moth of R. buoliana.
CopyrightUniversidad Austral de Chile
Adult moth of R. buoliana.
AdultAdult moth of R. buoliana.Universidad Austral de Chile
Pupa of R. buoliana.
TitlePupa
CaptionPupa of R. buoliana.
CopyrightUniversidad Austral de Chile
Pupa of R. buoliana.
PupaPupa of R. buoliana.Universidad Austral de Chile
Eggs of R. buoliana.
TitleEggs
CaptionEggs of R. buoliana.
CopyrightUniversidad Austral de Chile
Eggs of R. buoliana.
EggsEggs of R. buoliana.Universidad Austral de Chile
Shoot damage due to larval feeding.
TitleDamage symptoms
CaptionShoot damage due to larval feeding.
CopyrightSandra Ide Mayorga
Shoot damage due to larval feeding.
Damage symptomsShoot damage due to larval feeding.Sandra Ide Mayorga
Shoot damage due to larval feeding.
TitleDamage symptoms
CaptionShoot damage due to larval feeding.
CopyrightSandra Ide Mayorga
Shoot damage due to larval feeding.
Damage symptomsShoot damage due to larval feeding.Sandra Ide Mayorga
Strong crookedness in damaged timber.
TitleDamage symptoms
CaptionStrong crookedness in damaged timber.
CopyrightUniversidad Austral de Chile
Strong crookedness in damaged timber.
Damage symptomsStrong crookedness in damaged timber.Universidad Austral de Chile
Multiple spikes in damaged timber.
TitleDamage symptoms
CaptionMultiple spikes in damaged timber.
CopyrightUniversidad Austral de Chile
Multiple spikes in damaged timber.
Damage symptomsMultiple spikes in damaged timber.Universidad Austral de Chile

Identity

Top of page

Preferred Scientific Name

  • Rhyacionia buoliana (Denis & Schiffermüller)

Preferred Common Name

  • European pine shoot moth

Other Scientific Names

  • Coccyx buoliana (Denis & Schiffermüller)
  • Evetria buoliana (Denis & Schiffermüller)
  • Evetria thurificana Lederer
  • Phalaena buoliana (Denis & Schiffermüller)
  • Retinia buoliana (Denis & Schiffermüller)
  • Retinia thurificana Lederer
  • Rhyacionia buoliana thurificana (Lederer)
  • Rhyacionia gemmana (Hbn.)
  • Rhyacionia pallasana Sodoffsky
  • Tortrix buoliana Denis & Schiffermüller

International Common Names

  • English: pine shoot, moth, European
  • Spanish: brugo de los pinos; polilla del brote; polilla del brote del pino; tortrix de los brotes del pino
  • French: perce-pousse européen du pin

Local Common Names

  • Argentina: mariposa europea del brote del pino; mariposita del ápice de los pinos; mariposita del brote del pino; polilla europea
  • Denmark: fyrreskudvikler; fyrrevikler
  • Finland: männynversokääriäinen
  • France: tordeuse buoline; tordeuse des pousses du pin
  • Germany: Wickler, Kiefernknospentrieb-; Wickler, Kieferntrieb-
  • Israel: ash haoren
  • Italy: tortrice delle gemme apicali del pino
  • Mexico: evetria; mariposa europea de los retoños de los pinos; retoña; tortrix del brote
  • Netherlands: dennelotrups; dennelotvlinder; dennenbotrups
  • Norway: rod furuskottvikler
  • Sweden: tallskottvecklare

EPPO code

  • EVETBU (Rhyacionia buoliana)

Summary of Invasiveness

Top of page R. buoliana is a European species, accidentally introduced to several American countries. So far, it has spread to Canada, USA, Uruguay, Argentina and Chile. In all these countries it has adapted to the environmental conditions and has established.

Because R. buoliana mainly attacks species of the genus Pinus and because Uruguay, Argentina and Chile feature large plantations of these conifers, its establishment in these countries has been relatively easy. In addition, R. buoliana did not find any competitor for its food resources, or natural enemies that would control its populations when it entered these countries. This allowed R. buoliana to invade commercial plantations with no great obstacles, adapting to a wide variety of temperature and moisture conditions, as is proved by its spread into the warm and humid areas of Uruguay and cold, dry areas such as the Argentinean Patagonia.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Lepidoptera
  •                         Family: Tortricidae
  •                             Genus: Rhyacionia
  •                                 Species: Rhyacionia buoliana

Description

Top of page Eggs

Eggs are 1.0-1.3 mm in diameter, their small size making them hard to locate in the field. The eggs are yellowish-white when oviposited, changing in colour to greyish-yellow shortly after hatching. During embryonic development, the eggs darken and resemble the orange-brown tint of a bud scale or needle base (Pointing and Green, 1962).

Larvae

Eruciform, with three pairs of thoracic legs. There are six larval stages and the larvae can be as long as 2 cm in the final larval stage. At hatching, the larvae are nearly 2 mm long and reach their largest size after five moults. During the first instar, larvae are pale yellowish-brown, the head being darker. From the second to the fifth instars, the body colour darkens, but becomes lighter again in the sixth and final instar (Pointing and Green, 1962).

Pupae

The pupae are about 10 mm long and yellow-brown when first formed, becoming black in the thoracic region as pupal development progresses (Pointing and Green, 1962). The pupa is protected inside the shoot in a chamber prepared by the larva when pupation approaches. The chamber's inner surface is covered by silk and the outer surface by resin.

Adult

Light beige with reddish forewings marked by transverse silvery lines. The hindwings are brownish-grey, with a lighter stripe along the edges. The adult is small, its body up to 1 cm long with a 2-cm wingspan. The female is larger than the male. Females may be distinguished from males by a ring of rufous hairs surrounding the genital opening, and by their swollen abdomens; the abdomen of the male is uniformly grey, more or less cylindrical in form, and terminates in claspers (Pointing and Green, 1962).

Distribution

Top of page Originating in Europe, R. buoliana has spread slowly to other continents (Middle East, North Africa and northern Asia). R. buoliana came to the USA in 1914, where it was first detected in New York and from where it spread to the rest of the country. Currently, R. buoliana can be found in the northeastern states (West Minnesota and Oregon, Pennsylvania, Ohio, Michigan, Wisconsin and Washington). It was detected in Canada in 1924, in Nova Scotia and Ontario, and it can currently be found in wide areas of the country (Pointing and Green, 1962; Miller, 1967; Eglitis, 1974; Kline and Mitchell, 1979).

