Epitrix tuberis (tuber flea beetle)
Index
- Pictures
- Identity
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- Risk of Introduction
- Habitat List
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Growth Stages
- Symptoms
- List of Symptoms/Signs
- Biology and Ecology
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Plant Trade
- Wood Packaging
- Impact
- Diagnosis
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Epitrix tuberis Gentner, 1944
Preferred Common Name
- tuber flea beetle
International Common Names
- English: flea beetle, tuber
- French: altise des tubercules
EPPO code
- EPIXTU (Epitrix tuberis)
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Metazoa
- Phylum: Arthropoda
- Subphylum: Uniramia
- Class: Insecta
- Order: Coleoptera
- Family: Chrysomelidae
- Genus: Epitrix
- Species: Epitrix tuberis
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageThe eggs are elliptical, 0.5 mm long and 0.2 mm wide, whitish, with a reticulate surface (Neilson and Finlayson, 1953).
Larva
First-instar larvae are 1 mm long, and white to cream. Final-instar larvae are slender and cylindrical, 5.3 mm long and 0.8 mm wide, whitish with a brown head (Neilson and Finlayson, 1953).
Pupa
Pupae are 2.5 mm long and 1.5 mm wide across the mesothorax, and uniformly white (Neilson and Finlayson, 1953).
Adult
The adults are 1.5-2.0 mm long, dull black to reddish-black with brown to yellow antennae. Legs are reddish and become lighter towards the tarsi (Seeno and Andrews, 1972). They have expanded hind femurs.
Distribution
Top of pageE. tuberis is native to northern Colorado, USA. Gentner (1944) gives an account of its initial spread to Nebraska, Oregon and Washington. It has since spread to California, New Mexico, South Dakota and Wyoming (USA), and to British Columbia and Alberta (Canada), during the latter half of the twentieth Century. The species is still spreading.
A record of E. tuberis in Manitoba, Canada (Campbell et al., 1989; Bousquet, 1991) published in previous versions of the Compendium was included in error; neither of these publications mention the presence of E. tuberis in Manitoba.
See also CABI/EPPO (1998, No. 68).
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 12 May 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Europe |
|||||||
Austria | Absent, Confirmed absent by survey | ||||||
Belgium | Absent, Confirmed absent by survey | ||||||
Croatia | Absent, Confirmed absent by survey | ||||||
Denmark | Absent, Confirmed absent by survey | ||||||
Estonia | Absent, Confirmed absent by survey | ||||||
Finland | Absent, Confirmed absent by survey | ||||||
Lithuania | Absent, Confirmed absent by survey | ||||||
Netherlands | Absent, Confirmed absent by survey | ||||||
Poland | Absent, Confirmed absent by survey | ||||||
Slovenia | Absent, Confirmed absent by survey | ||||||
Sweden | Absent, Confirmed absent by survey | ||||||
United Kingdom | Absent, Confirmed absent by survey | ||||||
North America |
|||||||
Canada | Present, Localized | ||||||
-Alberta | Present | First reported: 198* | |||||
-British Columbia | Present | Introduced | Invasive | First reported: 190* | |||
-Saskatchewan | Present | Introduced | Invasive | ||||
Costa Rica | Present | ||||||
United States | Present, Localized | ||||||
-Arizona | Present | ||||||
-California | Present | Invasive | |||||
-Colorado | Present | Native | |||||
-Idaho | Present | ||||||
-Montana | Present | ||||||
-Nebraska | Present | Invasive | |||||
-New Mexico | Present | Invasive | |||||
-North Dakota | Present | ||||||
-Oregon | Present | Invasive | |||||
-South Dakota | Present | Invasive | |||||
-Texas | Present | ||||||
-Washington | Present | Invasive | |||||
-Wyoming | Present | Invasive | |||||
South America |
|||||||
Ecuador | Present, Localized | Introduced | Invasive |
Risk of Introduction
Top of pageHosts/Species Affected
Top of pageHost Plants and Other Plants Affected
Top of pageSymptoms
Top of pageList of Symptoms/Signs
