Acacia dealbata (acacia bernier)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Risk of Introduction
- Habitat
- Habitat List
- Biology and Ecology
- Latitude/Altitude Ranges
- Air Temperature
- Rainfall
- Rainfall Regime
- Soil Tolerances
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Impact Summary
- Environmental Impact
- Impact: Biodiversity
- Risk and Impact Factors
- Uses
- Uses List
- Wood Products
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Acacia dealbata Link
Preferred Common Name
- acacia bernier
Other Scientific Names
- Acacia decurrens var. dealbata (Link) F. Muell.
- Racosperma dealbatum (Link) Pedley
International Common Names
- English: aroma; mimosa tree; silver green wattle; silver wattle; Sydney black wattle; wattle bark
- French: acacie blanchatre; mimosa argente
Local Common Names
- France: mimosa
- Germany: Australische Silber- Akazie; Mimosenbaum
- Italy: acacia bianca
- Netherlands: mimosa
EPPO code
- ACADA (Acacia dealbata)
Trade name
- silver wattle
Summary of Invasiveness
Top of pageTaxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Fabales
- Family: Fabaceae
- Subfamily: Mimosoideae
- Genus: Acacia
- Species: Acacia dealbata
Notes on Taxonomy and Nomenclature
Top of pageA. dealbata was described in Enum. Hort. Berol. 2: 445 (1822). The specific epithet is derived from the Latin 'dealbatus', meaning 'covered with white powder'; this refers to the whitish or silvery appearance of the canopy (Boland et al., 1984). Its common name, silver wattle, also refers to this characteristic. A small-leafed form, most commonly found at higher altitudes, is currently under investigation for subspecific rank by M.D. Tindale (National Herbarium of New South Wales). A. dealbata has a similar morphology to other Botrycephalae species such as A. nano-dealbata, found only in Victoria and distinguished by its shorter pinnules and a petiolar gland, and is sometimes confused with A. mearnsii, A. silvestris, A. leucoclada (Doran and Turnbull, 1997) and A. decurrens (Whibley and Symon, 1992).
Description
Top of pageDistribution
Top of pageDistribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 17 Feb 2021Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Planted | Reference | Notes |
---|---|---|---|---|---|---|---|---|
Africa |
||||||||
Burundi | Present | Introduced | Planted | |||||
Eswatini | Present | Introduced | ||||||
Ethiopia | Present | Introduced | ||||||
Kenya | Present | Introduced | Planted | |||||
Lesotho | Present | Introduced | ||||||
Madagascar | Present | Introduced | Planted | Original citation: Weber (2003) | ||||
Malawi | Present | |||||||
Mauritius | Present | Introduced | ||||||
Mozambique | Present | Introduced | ||||||
Réunion | Present | Introduced | ||||||
Rwanda | Present | Introduced | Planted | |||||
South Africa | Present | Introduced | Invasive | |||||
Tanzania | Present | Introduced | Planted | |||||
Uganda | Present | Introduced | Planted | |||||
Zambia | Present | Introduced | Planted | |||||
Zimbabwe | Present | Introduced | Planted | |||||
Asia |
||||||||
China | Present | Introduced | ||||||
-Fujian | Present | Introduced | Planted | |||||
-Guangdong | Present | Introduced | Planted | |||||
-Guangxi | Present | Introduced | Planted | |||||
-Hunan | Present | Introduced | Planted | |||||
-Sichuan | Present | Introduced | Planted | |||||
-Yunnan | Present | Introduced | Planted | |||||
-Zhejiang | Present | Introduced | Planted | |||||
India | Present | Introduced | Invasive | |||||
-Himachal Pradesh | Present | Introduced | Planted | |||||
-Jammu and Kashmir | Present | Introduced | Planted | |||||
-Kerala | Present | Introduced | Planted | |||||
-Tamil Nadu | Present | Introduced | Planted | |||||
-Uttar Pradesh | Present | Introduced | Planted | |||||
-West Bengal | Present | Introduced | Planted | |||||
Indonesia | Present | Present based on regional distribution. | ||||||
-Java | Present | Introduced | Planted | |||||
Japan | Present | Introduced | Planted | |||||
Nepal | Present | Introduced | Planted | |||||
Sri Lanka | Present | Introduced | Invasive | |||||
Europe |
||||||||
Croatia | Present | |||||||
Cyprus | Present | Introduced | Planted | |||||
Federal Republic of Yugoslavia | Present | Introduced | ||||||
France | Present, Localized | Introduced | Invasive | |||||
-Corsica | Present, Few occurrences | Introduced | Planted | |||||
Italy | Present | Introduced | Planted | |||||
-Sardinia | Present | |||||||
Portugal | Present | Introduced | Invasive | |||||
-Azores | Present | Introduced | Original citation: Weber (2003) | |||||
Romania | Present | Introduced | ||||||