In 1936, Uruguay was the first South American country to be affected by R. buoliana. In 1939, R. buoliana was detected in the Argentine province of Buenos Aires. The species has slowly spread to other areas of Argentina, reaching the Andean-Patagonic region in 1979, when it was detected in the city of San Carlos de Bariloche. R. buoliana was later detected in the provinces of Neuquén and Chubut. In Chile, R. buoliana was detected in 1985, in Puerto Varas (in the Tenth Region). However, considering the age of the damage observed, it is thought that R. buoliana was present in the country at least 5 years earlier. In Chile, R. buoliana can be found in the whole area where Pinus radiata plantations are distributed, i.e. between the Fifth and Tenth Regions (Bachiller, 1981; Havrilenko, 1981; Cerda et al., 1985; Robredo, 1985; Espinoza et al., 1986; Herrera, 1986; Aguilar and Beéche, 1989; Artigas, 1994, Klasmer et al., 1998; Lanfranco and Ide, 2000).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

IranPresentMohammadi, 1997
IsraelPresentEPPO, 2014
JapanPresentEPPO, 2014
SyriaPresentEPPO, 2014
TurkeyPresentEPPO, 2014

Africa

AlgeriaPresentKerris, 2003

North America

CanadaWidespreadIntroduced Invasive Green, 1962; Syme, 1981; EPPO, 2014
-British ColumbiaPresentEPPO, 2014
-New BrunswickPresentIntroducedSyme, 1981
-Newfoundland and LabradorPresentEPPO, 2014
-Nova ScotiaPresentEPPO, 2014
-OntarioPresentEPPO, 2014
-Prince Edward IslandPresentEPPO, 2014
-QuebecPresentIntroduced Invasive Green, 1962; Syme, 1981; EPPO, 2014
USARestricted distributionIntroduced Invasive Busck, 1914; EPPO, 2014
-ConnecticutPresentEPPO, 2014
-DelawarePresentEPPO, 2014
-IllinoisPresentEPPO, 2014
-MainePresentEPPO, 2014
-MarylandPresentEPPO, 2014
-MassachusettsPresentEPPO, 2014
-MichiganPresentEPPO, 2014
-MinnesotaPresentIntroducedLehmann, 1996
-MissouriPresentEPPO, 2014
-NebraskaPresentEPPO, 2014
-New JerseyPresentEPPO, 2014
-New YorkPresentEPPO, 2014
-OhioPresentEPPO, 2014
-OregonPresentEPPO, 2014
-PennsylvaniaPresentEPPO, 2014
-Rhode IslandPresentEPPO, 2014
-VermontPresentEPPO, 2014
-VirginiaPresentEPPO, 2014
-WashingtonPresentEPPO, 2014
-West VirginiaPresentEPPO, 2014
-WisconsinPresentEPPO, 2014

South America

ArgentinaPresentIntroduced Invasive Brewer et al., 1968; Havrilenko, 1981; EPPO, 2014
ChilePresentIntroduced Invasive Espinoza et al., 1986; EPPO, 2014
UruguayPresentIntroduced Invasive Quintana, 1961; EPPO, 2014

Europe

AustriaPresentEPPO, 2014
BelgiumPresentEPPO, 2014
Bosnia-HercegovinaPresentEPPO, 2014
BulgariaPresentEPPO, 2014
CroatiaPresentLiovic and Zupanic, 2005
CyprusPresentEPPO, 2014
Czech RepublicWidespreadEPPO, 2014
DenmarkPresentEPPO, 2014
EstoniaPresentEPPO, 2014
FinlandWidespreadEPPO, 2014
FranceRestricted distributionEPPO, 2014
GermanyRestricted distributionEPPO, 2014
GreecePresentEPPO, 2014
HungaryWidespreadEPPO, 2014
IrelandWidespreadEPPO, 2014
ItalyPresentEPPO, 2014
-SardiniaPresentEPPO, 2014
LatviaPresentEPPO, 2014
LithuaniaPresentStatenite et al., 1984
MacedoniaPresentEPPO, 2014
NetherlandsPresentEPPO, 2014
NorwayPresentEPPO, 2014
PolandPresentEPPO, 2014
PortugalWidespreadEPPO, 2014
-MadeiraPresentEPPO, 2014
RomaniaPresentEPPO, 2014
Russian FederationPresentEPPO, 2014
-Eastern SiberiaPresentEPPO, 2014
-Russia (Europe)PresentEPPO, 2014
-Western SiberiaPresentEPPO, 2014
SerbiaPresentMaksimovic and Schindler, 1969; EPPO, 2014
SlovakiaPresentEPPO, 2014
SloveniaPresentPrelc, 1993; Jurc and Potocnik, 2000; Jurc, 2001
SpainPresentEPPO, 2014
SwedenRestricted distributionEPPO, 2014
SwitzerlandWidespreadEPPO, 2014
UKRestricted distributionEPPO, 2014
-England and WalesWidespreadBradley et al., 1979; EPPO, 2014
-Northern IrelandRestricted distributionEPPO, 2014
-ScotlandRestricted distributionEPPO, 2014
UkrainePresentEPPO, 2014

Risk of Introduction

Top of page The USA considers R. buoliana to be a pest of low potential risk for their forests when characterizing their imports of primary forest products with bark from Chile. In terms of the probability of establishment in the USA, R. buoliana's potential for colonization and spread is considered high, but its entry potential and host association are low. In terms of the consequences of establishment in the USA, economic damage potential is perceived as moderate, but environmental damage potential is low (USDA-Forest Service, 1993).

Hosts/Species Affected

Top of page R. buoliana attacks species of the genus Pinus with two or three needles per fascicle (Diploxylon group). In Chile, the most susceptible species is Pinus radiata. Nevertheless, sporadic attacks on Pinus contorta and Pseudotsuga menziesii have been observed (Havrylenko, 1982; Godoy, 1985).

Growth Stages

Top of page Vegetative growing stage

Symptoms

Top of page R. buoliana damages shoots. Larvae make holes and galleries in growing shoots and buds, causing them to die. Other shoots are partially mined without being killed, which then grow twisted or crooked towards the damaged side. The presence of larvae in shoots is shown by small, white resin masses, along with dead needles (Pastrana, 1961; Pointing and Green, 1962; Kline and Mitchell, 1979; Bachiller, 1981; Herrera, 1986). See Detection and Inspection Methods for classifications of R. buoliana damage.