Top of pageSign | Life Stages | Type |
---|---|---|
Inflorescence / external feeding | ||
Leaves / external feeding | ||
Roots / external feeding | ||
Roots / internal feeding | ||
Vegetative organs / external feeding | ||
Vegetative organs / internal feeding | ||
Vegetative organs / internal rotting or discoloration | ||
Vegetative organs / surface cracking |
Biology and Ecology
Top of pageMating takes place within 24 hours of emergence and there can be repeated copulation for up to 60 days. Vernon and Thomson (1993) measured the female: male ratio as 1: 0.94. After a pre-oviposition period of 5-6 days, eggs are laid over a period of 12-55 days, with an average of 38 days (Neilson and Finlayson, 1953). A number of authors have measured egg production in E. tuberis. Jones (1944) recorded females depositing 106 to 139 eggs over 17 to 30 days. Neilson and Finlayson (1953) recorded a wider variation in the number of eggs laid from 28 to over 200 with a mean of 87. The numbers of eggs laid varies markedly with the food plant of the adult. Females feeding on potato leaves produce the most eggs. In trials where caged adults were fed potato leaves then the diet switched to a less nutritious diet, egg production fell within 2 or 3 days, then increased when potato leaves were returned to the diet (Hill, 1946). Overwintered females will lay about 150 eggs whilst females in the summer generation will lay almost double this number (about 280 eggs). Eggs can be deposited in batches of 11-15 or can be laid singly (Campbell et al., 1989) in the soil or near the base of a host plant.
After incubation of 3-14 days, the eggs hatch and the larvae feed on roots and tubers for 2-4 weeks. The larvae can be found from late May throughout the potato-growing season, depending upon when the adults emerged. Pupation takes place in the soil, and lasts 4-10 days. The time of emergence, or the numbers of adults that emerge from different soil types, does not vary significantly according to the mineral, inorganic or organic nature of the soil in which eggs are deposited (Vernon and Thomson, 1993). Adults of the overwintered generation usually die in July (Kabaluk and Vernon, 2000) when there can be overlap with the next generation of adults that emerge between early July and early September. The second generation develops in 35-85 days, compared with 27-50 for the first. Second pupation starts at the beginning of August and may continue until the beginning of November. The F1 adults then emerge, and later enter diapause to overwinter in the soil. There are usually only two generations per year (Fulton and Banham, 1962) although, depending on the date of adult emergence in the spring or early summer, and larval food availability, there may be a complete or partial third generation in a year (Webster, 1945; Campbell et al., 1989).
In laboratory studies at 21°C, Jones (1944) calculated the average times for egg, larval, pre-pupal and pupal development to be 8.0, 15.3, 6.1 and 8.2 days, respectively.
Notes on Natural Enemies
Top of pageMeans of Movement and Dispersal
Top of pageVector Transmission
E. tuberis can mechanically transmit the pathogens causing potato blight (Phytophthora infestans), potato brown rot (Ralstonia solanacearum), potato scab (Streptomyces scabiei) and potato spindle tuber viroid (Leach, 1940; Hodgson et al., 1974; Davidson and Lyon, 1979). Feeding wounds can also serve as entry points for other potato pathogens.
Movement in Trade
Larvae could be transported in potato tubers, or with soil adhering to tubers. However, the larvae leave tubers when they are harvested (Fulton and Banham, 1962) which explains why E. tuberis have not been detected in potato consignments, either nationally or internationally. Seeno and Andrews (1972) suggested that the spread of E. tuberis into California, USA, in the early 1970s was likely to have been as larvae in the soil around tomato seedlings originating in Oregon.