Spain | Present | Introduced | ||||||
North America |
||||||||
Costa Rica | Present | Introduced | ||||||
Guatemala | Present | Introduced | ||||||
United States | Present | Introduced | ||||||
-California | Present | Introduced | Original citation: California Invasive Plant Council (Cal-IPC) (2003) | |||||
Oceania |
||||||||
Australia | Present, Localized | Native | ||||||
-New South Wales | Present | Native | Planted | |||||
-Queensland | Present | Introduced | Planted | |||||
-South Australia | Present | Introduced | Planted | |||||
-Tasmania | Present | Native | ||||||
-Victoria | Present | Native | Planted | |||||
-Western Australia | Present | Introduced | Planted | |||||
New Caledonia | Present | Introduced | Planted | |||||
New Zealand | Present | Introduced | Invasive | |||||
South America |
||||||||
Argentina | Present | Introduced | Invasive | |||||
Chile | Present | Introduced | Invasive |
History of Introduction and Spread
Top of pageThe first acacias, including A. dealbata, were introduced into Sri Lanka in 1870 to supply fuelwood for the tea estates and railways in the highlands. Initially it became popular due to its attractive flowers but with its rapid growth it became useful for the afforestation of marginal lands (Midgley and Vivekanandan, 1987). Since 1960 about 50 acacia species have been introduced into China (Pan and Yang, 1987) and the area of A. dealbata plantation in China is approximately 300 ha (Wang and Fang, 1991). It has become naturalized in parts of New Zealand (Pollock et al., 1986).
A. dealbata was probably introduced into South Africa after being confused with black wattle (A. mearnsii). Due to its fast growth, tolerance of severe frosts and usefulness for poles and firewood, it was planted extensively near the Drakensberg and the mistbelt regions of Natal (Campbell et al., 1990). In these areas and in the Orange Free State it is now seriously invasive (Whibley and Symon, 1992). It was planted in Kenya and Zimbabwe in the early 1900s but was soon replaced with A. mearnsii which had higher tannin yields (Streets, 1962). A. dealbata was introduced into West Africa from North Africa (Cossalter, 1987).
A. dealbata was introduced to Chile as an ornamental (Montenegro et al., 1991) and has become established along highways and drainage lines. According to Montenegro et al. (1991) it is now abundant in all types of disturbed sites in mediterranean climate zones across Chile, and can even recruit young plants in mechanically disturbed sites. It has become naturalized in the Nilgiri and Palni Hills in India (Troup, 1921). In France and other parts of southern Europe it is known as 'mimosa' where it is used in the cut flower trade and in perfumes (Doran and Turnbull, 1997). In California, USA, it is suspected of aggressive behaviour in natural areas, and is listed as one of a number of species for which more information is required in this regard Cal-IPC (2003). It is listed as an invasive species in Portugal (Marchante and Marchante, 2003) and appears on a checklist of plant invaders in Spain for which further monitoring is recommended (Dana et al., 2003).
Risk of Introduction
Top of pageHabitat
Top of pageHabitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Rail / roadsides | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural forests | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural grasslands | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Riverbanks | Present, no further details | Harmful (pest or invasive) |
Biology and Ecology
Top of pageAlthough there is interest from many countries, there are no large scale commercial plantations of A. dealbata (Neilsen et al., 1998) and consequently there has been little research carried out on provenance variation or breeding. Given the wide range of environments in which A. dealbata occurs, it is likely that genetic variation will be important in this species (Kube et al., 1996). Recently trials by Kube et al. (1996) and Neilsen et al. (1998) have been established in Tasmania and although conclusive recommendations cannot yet be made, preliminary results indicate that there may be important variation both between and within provenances. Neilsen et al. (1998) found variation in growth at regional, provenance and family level with the majority of variation for growth rate occurring at the family level. Kube et al. (1996) found a heritability of 0.21 for height growth of A. dealbata at age 16 months. A putative hybrid, endemic to Victoria involving A. dealbata and A. baileyana has been noted by Willis (1972) and Tame (1992).