The damage caused by R. buoliana does not kill trees. However, important damage occurs when apices are infested, including a loss in height and diameter, and stem deformations. Apical infestations can cause the loss of apical dominance, resulting in increased branching. The damage is increased by successive infestations year after year, especially in young plantations (Robredo, 1966; Miller, 1967; Brewer et al., 1968; Bachiller, 1981; Coulson and Witter, 1984; Schroeder, 1986; Álvarez de Araya and Ramírez, 1989; Lanfranco and Aguilar, 1989; Álvarez de Araya et al., 1991; Lanfranco et al., 1991a; Vallejos, 1992; Lanfranco et al., 1994).

The magnitude of R. buoliana infestation depends on the tree species attacked, the growth and height already attained by the tree, the spatial density of the forest and the site. For Pinus radiata, the critical period corresponds to the thicket stage, i.e. from 8-11 years old, depending on weather and the soil (Kline and Mitchell, 1979; Gajardo, 1984; Espinoza et al., 1986). However, in Chile, R. buoliana produces more damage in 1- to 4-year-old plantations (Lanfranco et al., 1991a, 1994; Ide, 1992; Vallejos, 1992; Ide and Lanfranco, 1996a).

List of Symptoms/Signs

Top of page
SignLife StagesType
Growing point / distortion
Growing point / external feeding
Growing point / internal feeding; boring
Leaves / necrotic areas
Stems / distortion
Stems / gummosis or resinosis
Stems / witches broom
Whole plant / distortion; rosetting
Whole plant / dwarfing

Biology and Ecology

Top of page R. buoliana is an insect that undergoes complete metamorphosis and develops in trees of Pinus spp. R. buoliana is usually univoltine. When detected in Chile, it was believed that two generations could be produced per year in the warmest regions. However, the species remained univoltine and only an adjustment of the life cycle occurred in response to the environmental conditions experienced. In approximately the middle of its altitudinal distribution in Chile (the Seventh and Eighth Regions), the life cycle speeds up and pupae appear in mid-spring (October). In the southernmost region (the Tenth Region) pupae appear only in early summer (mid-December). In the northern area of its distribution in Chile adults emerge in mid-spring, dependent on spring temperatures. Warmer temperatures allow earlier hatching, whereas a relatively colder spring delays the adults' first flight (DeAngelis, 2000).

Pointing (1961), Green (1962) and Pointing and Green (1962) indicated that adults are relatively strong fliers. Adults usually fly during the evening under well-defined limits of overhead light intensity and air temperature (Pointing and Green, 1962). R. buoliana flies at temperatures above 12°C and maximum flight is reached at approximately 22°C.

With a high capacity for flight and ovipositing 50-150 eggs in their lifetime (depending on environmental conditions) females can spread their offspring over large areas. Flight by females is the main factor contributing to the natural dispersal of R. buoliana populations (Pérez et al., 1999).

Eggs are laid individually or in groups of two to four. Hatching occurs 1 or 2 weeks after oviposition and is strongly affected by temperature. Newly-eclosed larvae start feeding on the base of needles and then attack buds, where they stay during winter, shielded in a chamber of resin and silk. Next spring, the larvae migrate to the upper section of the tree and feed on new buds or shoots until they complete the larval stage. Feeding and boring inside the shoots causes great damage, resulting in shoot death. Pupation occurs in the shoots and takes 2-3 weeks (Pérez et al., 1999).

Research carried out by Ide and Lanfranco (1994) indicated that the highest mortality rates of R. buoliana occur in summer and autumn (36.8-55.2%) due to the great vulnerability of early-instar larvae to temperature, abundant production of resin and predators. An important percentage of this mortality will be caused by resin production when larvae try to enter the buds.

In Chile, R. buoliana develops almost exclusively in Pinus radiata; it feeds on this host for nearly 9 months of its annual development cycle and much of this time it is hidden inside buds or shoots. Therefore P. radiata is a highly important food source and a refuge. The adaptability of R. buoliana to the Chilean weather, as well as the unlimited availability of P. radiata in quantity and quality (there are no major competitors for this food resource), support R. buoliana survival and population increases (Ide and Lanfranco, 1994).

Although globally plantations aged under 15 years are considered to be the most susceptible to R. buoliana, in Chile plantations aged 1-4 years are the most susceptible, mainly due to the fast growth of P. radiata in this country (Lanfranco et al., 1991a, 1994; Ide, 1992; Vallejos, 1992; Ide and Lanfranco, 1996a).

Tip breaking is the initial sign of damage in young plantations. In the following seasons, defects in the stem can easily be seen. After the growing tip has died, multiple spikes or forking can be observed. Both types of defect can evolve in subsequent years into severe or slight crookedness, or remain as multiple spikes or forking. This depends on the age of the tree attacked and the site conditions (Ide and Lanfranco, 1996a). In trees aged over 10 years, apical injury produces largely irreversible stem damage.

Studies by Ide and Lanfranco (1996b) using two different site indexes for P. radiata (SI 22 and 28 m) found multiple spikes to be the most frequent initial defect, regardless of the site index. However, damage can be worse in a smaller site index, especially in areas subjected to strong winds and snow, because defective trees break more easily. The percentage of defects was greater in the site with the highest site index (Ide and Lanfranco, 1996a), which contradicts Brewer et al. (1967) and Schroeder (1986) who state that the lowest quality sites would be more affected by R. buoliana attack. One possible explanation could be that trees in sites with higher indexes are more intensely and repeatedly attacked because of the better quality of the food resource.