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Bulbs/Tubers/Corms/Rhizomes | arthropods/larvae | Yes | Yes | Pest or symptoms usually visible to the naked eye |
Growing medium accompanying plants | arthropods/pupae | Pest or symptoms usually visible to the naked eye | ||
Stems (above ground)/Shoots/Trunks/Branches | arthropods/eggs | Yes | Pest or symptoms usually visible to the naked eye | |
True seeds (inc. grain) | arthropods/larvae | Yes | Yes | Pest or symptoms usually visible to the naked eye |
Plant parts not known to carry the pest in trade/transport |
---|
Bark |
Flowers/Inflorescences/Cones/Calyx |
Fruits (inc. pods) |
Leaves |
Roots |
Seedlings/Micropropagated plants |
Wood |
Wood Packaging
Top of pageWood Packaging not known to carry the pest in trade/transport |
---|
Loose wood packing material |
Non-wood |
Processed or treated wood |
Solid wood packing material with bark |
Solid wood packing material without bark |
Impact
Top of pageGiles (1987) suggests that overwintered E. tuberis populations should be kept below a density of one per 60 plants to prevent economic damage from occurring. In June or July, five or six adults in a sample of 25 sweeps will cause economic loss.
Adults feeding on tobacco leaves substantially reduce the market value of tobacco grown for cigar wrappers (Davidson and Lyon, 1979).
Diagnosis
Top of pageEPPO (2011) describes a diagnostic protocol for adult Epitrix cucumeris, E. similaris and E. tuberis infesting potato.
Similarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Cultural Control
Control measures should focus on controlling the first generation of E. tuberis ensuring only limited treatment is necessary later in the year. In locations where E. tuberis is known to occur, growers may adopt crop rotation to prevent the build-up of E. tuberis populations in the middle of fields (Kabaluk and Vernon, 2000). Growers should also avoid planting early potato varieties. This will cause emerging overwintered adults to have to feed on less nutritious food plants and greatly decrease the number of first-generation larvae available to infest later planted potatoes (Hill, 1946).
Economic Thresholds
To determine whether any chemical control measure should be applied, the number of adult E. tuberis should be monitored within a crop. When potato plants are less than 30 cm tall, a visual examination of plants lasting 5 to 20 seconds per plant is sufficient. Ten plants should be examined per row. The accuracy of monitoring E. tuberis using visual observations can be affected by observer experience and competence, the time spent observing each plant, the time of day, plant height and weather (Vernon et al., 1990). The greatest accuracy is achieved in the morning in calm weather. Plants over 30 cm in height should be sampled by sweep netting. Ten adjacent consecutive circular sweeps should be made enabling a sample to consist of sweeps from around 100 plants. Sweep netting is approximately 1-4% accurate (Bérubé, 2000).
There have been various thresholds suggested when action to control E. tuberis populations is warranted. Cusson et al. (1990) describe a practical action threshold of one beetle per 10 plants. Alternatively treatment may be necessary when a population averages three or four adults per 10 m row of potatoes (Berry, 1998). Bérubé (2000) suggests a threshold of one beetle per 100 plants.
Chemical Control
Insecticides can provide good control of E. tuberis (Antonelli and Davidson, 1991; Vernon and Mackenzie, 1991a, b). Synthetic pyrethroids are particularly effective. Chemicals routinely used against aphids on seed potatoes are also effective against adult E. tuberis and prevent leaf damage due to adult feeding. It is more difficult to control E. tuberis larvae since they are in the soil and insecticides incorporated into the soil may fail to provide adequate protection (Finlayson et al., 1979) although expensive granular formulations can be used. When overwintered populations are kept under control, localized sprays and targeting field edges, from where most overwintered adults will emerge, may be all that is necessary to provide effective control.
E. tuberis developed resistance to a number of organochlorines developed in the 1960s (Campbell and Finlayson, 1976). Organophosphates were used to provide control in the 1970s (Finlayson et al., 1972). Given the history of developing insecticide resistance, there is a possibility that resistance to modern insecticides may develop.
Phytosanitary Methods
Phytosanitary control to prevent the international spread of E. tuberis includes the restriction or prohibition of the importation of soil, or plants with soil, from countries where E. tuberis occurs (OEPP/EPPO, 1989). More specifically, when importing potato tubers from countries where E. tuberis is known to occur, appropriate phytosanitary measures should be used (OEPP/EPPO, 1990).
References
Top of pageArnett RH, 1985. American Insects: A Handbook of the Insects of America North of Mexico. New York, USA: Van Nostrand Reinhold.
Berry RE, 1998. Insects and Mites of Economic Importance in the Northwest, 2nd Edn. Oregon, USA: Oregon State University, 221 pp.