Physiology and Phenology
In Australia, flowering occurs in winter to spring (July to November) (Morrison and Davies, 1991). The period between flowering and seed maturation is 5-6 months (Boland, 1987). A. dealbata has a moderately long lifespan for acacia species, exceeding 20 years (Boland, 1987).
Reproductive Biology
Propagation of A. dealbata is by seed. Germination rate averages 74% and there are approximately 53,400 viable seeds/kg (Doran and Turnbull, 1997). A. dealbata suckers extensively from roots and coppices easily from wounded stumps (Campbell et al., 1990).
Environmental Requirements
A. dealbata occurs naturally in the cool to warm subhumid climatic zones, sometimes into the humid zone. In most of the mainland Australian native range, the mean maximum temperature of the warmest month is 20-28°C and the mean minimum of the coolest month is close to 0°C. The average annual number of frosts is 20-80 with varying snowfalls (Boland et al., 1984). In coastal regions of Tasmania, frosts decrease to an average of 2 per year. The average number of days when 32°C is exceeded is 1-15 (Doran and Turnbull, 1997). The mean annual rainfall is 600-1000 mm (up to 1500 mm) the lowest recorded being 300-500 mm. Seasonal distribution varies from a summer maximum in northern New South Wales, to a winter maximum in central-western Victoria and Tasmania. The average annual number of rain days is 85-120, but may be as high as 130-170 days in Victoria and Tasmania (Doran and Turnbull, 1997).
A. dealbata is found mainly on the tablelands and foothills of southeastern Australia and in Tasmania. Topography varies from high plateaux to deep mountain valleys (Boland et al., 1984) growing in hilly country, often on steep slopes and along river banks. Soil types range from deep and fertile forest podsols, clays and gravelly clays of moderate drainage to well-drained stony slopes, volcanic brown earths and lateritic krasnozems. Substrates include basalt, granite and sandstone (Doran and Turnbull, 1997).
Associations
A. dealbata is often a dominant shrub in eucalypt forests and is a small tree in clearings or on disturbed sites where it regenerates vigorously. On better sites it is found growing with Eucalyptus fastigata, E. regnans and E. viminalis while on drier sites and at higher altitudes it is found with E. radiata subsp. robertsonii, E. dives and E. nortonii (Boland et al., 1984).
Roughley (1987) found that 75-100% of rhizobium strains will nodulate A. dealbata. New introductions to Sri Lanka demonstrated good nodulation (Midgley and Vivekanandan, 1987) and Fangqiu et al. (1998) note that seedlings grown for trials in China produced root nodules within three months. Inoculation techniques in the nursery are described by Doran (1997).
Latitude/Altitude Ranges
Top of pageLatitude North (°N) | Latitude South (°S) | Altitude Lower (m) | Altitude Upper (m) |
---|---|---|---|
-29 | -43 | 0 | 1500 |
Air Temperature
Top of pageParameter | Lower limit | Upper limit |
---|---|---|
Absolute minimum temperature (ºC) | -8 | |
Mean annual temperature (ºC) | 10 | 16 |
Mean maximum temperature of hottest month (ºC) | 20 | 28 |
Mean minimum temperature of coldest month (ºC) | 0 | 2 |
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Mean annual rainfall | 300 | 1830 | mm; lower/upper limits |
Soil Tolerances
Top of pageSoil drainage
- free
Soil reaction
- acid
- neutral
Soil texture
- heavy
- light
- medium
Special soil tolerances
- infertile
Notes on Natural Enemies
Top of pageDiseases such as wire-stem rot and fungal rot were known to cause problems in trials planted in China (Fangqiu et al., 1998). Various fungi have also been reported as causing serious losses to A. dealbata stock in a number of nurseries (Ito and Shibukawa, 1956; Terashita, 1962). Lee (1993) provides a summary of diseases recorded on A. dealbata in several parts of the world.