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Actia dubitata Parasite Larvae
Actia nudibasis Parasite Larvae Canada; USA Pinus
Adalia bipunctata Predator Larvae
Agrothereutes adustus Parasite Pupae
Bacillus thuringiensis Pathogen Larvae
Baryscapus turionum Parasite Pupae
Bracon brevicornis Parasite Larvae
Campoplex borealis Parasite USA Pinus
Campoplex multicinctus Parasite USA Pinus
Campoplex mutabilis Parasite Larvae Canada; USA Pinus
Campoplex submarginatus Parasite Bulgaria Pinus
Copidosoma geniculatum Parasite UK; USA Pinus
Cryptus rubripes Parasite
Cyzenis albicans Parasite Larvae
Ephialtes sagax Parasite USA Pinus
Eurytoma pini Parasite
Exeristes comstockii Parasite
Exeristes roborator Parasite Larvae Bulgaria; Canada Pinus
Exeristes ruficollis Parasite Larvae Bulgaria; Canada; USA Pinus
Formica lugubris Predator Spain
Hyssopus thymus Parasite Larvae Canada; Germany Pinus
Incamyia chilensis Parasite Larvae
Itoplectis conquisator Parasite Pupae Germany Pinus
Lypha dubia Parasite Larvae Canada; USA Pinus
Necryptopterix hypodyneri Parasite
Oedemopsis scabricula Parasite
Orgilus obscurator Parasite Larvae Austria; Bulgaria; Canada; Czechoslovakia; France; UK; USA Pinus; Pinus radiata; Pinus sylvestris; Pinus uncinata
Orgilus punctulator Parasite Larvae
Parasierola nigrifemur Parasite Argentina; Canada Pinus
Phorocera casanuevai Parasite Larvae
Pimpla contemplator Parasite Pupae
Pimpla contemplator Parasite Canada; USA Pinus
Pimpla fuscipes Parasite Chile Pinus
Pristomerus orbitalis Parasite
Pristomerus vulnerator Parasite USA Pinus
Pseudoperichaeta nigrolineata Parasite Larvae Bulgaria Pinus
Scambus buolianae Parasite Larvae Bulgaria; USA Pinus
Sinophorus crassifemur Parasite
Sinophorus ramidulus Parasite France; UK Pinus muricata; Pinus radiata; Pinus sylvestris; Pinus uncinata
Sinophorus rufifemur Parasite Larvae Canada; USA Pinus
Temelucha arenosa Parasite
Temelucha interruptor Parasite Larvae Austria; Canada; Czechoslovakia; France; UK; USA Pinus; Pinus contorta; Pinus muricata; Pinus sylvestris; Pinus uncinata
Trichogramma evanescens Parasite Eggs USSR
Trichogramma telengai Parasite Eggs

Notes on Natural Enemies

Top of page There are over 100 species of natural enemies associated with R. buoliana. In addition to those listed under Natural Enemies, Venturia sp. (Hymenoptera: Ichneumonidae) and Perissocentrus sp. (Hymenoptera: Torymidae) are parasitoids which have been detected in Chile. Arachnids (Thomisidae and Salticidae) have been detected in Chile predating R. buoliana larvae (Lanfranco et al., 1997). Studies by Simeone et al. (1997) determined the predation of larvae by the bird Carduelis barbata. Predation of larvae by Forficula auricularia (Dermaptera: Forficulidae) and Adalia bipunctata (Coleoptera: Coccinellidae) has also been observed (Lanfranco et al., 1997).

There has been considerable work on the biological control of R. buoliana (see Control).

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Stems (above ground)/Shoots/Trunks/Branches eggs; larvae; pupae Yes Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs/Tubers/Corms/Rhizomes
Flowers/Inflorescences/Cones/Calyx
Fruits (inc. pods)
Growing medium accompanying plants
Leaves
Roots
Seedlings/Micropropagated plants
True seeds (inc. grain)
Wood

Wood Packaging

Top of page
Wood Packaging not known to carry the pest in trade/transport
Loose wood packing material
Non-wood
Processed or treated wood
Solid wood packing material with bark
Solid wood packing material without bark

Impact

Top of page In Western Europe, there was a R. buoliana outbreak at the start of the twentieth century (Miller, 1967) which approximately coincided with the detection of R. buoliana in the USA, in seedlings imported from the Old World. In the USA, R. buoliana caused significant injury in young plantations of Pinus resinosa, resulting in a decrease in plantations of this species in many areas of the USA (Miller et al., 1961). R. buoliana is now considered to be a serious but sporadic pest, attacking ornamental trees, Christmas trees and lumber species (Lehman, 1996).

In the Argentinean Patagonia, up to 22% apical attack has been recorded in plantations of Pinus spp. However, there is no information available on the economic impact caused by this level of attack (Botto et al., 2000).

Eight years after the initial detection of R. buoliana in Chile, it was determined that up to 97% of trees had R. buoliana damage in some places in the Tenth Region and that the loss in usable lumber volume was 38.5% (Baldini et al., 1993). In under 10 years, R. buoliana was present in the whole area of Chile which had Pinus radiata plantations (the Fifth to Tenth Regions), causing severe injury, especially in plantations under 5 years old.

Studies by Alzamora et al. (2002) in two regions of Chile, determined decreases in total volume due to R. buoliana attack. This occurred regardless of site index or plantation age. However, younger plantations featured fewer defects, possibly as a result of fewer available shoots and, therefore, fewer opportunities for R. buoliana to cause injury.

In general terms, the greatest economic impact occurs on the best sites and on intensively managed sites, where R. buoliana attacks considerably lower forest profitability.

Environmental Impact

Top of page It is suggested that the environmental impacts resulting from the presence of R. buoliana in Chile were at their greatest in the period after 1985 when the pest was first detected. Initially little was known about R. buoliana and massive amounts of narrow-spectrum insecticides were used for R. buoliana control. From 1990 to 1995 chemical spraying was restricted to R. buoliana's northern distribution limit. When the State suspended its chemical control programme (in 1990), forestry companies became in charge of carrying out chemical applications in their fields, according to their own needs. Nowadays, these applications are restricted to the first 2 years in a plantation and are regarded as an additional measure to biological control (Gesell, 2000).

A possible ecological change resulting from R. buoliana's introduction to Chile is the fact that several native parasitoid species (e.g. Incamyia chilensis and Pimpla fuscipes) have been provided with a new prey in the form of R. buoliana, widening their dietary spectrum. These parasitoids, however, did not completely switch from their existing prey species to R. buoliana, nor did they take over the niche of the introduced biological control agent, Orgilus obscurator (Gesell, 2000).

Detection and Inspection

Top of page According to Miller (1967) and Vallejos (1992), R. buoliana can be detected with the naked eye by observing the kind of damage caused to trees, which is regarded as unique to R. buoliana. The damage symptoms have been classified as follows:

- Multiple spikes or the existence of three or more branches in the final verticil or stem, which compete for dominance; when one of the competing branches achieves dominance, this deformity may change to a crook.

- A fork occurs when two or more shoots compete for dominance; this damage can change to a crook remaining in the main stem after one of the competing branches achieves dominance.

- Strong crookedness or twisting equal to or greater than 50% of the stem's diameter, due to partial or total destruction of the tip apex and the dominance of a lateral branch; irreversible damage.

- Slight crookedness or twisting equal to or less than 50% of the stem diameter, due to the partial or total destruction of the tip apex and the dominance of a lateral branch. This damage is considered to be reversible.

- Slight damage or, despite having been infested, the absence of external physical injury except scarring; reversible damage.

Since the establishment of R. buoliana was determined in Chile, inspection methods have been carried out by means of systematic land sampling (Universidad Austral de Chile, 1997). The most frequently used indicators of R. buoliana populations and the resulting tree damage are the degree of infestation or the percentage of injured trees in a sample, apical infestation or the percentage of injured tips in a sample, and larval density or the average number of living larvae per tree. The degree of infestation and apical infestation are estimated by means of simple observation of each tree within the sampling unit. Larval density is estimated by evaluating three shoots selected in the last vegetative period in each of the three portions into which the tree is divided, referring to the total number of shoots in every portion, which is determined by means of a census.