Bérubé C, 2000. Potato IPM: tuber flea beetle. World Wide Web page at http://nanaimo.ark.com/~cberube/tfb.htm.
Bousquet Y, 1991. Checklist of beetles of Canada and Alaska. Ottawa, Canada: Research Branch Agriculture Canada Publication.
Davis EW, Landis BJ, 1947. Overwintering of potato flea beetles in the Yakima Valley. Journal of Economic Entomology, 40:821-824.
EPPO, 1990. Specific quarantine requirements. EPPO Technical Documents, No. 1008. Paris, France: European and Mediterranean Plant Protection Organization.
EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm
Finlayson DG, Brown MJ, Campbell CJ, Wilkinson ATS, Williams IH, 1972. Insecticides against tuber flea beetle on potatoes in British Columbia (Chrysomelidae: Coleoptera). Journal of the Entomological Society of British Columbia, 69:9-13.
Fulton HG, Banham FL, 1962. The tuber flea beetle in British Columbia. Canada Department of Agriculture Publication No. 938.
Gentner LG, 1944. The black flea beetles of the genus Epitrix identified as cucumeris. Proceedings of the Entomological Society of Washington, 46:137-149.
Giles KI, 1987. Estimation of an economic threshold for the tuber flea beetle, Epitrix tuberis Gentner (Coleoptera: Chrysomelidae), on potato in British Columbia. Burnaby, British Columbia, Canada: Department of Biological Sciences, Simon Fraser University, Pest Management Professional Paper.
Hatch MH, 1971. The beetles of the Pacific North-west, part V. Rhipiceroidea, Sternoxi, Phytophaga, Rhynchophora, and Lamellicornia. University of Washington Publication in Biology, 16.
Hill RE, 1946. Influence of food plants on fecundity, larval development and abundance of the tuber flea beetle in Nebraska. Research Bulletin of the Nebraska Experimental Station, 143, 1-16.
Hill RE, Tate AD, 1942. Life history and habits of potato flea beetle in Western Nebraska. Journal of Economic Entomology, 35:879-884.
Hodgson WA, Pond DD, Munro J, 1974. Diseases and pests of potatoes. Publication Canada Department of Agriculture, No.1492:70 pp.
Jones EW, 1944. Biological studies of two potato flea beetles in eastern Washington. Journal of Economic Entomology, 37(1):9-12.
Kirk VM, 1975. A list of beetles of South Dakota. Brookings, USA: Agricultural Experiment Station, Technical Bulletin No. 42, 116.
Leach JG, 1940. Insect Transmission of Plant Diseases. New York, USA: McGraw-Hill.
Neilson CL, Finlayson DG, 1953. Notes on the biology of the tuber flea beetle, Epitrix tuberis Gentner (Coleoptera: Chrysomelidae) in the interior of British Colombia. The Canadian Entomologist, 85:31-32.
Seeno TN, Andrews FG, 1972. Alticinae of California, Part 1: Epitrix spp. (Coleoptera: Chrysomelidae). Coleopterists Bulletin, 26(2):53-61.
Wallis RL, 1957. Seasonal abundance and host plants of the tuber flea beetle in the Rocky Mountain region. Journal of Economic Entomology, 50(4):435-437.
Wilcox JA, 1975. Check list of the beetles of Canada, United States, Mexico, Central America and the West Indies. Latham, New York, USA: Biological Research Institute of America, 1(7):116.
Distribution References
Arnett RH, 1985. American Insects: A Handbook of the Insects of America North of Mexico., New York, USA: Van Nostrand Reinhold.
Bousquet Y, 1991. Checklist of beetles of Canada and Alaska., Ottawa, Canada: Research Branch Agriculture Canada Publication.
CABI, Undated. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Wilcox JA, 1975. Check list of the beetles of Canada, United States, Mexico, Central America and the West Indies., 1 (7) Latham, New York, USA: Biological Research Institute of America. 116.
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway | https://doi.org/10.5061/dryad.m93f6 | Data source for updated system data added to species habitat list. |
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/