Means of Movement and Dispersal
Top of pageImpact Summary
Top of pageCategory | Impact |
---|---|
Animal/plant collections | None |
Animal/plant products | None |
Biodiversity (generally) | Negative |
Crop production | None |
Environment (generally) | Negative |
Fisheries / aquaculture | None |
Forestry production | None |
Human health | None |
Livestock production | None |
Native fauna | None |
Native flora | Negative |
Rare/protected species | None |
Tourism | None |
Trade/international relations | None |
Transport/travel | None |
Environmental Impact
Top of pageDense thickets, however, disrupt water flow and increase erosion along stream banks (Weber, 2003) and inhibit the growth of other vegetation (Weber, 2003). A. dealbata is also considered to be allelopathic (Reigosa et al., 1984).
Impact: Biodiversity
Top of pageRisk and Impact Factors
Top of page- Proved invasive outside its native range
- Highly adaptable to different environments
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Highly mobile locally
- Has high reproductive potential
- Has propagules that can remain viable for more than one year
- Damaged ecosystem services
- Ecosystem change/ habitat alteration
- Reduced native biodiversity
- Highly likely to be transported internationally deliberately
- Difficult/costly to control
Uses
Top of pageA. dealbata is a superior quality pulpwood and Logan (1987) notes it has a higher basic density than other fast growing hardwoods. Its kraft pulping and papermaking properties make it suitable for a range of paper and paperboard products such as linerboards, bag and wrapping papers, white boards and writing and printing paper. It has the levels of brightness required for some high grade papers (Clark et al., 1994), and it has lower alkali requirements than most eucalypts (Phillips et al., 1991). It is a satisfactory fuelwood, is used as a furniture timber and occasionally for wood wool, poles, and has good gluing properties (Doran and Turnbull, 1997).
A. dealbata is not generally known as a source of animal fodder in Australia, but it has been recommended for this purpose (RCL, 1985). It is also used in the Nilgiri Hills of southern India for fodder (Doran and Turnbull, 1997). The flowers are used for perfume production and French manufacturers recognize the extract for its ability as a blender and 'smoothing agent' for synthetics and as a fixative in high grade perfume (Poucher, 1984; Boland, 1987). A. dealbata is a valuable source of pollen for bees (Clemson, 1985). Lindenmayer et al. (1994) found the sugar content of A. dealbata gum was 48.6%. Its gum may be used as a substitute for gum arabic and occasionally its bark is used for tanning production but is lower yielding and poorer quality when compared with A. mearnsii (Doran and Turnbull, 1997). Wool may be dyed yellow-fawn or green using A. dealbata leaves depending on the mordants used (Martin, 1974).
Uses List
Top of pageEnvironmental
- Boundary, barrier or support
- Erosion control or dune stabilization
- Revegetation
- Shade and shelter
- Soil improvement
- Windbreak
Fuels
- Fuelwood
General
- Ornamental
Human food and beverage
- Honey/honey flora
Materials
- Carved material
- Dye/tanning
- Essential oils
- Gum/resin
- Miscellaneous materials
- Wood/timber
Wood Products
Top of pageFurniture
Roundwood
- Building poles
- Posts
Wood wool
Woodware
- Industrial and domestic woodware
- Tool handles
Similarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Cultural ControlFire can be used as a control device as it can reduce the soil seedbank by killing seeds or inducing germination which can then be chemically controlled (Campbell et al., 1990). Note that in cultivation, fire has been used to stimulate regeneration in older plantations. A single hot fire favours regeneration of mature acacia stands (Ellis and Graley, 1987). After a fire in Sri Lanka, up to 32,000 seedlings per hectare were found and at two years of age had an average height of 3-4m (Weeraratne, 1964).
Mechanical Control
Weber, 2003 reports mechanical control by ringbarking or digging out plants.
Chemical Control
Methods of chemical control are outlined by Delabraze and Valette (1979), Fagg and Flinn (1983), Fagg and Cameron (1989) and Campbell et al. (1990) but they are expensive. Weber 2003 lists approaches including chemical control by basal stem treatment, stump treatment or foliar application.
Biological Control
Biological control methods are available but are not appropriate in regions where other acacias are in commercial use, eg. black wattle (A. mearnsii) for tannin (Stubbings, 1977).
Integrated Control
Cut stumps need to be treated with herbicides to prevent resprouting and should be kept less than 15 cm in height while follow up removal of emerging seedlings, control of coppice growth etc should occur after large clearing attempts (Weber, 2003).