Similarities to Other Species/Conditions

Top of page R. buoliana deforms stems when infestation occurs in young specimens. Eucosma sonomana (Lepidoptera: Tortricidae) and Pissodes strobi (Coleoptera: Curculionidae) both cause similar damage (Kline and Mitchell, 1979).

Rhyacionia pinicolana greatly resembles R. buoliana. Historically R. pinicolana was often mistaken for R. buoliana in Europe, which has led to erroneous reports about the distribution of R. buoliana. Fortunately, the genitalia provide distinctive adult characters for these species (Miller, 1967).

Prevention and Control

Top of page Chemical Control

In Chile, chemical control was used in the first years of R. buoliana spread. It was initially used to control focal infestation points and then to stop its spread, using applications from the air as well as on the ground (Espinoza et al., 1986). State institutions have suspended chemical applications since 1990, employing their resources in biological control instead (Espinoza et al., 1991). Since then, forestry companies have used chemical control according to each company's criteria, which in general terms corresponds to chemical applications on sites under 2 years of age and only if the apical attack equals or is greater than 20%. Since their introduction, ultra low volume (ULV) formulations have been preferred in Chile, as they are cheaper, maximize the surface under treatment, have good adherence to plant tissue, have high persistence and good coverage of vegetation (Espinoza et al., 1986; Robredo, 1996).

The chemicals used for adult R. buoliana control are pyrethroids; chitin synthesis inhibitors are used for larvae. Applications are carried out from late October to May, depending on the stage of R. buoliana to be controlled (adults or larvae) and the region of the country (Álvarez de Araya et al., 1999). Biological insecticides are also applied, such as formulations of the bacterium Bacillus thuringiensis, which is selective for lepidopteran larvae. B. thuringiensis works following ingestion by larvae, activating upon exposure to the alkaline pH of the larval gut. B. thuringiensis paralyses the gut, resulting in death of the larvae (Aguilar et al., 1988, 1989).

In Spain, diflubenzuron, fenitrothion, trichlorfon (sprinkled) are applied from April to May and in July for the control of re-infestations.

Cultural Control and Sanitary Methods

Infested buds and shoots are cut off. If used in 2-year-old sites with about 1200 trees per hectare, this would take nearly 2-3 days per hectare. In Chile, this method has been used in small plantations located on flat land with population densities under 1.0 larva per hectare (Álvarez de Araya et al., 1999). The main advantage is that this method does not cause any damage to the environment. However, it can only be used against low-density R. buoliana populations (Le-Quesne, 1994; DeFerrari, 1997).

Biological Control

In North America, parasitoid introduction programmes were carried out as early as 1928 (Dowden, 1962; McGugan and Coopel, 1962; Miller, 1967). During the first period of introductions of biocontrol agents into the USA (1930-1938), over 60,000 organisms belonging to at least 16 species were imported and released in the north-east of the country. During the second period (1959-1962) nearly 16,000 more specimens were released in Michigan and Ohio. In Canada (Ontario), from 1928 to 1958 over 100,000 specimens of 13 species were released (Miller, 1967; Syme, 1981). Of all these species introduced into the USA and Canada, only four established: Orgilus obscurator (Hymenoptera: Braconidae), Temelucha interruptor (Hymenoptera: Ichneumonidae), Tetrastichus turionum (Hymenoptera: Eulophidae) and Pimpla turionellae (Hymenoptera: Ichneumonidae).

However, because the introductions to North America did not produce satisfactory control, further studies were carried out in Europe (Schroder, 1974). This work showed that, although there are a large number of parasitoids in Europe, they are not able to maintain low population densities of R. buoliana because of the high degree of interspecific competition between them. For this reason some of the introductions into North America were ill advised. One of the European parasitoids, Orgilus obscurator, has proved to be the most effective biological control agent in North America and more recently in South America.

In Europe, unsuccessful introductions were made into the UK from continental Europe where the parasitoid fauna is more diverse. Also unsuccessful attempts were made to introduce two parasitoids, Hyssopus thymus and Itoplectis conquisitor, into Germany from North America which, it was considered, could be beneficial additions to the European parasitoid complex (Greathead, 1976).

In the 1940s, in Argentina, O. obscurator was introduced into the central area of the country. Trichogramma nerudai (Hymenoptera: Trichogrammatidae) was introduced in 1997 in the Andean-Patagonic region. Evaluations made from 1997 to 1998 showed that O. obscurator was present in the provinces of Río Negro and Chubut, reaching parasitism levels of 20-60% in the province of Río Negro and 0-65% in Chubut (Klasmer et al., 1998; Botto et al., 2000).

In Chile, the R. buoliana biological control programme started as early as 1987, when the decision was made to introduce O. obscurator. O. obscurator has been extensively used, after the National Institute of Farming and Agricultural Research (INIA - Instituto Nacional de Investigaciones Agropecurias) developed an O. obscurator rearing process and transferred the technology to forestry companies.

To establish biological control by O. obscurator in Chile, adult releases and introductions of parasitized R. buoliana larvae were carried out. Both techniques gave excellent results. O. obscurator established in all the regions where R. buoliana was present, although parasitism levels varied. Lanfranco and Ide (2000) showed that O. obscurator parasitism levels were 93.5% in the Tenth Region (the southern zone of R. buoliana distribution) and lower (16.5%) in the northern regions. As a result of its control, R. buoliana populations are very small in the Ninth and Tenth Regions of Chile, where it is almost impossible to detect in Pinus radiata plantations. Although R. buoliana is still a problem in the Seventh and part of the Eighth Regions, studies by several researchers show that R. buoliana will become a low-prevalence pest in Chile within a couple of years as a result of the biological, chemical and mechanical methods employed for R. buoliana control (Gesell, 2000).

Biological control is the preferred control method because it is environmentally friendly, and because specific control agents are mostly used, which prevent non-target effects on other species. The history of R. buoliana biological control indicates that the most effective parasitoid is O. obscurator. This is because of its high specificity and searching capacity and its good reproductive and mass rearing potentials. O. obscurator has been introduced into the USA, Canada, Chile and Argentina. (See Chemical Control for the use of B. thuringiensis as a bioinsecticide.)