References
Top of pageBird PR; Raleigh R; Kearney GA and Aldridge EK, 1998. Acacia Species and Provenance Performance in Southwest Victoria, Australia. In: Turnbull JW, Crompton HR and Pinyopusarerk K, eds. Recent Developments in Acacia planting. ACIAR Proceedings No. 82, 148-154.
Brooks SJ; Brown DR, 1996. Growth Rates of Acacia dealbata in Tasmania. In: Kube PD, Brooks SJ, eds. Evaluation of Acacia dealbata as a Plantation Species in Tasmania. Forestry Tasmania and Forests and Forest Industry Council.
California Invasive Plant Council (Cal-IPC), 2003. Need more information. http://groups.ucanr.org/ceppc/Pest_Plant_List/Need_More_Information.htm.
Clark NB; Balodis V; Fang GuiGan; Wang JingXia, 1994. Pulpwood potential of acacias. In: Brown AG, ed, Australian Tree Species Research in China: Proceedings of an International Workshop held at Zhangzhou, Fujian Province, China, 2-5 November 1992:196-202
Clemson A, 1985. Honey and pollen flora. Honey and pollen flora., iv + 263 pp.; [B].
Dana ED; Sanz-Elorza M; Sobrino E, 2003. Plant Invaders in Spain, the Unwanted Citizens. http://www.ual.es/personal/edana/alienplants/checklist.pdf.
Doran JC, 1997. Seed, nursery practice and establishment. In: Doran JC, Turnbull JW, eds. Australian trees and shrubs: species for land rehabilitation and farm planting in the tropics. ACIAR Monograph No. 24, 59-87. Canberra: Australian Centre for International Agricultural Research.
Elliott HJ; de Little DW, 1984. Insect Pests of Trees and Timber in Tasmania. Hobart: Forestry Commission, Tasmania.
EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm
Fangqiu Z; Zuxu C; Searle SD; Xiaomei L; Junju Z; Qiang L, 1998. Temperate Australian Acacia Species Elimination Trials in Southern China. In: Turnbull JW, Crompton HR, Pinyopusarerk K, eds. Recent Developments in Acacia planting. ACIAR Proceedings No. 82, 36-44.
Guenther E, 1952. The essential oils. Vol. 5. New York, USA: Van Nostrand Company Inc.
Henderson L, 2001. Alien Weeds and Invasive Plants. Plant Protection Research Institute Handbook No. 12. Cape Town, South Africa: Paarl Printers.
Henry S, 1985. The Diet and Socioecology of gliding possums in Southern Victoria. PhD. Thesis. Department of Zoology, Monash University, Melbourne.
Kube PD; Brooks SJ, 1996. Evaluation of Acacia dealbata as a Plantation Species in Tasmania. Hobart, Australia: Forestry Tasmania and Forests and Forest Industry Council.
Kube PD; Brooks SJ; Brown DR; Peterson M, 1996. Provenance Trials of Acacia dealbata. In: Kube PD, Brooks, SJ, eds. Evaluation of Acacia dealbata as a Plantation Species in Tasmania. Forestry Tasmania and Forests and Forest Industry Council.
Kube PD; Brown DR, 1996. Acacia dealbata Establishment Techniques. In: Kube PD, Brooks SJ, eds. Evaluation of Acacia dealbata as a Plantation Species in Tasmania. Forestry Tasmania and Forests and Forest Industry Council.
Lee SS, 1993. Diseases of acacias: an overview. In: Awang K, Taylor DA, eds. Acacias for Rural, Industrial and Environmental Development. Proceedings of the Second Meeting of Consultative Group for Research and Development of Acacias (COGREDA). Udorn Thani, Thailand: Bangkok: Winrock International and FAO, 225-239.
Marchante E; Marchante H, 2003. Espécies vegetais invasoras em Portugal. http://www1.ci.uc.pt/invasoras/especies/acacia_dealbata.htm.
Martin V, 1974. Dyemaking with Australian Flora. Rigby: Adelaide, Australia.
Matthew KM, 1965. A note on Wattle of the Palni Hills. Indian For. 91(5):267-71.
May B, 1999. Silver Wattle (Acacia dealbata): Its role in the Ecology of the Mountain Ash Forest and the Effect of Alternative Silvicultural Systems on it Regeneration. Thesis. Dept. of Botany, University of Melbourne.
Mitchell P, 1998. Harris-Daishowa's Acacia Species Trials at Eden, NSW. In: Turnbull JW, Crompton HR, Pinyopusarerk K, eds. Recent Developments in Acacia planting. ACIAR Proceedings No. 82, 90-93.
Morrison DA; Davies SJ, 1991. Mimosoideae 5: Acacia. In: Harden GJ, ed. Flora of New South Wales. Vol. 2. Kensington, NSW: New South Wales University Press, 390-391.
Neilsen WA; Kube PD; Elliott HJ, 1998. Prospects for Commercial Plantations of Acacia melanoxylon and Acacia dealbata in Tasmania. In: Turnbull JW, Crompton HR, Pinyopusarerk K, eds. Recent Developments in Acacia planting. ACIAR Proceedings No. 82, 94-101.
Poucher WA, 1984. Perfumes, cosmetics and soaps. 2 Vols. 7th edn. London: Chapman Hall.
Reddell P; Warren R, 1987. Inoculation of acacias with mycorrhizal fungi: potential benefits. ACIAR Proceedings Series, Australian Centre for International Agricultural Research, No. 16:50-53
Resources Conservation League, 1985. Trees for fodder. Trees and Natural Resources 27(4). Advertisement p. 5.
Searle S, 1996. Wood and non-wood uses of temperate Australian acacias. Paper to 1996 Australian forest growers conference, 9-12 September, Mount Gambier, South Australia.
Searle SD; Jamieson DT; Cooper NK, 1998. Growth and Form of 25 Temperate Acacia Species in Two Trials near Canberra, Australia. In: Turnbull JW, Crompton HR, Pinyopusarerk K, eds. Recent Developments in Acacia planting. ACIAR Proceedings No. 82, 66-79.
Selincourt Kde, 1992. South Africa's other bush war. New Scientist, 133(1808):46-49
Simmons M, 1988. Acacias of Australia. Vol. 2., Australia: Penguin Books Australia Ltd.
Streets RJ, 1962. Exotic forest trees in the British Commonwealth. Oxford, UK: Clarendon Press.
Stubbings JA, 1977. A case against controlling introduced acacias. In: Proceedings of the Second National Weeds Conference of South Africa. Cape Town, South Africa: A.A. Balkema, 89-107.
Tame T, 1992. Acacias of south eastern Australia. Kenthurst, Sydney, Australia: Kangaroo Press.
Thinh HH; Kha LD; Searle SD; Tung HV, 1998. Performance of Australian Temperate Acacias on Subtropical Highlands of Vietnam. In: Turnbull JW, Crompton HR, Pinyopusarerk K, eds. Recent Developments in Acacia planting. ACIAR Proceedings No. 82, 51-59.
Weeraratne WG, 1964. Tannins from our wattles (Acacia ssp.) for the Leather Industry. Ceylon Forester, 6(4):73-80.
Whibley DJE; Symon DE, 1992. Acacias of South Australia. Revised 2nd edn. Handbook of the flora and fauna of South Australia. Adelaide: South Australian Government Printer.
Willis JH, 1972. A handbook to plants in Victoria. Carlton, Victoria, Australia: Melbourne University Press.
Willis JH, 1972. A handbook to plants in Victoria. Vol. II Dicotyledons. Melbourne, Australia: Melbourne University Press.
Zalba SM, 1995. Alien woody plants in Ernesto Tornquist Provincial Park (Buenos Aires): impact assessment and a proposal for their control. MSc Thesis. Cordoba, Argentina: Centro de zoologia aplicada, Universidad Nacional de Cordoba.
Distribution References
Bird PR, Raleigh R, Kearney GA, Aldridge EK, 1998. Acacia Species and Provenance Performance in Southwest Victoria, Australia. In: Recent Developments in Acacia planting [ACIAR Proceedings No. 82], [ed. by Turnbull JW, Crompton HR, Pinyopusarerk K]. 148-154.
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway | https://doi.org/10.5061/dryad.m93f6 | Data source for updated system data added to species habitat list. |
Global register of Introduced and Invasive species (GRIIS) | http://griis.org/ | Data source for updated system data added to species habitat list. |
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/