References

Top of page

¦lvarez de Araya G, Ramírez O, 1989. Assessment of damage caused by European pine shoot moth in Radiata pine plantations in Chile. In: Alfaro RI, Glover SG (eds.) Proceedings of meeting of IUFRO work group: Insects affecting reforestation biology and damage, July 3-9, 1988. Vancouver, Canada: IUFRO, 145-154.

¦lvarez de Araya G, Ramírez O, Parra P, Puente O, 1991. Evaluación de las pérdidas de volumen aprovechable debido al daño causado por la polilla del brote (Rhyacionia buoliana Den. et Schiff.) en plantaciones de pino insigne (Pinus radiata D.Don). Santiago, Chile: CONAF, Serie Técnica.

¦lvarez de Araya M, Pérez C, Villa A, 1999. Rhyacionia buoliana "Polilla del Brote en Chile", Programa Protección Sanitaria Forestal. Santiago, Chile: CONAF, Nota Técnica, 35.

Aguilar A, Beéche M, 1989. Current situation on the European pine shoot moth (Rhyacionia buoliana [Schiff.] Lepidoptera: Tortricidae) in Chile. In: Alfaro RI, Glover SG (eds.) Proceedings of meeting of IUFRO work group: Insects affecting reforestation biology and damage, July 3-9, 1988. Vancouver, Canada: IUFRO, 155-160.

Aguilar A, Lanfranco D, 1989. Dipel y Dibeta en el control de Rhyacionia buoliana: aplicaciones aéreas. Valdivia, Chile: Universidad Austral de Chile-Facultad de Ciencias Forestales, Serie Técnica, Informe de Convenio, 164.

Aguilar A, Lanfranco D, Beéche M, 1988. Evaluación del insecticida microbiológico Dipel en el control de Rhyacionia buoliana (Schiff.) (Lepidoptera: Tortricidae). Valdivia, Chile: Universidad Austral de Chile-Facultad de Ciencias Forestales, Serie Técnica, Informe de Convenio, 151.

Alzamora MR, Apiolaza LA, Ide S, 2002. Physical and economic evaluation of volume losses due to Rhyacionia buoliana (Schiff.) damage in Pinus radiata (D. Don) plantations in Southern Chile. Bosque, 23(2):29-42; 20 ref.

Artigas J, 1994. Entomología Económica. Insectos de interés agrícola, forestal, medico y veterinario (Nativos, introducidos y susceptibles de ser introducidos). Concepción, Chile: Ediciones Universidad de Concepción, v.2.

Bachiller P, 1981. Rhyacionia buoliana Schiff. In: Ministerio de Agricultura, Pesca y Alimentación (España). Plagas de insectos en las masas forestales españolas. Madrid, Spain: MAPA, 91-95.

Baldini A, ¦lvarez de Araya G, Tornquist F, Puente O, 1993. Evaluación de las pérdidas de volumen aprovechable ocasionadas por polilla del brote en plantaciones de pino. Santiago, Chile: CONAF.

Botto E, Klasmer P, Lanfranco D, Ide S, Villacide JM, Corley JC, 2000. Desarrollo de estrategias de control biológico para la polilla europea del brote del pino, Rhyacionia buoliana Schiff. (Lepidoptera: Tortricidae) en la Patagonia Argentina. Anais do 1° Simposio do Cono Sul sobre manejo de pragas e doencas de Pinus. Serie Técnica IPEF, Brasil, 13(33):31-40.

Bradley JD, Tremewan WG, Smith A, 1979. British tortricoid moths. Tortricidae: Olethreutinae. British tortricoid moths. Tortricidae: Olethreutinae. London, UK: The Ray Society, 336.

Brewer M, Ferchman B, Montenegro R, Neuman K, 1967. Estudios ecológicos sobre la mariposita del ápice de los pinos Rhyacionia buoliana (Den et Schiff.) (Lep.: Tortricidae) en el valle de Calamuchita, Córdoba. Nota previa. Revista CEFN, 28:85-143.

Brewer M, Ferchman B, Montenegro R, Neuman K, 1968. Datos y conclusiones preliminares sobre la mariposita del ápice de los pinos Rhyacionia buoliana (Den. et Schiff.) (Lepidoptera. Tortricidae) en el valle de Calamuchita, Córdoba. Córdoba, Argentina: Universidad Nacional de Córdoba-Dirección Provincial de Asuntos Agrarios.

Busck A, 1914. A destructive pine shoot moth introduced from Europe. Journal of Economical Entomology, 7:340-341.

Büchner J, 1993. Parasitoides nativos en el control de la polilla del brote del pino: Avances en la identificación del complejo y sus estrategias de desarrollo. Tesis Ing. Forestal. Valdivia, Chile: Universidad Austral de Chile-Facultad de Ciencias Forestales.

Cerda L, Jana-Sáenz C, Beéche M, 1985. Detección de la Polilla del Brote en Chile: Rhyacionia buoliana (Shiffermüller, 1776) (Lepidoptera: Tortricidae). Boletín de la Sociedad de Biología de Concepción (Chile), 56:161-162.

Coulson R, Witter J, 1984. Forest Entomology Ecology and Management. Texas, USA: John Wiley, 443-451.

DeAngelis J, 2000. European Pine Shoot Moth. Biology and control information for growers & homeowners. Oregon State University Extension. Urban Entomology Notes. http://www.ent.orst.edu/urban/PDF%20files/epsm.pdf.

DeFerrari L, 1997. Bases para definir la estrategia de control del daño provocado por la polilla del Brote (Rhyacionia buoliana Den. et. Schiff.). Los ¦ngeles, Chile: Controladora de Plagas Forestales.

Dowden P, 1962. Parasites and predators of forest insects liberated in the United States through 1960. US Dept. Agric., Handbook 226.

Eglitis A, 1974. Susceptibilidad de los pinos a la polilla del brote Rhyacionia buoliana (Schiff.) (Lepidoptera: Olethreutidae): Análisis agrometeorológico en Argentina y Chile. Santiago, Chile: Universidad de Chile, Facultad de Ciencias Forestales.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Espinoza H, Beeche M, Cerda L, 1991. Detección y control de la Polilla del Brote del Pino Rhyacionia buoliana (Den. Et Schiff.) en Chile 1990-1991. Santiago, Chile: SAG.

Espinoza H, Lobos C, Gómez C, 1986. Detección y control de la polilla del brote del pino Rhyacionia buoliana (Den. et Schiff.) en Chile 1985-1986. Santiago, Chile: SAG.

Gajardo J, 1984. Polilla del brote (Rhyacionia buoliana). Insecto de daño potencial en las plantaciones de Pinus radiata D.Don. Santiago, Chile: CONAF. s.p. (Folleto de Divulgación, 11).

Gerding M, 1996. Control Biológico: La experiencia de Trichogramma en el mundo y Chile. In: Actas VII Silvotecna, Manejo Integrado de Plagas y enfermedades en Plantaciones Forestales. Concepción, Chile: CORMA.

Gesell C, 2000. Evaluación de los resultados del control biológico sobre Polilla del brote del Pino (Rhyacionia buoliana) en Chile. Tesis Ing. Forestal. Valdivia, Chile: Universidad Austral de Chile, Facultad de Ciencias Forestales.

Godoy E, 1985. Rhyacionia buoliana Den. et Schiff. en Pseudotsuga mensziessi (Mirb) Franco. Simiente (Chile), 55(3-4):219.

Greathead DJ, 1976. A review of biological control in western and southern Europe. Commonwealth Institute of Biological Control, Technical Communication, No. 7. Wallingford, UK: CAB International, 182 pp.

Green G, 1962. Low winter temperatures and the European pine shoot moth, Rhyacionia buoliana (Schiff.), in Ontario. Canadian Entomologist, 94:314-336.

Havrilenko D, 1981. Nueva plaga afecta a plantaciones de pino. Diario Río Negro. Sección Agrarias.

Havrylenko D, 1982. La oruga del brote de los pinos en las plantaciones de la Patagonia y temas colaterales. 2ª Comunicación. Santa Fe, Argentina: Universidad Nacional del Litoral, 209-230.

Herrera S, 1986. Naturaleza y ocurrencia de la polilla del brote del pino en el mundo. In: Reunión Nacional sobre la situación, perspectivas y consecuencias de la presencia de la polilla del brote del pino (Rhyacionia buoliana Den. et Schiff.) en Chile. Santiago, Chile, SAG-IICA. s.p.

Horcos R, 1993. Influencia de los parasitoides nativos sobre Rhyacionia buoliana (Schiff.) en la provincia de Valdivia, Décima Región. Tesis Ing. Forestal. Valdivia, Chile: Universidad Austral de Chile, Facultad de Ciencias Forestales.

Huerta A, Pérez C, 1996. Determinación del ciclo de vida de la polilla del brote del pino (Rhyacionia buoliana Den. et Schiff.) en la VII Región. Informe de Proyecto. Santiago, Chile: Universidad de Chile, CONAF, s.p.

Ide MS, Lanfranco LD, 1996. Development of stem defects caused by Rhyacionia buoliana in Chile: an example in Region X. Bosque, 17(1):15-19; 10 ref.

Ide MS, Lanfranco LD, 1996. Population indicators of Rhyacionia buoliana (Schiff.): relations between apical infestation, infestation degree and population density. Bosque, 17(1):9-14; 14 ref.

Ide S, 1992. Dinámica poblacional de Rhyacionia buoliana (Schiff.) en plantaciones de Pinus radiata en la Décima Región. Tesis Ing. Forestal. Valdivia, Chile: Universidad Austral de Chile, Facultad de Ciencias Forestales.

Ide S, Lanfranco D, 1994. Fluctuaciones poblacionales de Rhyacionia buoliana (Lep.: Tortricidae) en una plantación de Pinus radiata en la X Región. Bosque (Chile), 15(5):39-44.

Jurc M, 2001. Harmful entomofauna (Coleoptera, Lepidoptera, Hymenoptera) on Austrian pine (Pinus nigra Arn.) in Slovenia. In: Proceedings of the 5th Slovenian Conference on Plant Protection, Catez ob Savi, Slovenia, 276-283.

Jurc M, Potocnik I, 2000. Vegetation, insects and fungi in selected forest plantations of Austrian pine (Pinus nigra) on Karst. Ljubljana, Slovenia: Biotehniska Fakulteta, Univerza v Ljubljani. Nova znanja v gozdarstvu prispevek visokega solstva: zbornik referatov studijskih dni, Kranjska gora, 127-150.

Kerris T, 2003. Dans le monde des insectes. http://www.ifrance.com/hacharate.

Klasmer V, Lanfranco D, Botto E, Ide S, Corley J, Villacide JM, 1998. Estado poblacional e incidencia económica de Rhyacionia buoliana Schiff. (Lepidoptera: Tortricidae) en la región Andino-Patagónica de la Argentina. In: Congreso Argentino de Entomología, 4.

Kline L, Mitchell R, 1979. Insects affecting twigs, terminals and buds. In: Rudinsky J, ed. Forest Insects Survey and Control. Corvallis, OR, USA: Oregon State University-USDA, 215-226.

Lanfranco D, Aguilar A, 1989. Evaluación del daño causado por Rhyacionia buoliana (Schiff.) mediante infestación natural e inducida en plantaciones jóvenes de Pinus radiata D.Don en la provincia de Valdivia. Valdivia, Chile: Univ. Austral de Chile, Fac. de Ciencias Forestales, Serie Técnica, Informe de Convenio, 154.

Lanfranco D, Aguilar A, Ide S, Vallejos R, 1991. Evaluación del daño causado por infestación natural de Rhyacionia buoliana sobre plantaciones jóvenes de Pinus radiata en la provincia de Valdivia. Valdivia, Chile: Univ. Austral de Chile, Fac. de Ciencias Forestales, Serie Técnica, Informe de Convenio, 188.

Lanfranco D, Cerda L, 1986. Coccygomimus [Pimpla] fuscipes, an indigenous ichneumon parasite of the budworm Rhyacionia buoliana. Bosque, 7(1):36-37

Lanfranco D, Ide S, 2000. Establecimiento de Orgilus obscurator y niveles de parasitismo sobre Rhyacionia buoliana entre la Séptima y Décima Región de Chile. Bosque (Chile), 21(2)111-126.

Lanfranco D, Ide S, Alzamora R, Cabrera P, 1994. Evaluación del daño causado por infestación natural de Rhyacionia buoliana sobre plantaciones jóvenes de Pinus radiata en la provincia de Valdivia. Informe Final. Valdivia (Chile): Universidad Austral de Chile-Facultad de Ciencias Forestales, Serie Técnica, Informe de Convenio, 211.

Lanfranco D, Ide S, Rojas E, Ruiz C, Carrillo R, Martinez C, Jofré P, Simeone A, Schlatter R, Valencia J, Calderón R, 1997. Bicontroladores de Rhyacionia buoliana en Chile. Informe Final. Valdivia, Chile: Universidad Austral de Chile-Facultad de Ciencias Forestales, Serie Técnica, Informe de Convenio.

Lanfranco DM, Buchner JF, Aguilar AM, Horcos RA, 1991. Native parasitoids in control of the pine shoot moth Rhyacionia buoliana: progress in identifying the complex and its development strategies. Bosque, 12(1):69-74

Lehman R, 1996. European Pine Shoot Moth, Rhyacionia buoliana (Denis & Schiffermüller) Lepidoptera: Tortricidae. Regulatory Horticulture, Entomology Circular No. 183. Pennsylvania Department of Agriculture. Bureau of Plant industry.

Le-Quesne C, 1994. Disminuya la población de Polilla del brote a través de control mecánico. Santiago, Chile: CONAF-Sección Protección Fitosanitaria.

Liovic B, Zupanic M, 2005. Forest pests in National Parks of Croatia and ecologically acceptable protective measures. (Stetocinje suma nacionalnih parkova Hrvatske i ekoloski prihvatljive mjere zastite.) Radovi - Sumarski Institut Jastrebarsko, 40(1):101-112.

Maksimovic M, Schindler U, 1969. Studies on Rhyacionia buoliana and its parasites in Serbia. Z. angew. Ent., 64(1):86-103.

McGugan BM, Coppel HC, 1962. A review of the biological control attempts against insects and weeds in Canada. Part 2. Biological control of forest insects, 1910-1958. Wallingford, UK: CAB International.

Miller W, 1967. The European Pine Shoot Moth. Ecology and Control in the Lake States. Forest Science Monography 14.

Miller W, Hastings A, Wootten J, 1961. European Pine Shoot Moth. US Department of Agriculture Forest Service. Forest Insect & Disease Leaflet, 59.

Mohammadi M, 1997. Bioecological study of European pine shoot moth (Rhyacionia buoliana Den and Schiff.) in northern parts of Iran. In: Proceedings of the XI World Forestry Congress, Antalya, Turkey, 13-22 October 1997, Volume 1.

Ojeda S, 1994. Programa de investigación en Trichogramma spp. In: Avances en el control de la polilla del brote. Taller, Comité Nacional de Sanidad Forestal. Temuco, Chile: CONAF.

Pastrana J, 1961. Contribución al conocimiento de la biología de Evetria buoliana Schiff. In: Primera Reunión Regional para Coníferas. 24-29, Abril. xx, AFA, 1-6.

Pérez C, Villa A, ¦lvarez M, 1999. Rhyacionia buoliana "Polilla del Brote en Chile". Santiago, Chile: Corporación Nacional Forestal. Nota Técnica 35.

Pointing P, Green G, 1962. A review of the history and biology of the European pine shoot moth, Rhyaciona buoliana (Schiff.) (Lepidoptera: Olethreutidae) in Ontario. Proc. Entomological Society Ontario, 92:58-69.

Pointing PJ, 1961. The biology and behaviour of European pine shoot moth Rhyacionia buoliana (Schiff.) in southern Ontario I; Adult. Canadian Entomology, 93: 1098-1112.

Pointing PJ, 1963. The biology and behaviour of European pine shoot moth Rhyacionia buoliana (Schiff.) in southern Ontario II; Egg, larva and pupa. Canadian Entomology, 95: 844-863.

Prado E, 1991. Artrópodos y sus enemigos naturales asociados y plantas cultivadas en Chile. Santiago, Chile: Instituto de Investigaciones Agropecuarias, Boletín Técnico 169.

Prelc F, 1993. Forest protection in the Kras forest enterprise region. Gozdarski Vestnik, 51(1):2-17

Quintana J, 1961. Observaciones biológicas y ensayos para el control químico de la "mariposita europea de brotes del pino" (Evetria buoliana) en Balarce. IDIA, 160:1-10.

Robredo F, 1966. La Rhyacionia buoliana Schiff. en España. Boletín del Servicio de Plagas Forestales, 9(8):127-132.

Robredo F, 1985. Consultoría sobre la biología y control de la "Polilla del brote del pino", Rhyacionia buoliana Schiff, en Chile. Santiago, Chile: IICA.

Robredo F, 1996. Control químico: principios de aplicaciones en áreas forestales. In: Actas VII Silvotecna "Manejo Integrado de Plagas y Enfermedades en Plantaciones Forestales". Concepción, Chile: CORMA.

Schroder D, 1974. A study of the interactions between the internal larval parasites of Rhyacionia buoliana (Lepidoptera:Olethreutidae). Entomophaga, 19(2):145-171

Schroeder D, 1986. Sobre el control biológico de la polilla europea del brote del pino, Rhyacionia buoliana en Chile. Santiago, Chile: IICA.

Simeone A, Valencia JC, Schlatter R, Lanfranco D, Ide S, 1997. Bird predation on Rhyacionia buoliana Schiff. (Lepidoptera: Tortricidae) larvae in young plantations of Pinus radiata D. Don in southern Chile. Bosque, 18(2):67-75; 29 ref.

Stanenite AP, Ivinskis PP, Ionaitis VP, Pakal'nishkis SA, 1984. Lepidoptera recorded as hosts of parasitic Diptera for the first time in Lithuania. Acta Entomologica Lituanica, 7:118-121

Syme PD, 1981. Rhyacionia buoliana (Schiff.) European Pine Shoot Moth (Lepidoptera: Tortricidae) In: Kelleher JS, Hulme MA, eds. Biological Control Programmes Against Insects and Weeds in Canada, 1969-1980. London, UK: Commonwealth Agricultural Bureau, 387-394.

Torres G, 1995. Niveles de parasitismo sobre Rhyacionia buoliana (Schiff.) alcanzados por Cocygomimus fuscipes (Brullé) y otros parasitoides nativos: Un monitoreo de tres años en la provincia de Valdivia, Décima Región. Tesis Ing. Forestal. Valdivia, Chile: Universidad Austral de Chile, Facultad de Ciencias Forestales.

Universidad Austral de Chile, 1997. Curso corto de postítulo: plagas y enfermedades forestales: Situación actual y potencial. Valdivia, Chile: Universidad Austral de Chile, s.p.

USDA-Forest Service, 1993. Pest Risk Assessment of the importation of Pinus radiata, Nothofagus dombeyi and Laurelia philippiana logs from Chile. Miscellaneous Publication, 1517.

Vallejos R, 1992. Efecto de Rhyacionia buoliana (Schiff.) en el crecimiento de plantaciones jóvenes de Pinus radiata D.Don en la Décima Región. Tesis Ing. For. Valdivia, Chile: Univ. Austral de Chile, Fac. de Ciencias Forestales.

Distribution Maps

Top of page
You can pan and zoom the map
Save map