Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Ephestia kuehniella
(Mediterranean flour moth)



Ephestia kuehniella (Mediterranean flour moth)


  • Last modified
  • 20 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Ephestia kuehniella
  • Preferred Common Name
  • Mediterranean flour moth
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Wingspan 18-27 mm; long forewings with rounded wing tips, pale-grey or brownish-grey, suffused with darker grey, two darker zig-zag fascias, sometimes indistinct. Head, thorax and abdomen grey.
CaptionWingspan 18-27 mm; long forewings with rounded wing tips, pale-grey or brownish-grey, suffused with darker grey, two darker zig-zag fascias, sometimes indistinct. Head, thorax and abdomen grey.
CopyrightJ. Daumal
Wingspan 18-27 mm; long forewings with rounded wing tips, pale-grey or brownish-grey, suffused with darker grey, two darker zig-zag fascias, sometimes indistinct. Head, thorax and abdomen grey.
AdultWingspan 18-27 mm; long forewings with rounded wing tips, pale-grey or brownish-grey, suffused with darker grey, two darker zig-zag fascias, sometimes indistinct. Head, thorax and abdomen grey.J. Daumal
Larva: head reddish- or yellowish-brown, body pinkish-white or yellowish-white. Pupa: yellowish- or reddish-brown; dorsal surface of head and prothorax rough, cremaster rounded, with eight hooked setae.
TitleLarva, pupa and frass
CaptionLarva: head reddish- or yellowish-brown, body pinkish-white or yellowish-white. Pupa: yellowish- or reddish-brown; dorsal surface of head and prothorax rough, cremaster rounded, with eight hooked setae.
CopyrightJ. Daumal
Larva: head reddish- or yellowish-brown, body pinkish-white or yellowish-white. Pupa: yellowish- or reddish-brown; dorsal surface of head and prothorax rough, cremaster rounded, with eight hooked setae.
Larva, pupa and frassLarva: head reddish- or yellowish-brown, body pinkish-white or yellowish-white. Pupa: yellowish- or reddish-brown; dorsal surface of head and prothorax rough, cremaster rounded, with eight hooked setae.J. Daumal
Larva (anterior).
CaptionLarva (anterior).
CopyrightJ. Daumal
Larva (anterior).
LarvaLarva (anterior).J. Daumal
Eggs oval, sometimes with a slight projection at one end, greyish-white. Sculpturing of surface strong, star-shaped.
CaptionEggs oval, sometimes with a slight projection at one end, greyish-white. Sculpturing of surface strong, star-shaped.
CopyrightJ. Daumal
Eggs oval, sometimes with a slight projection at one end, greyish-white. Sculpturing of surface strong, star-shaped.
EggsEggs oval, sometimes with a slight projection at one end, greyish-white. Sculpturing of surface strong, star-shaped.J. Daumal


Top of page

Preferred Scientific Name

  • Ephestia kuehniella Zeller

Preferred Common Name

  • Mediterranean flour moth

Other Scientific Names

  • Anagasta kuehniella Zeller

International Common Names

  • English: flour moth; mill moth
  • Spanish: palomilla de la harina; palomilla de los molinos (Mexico); polilla de la madera; polilla gris de la harina
  • French: papillon gris de la farine; pyrale de la farine; pyrale mediterranéenne de la farine; teigne de la farine
  • Portuguese: traca da farinha (Brasil)

Local Common Names

  • Brazil: traça da farinha
  • Denmark: melmøl
  • Germany: mehlmotte
  • Israel: ash hakemach
  • Italy: farfalla gregia della farina; farfalla grigia della farina; tignola grigia delle provviste alimentari
  • Japan: suzi-konamadara-meiga
  • Netherlands: meelmot
  • Norway: melmøll
  • Sweden: kvarnmott
  • Turkey: un guvesi

EPPO code

  • EPHEKU (Ephestia kuehniella)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Lepidoptera
  •                         Family: Pyralidae
  •                             Genus: Ephestia
  •                                 Species: Ephestia kuehniella

Notes on Taxonomy and Nomenclature

Top of page In 1879, Zeller named this species Ephestia kühniella (= kuehniella). Heinrich (1956) placed E. kuehniella in the subgenus Anagasta and this status Ephestia (Anagasta) was retained by Roesler (1973).

E. kuehniella belongs to the subfamily Phycitinae of which several species are stored-product pests.


Top of page A grey phycitine moth, when at rest appearing long and narrow, length from head to wingtips 10-14 mm, larger than most stored-product Phycitinae.


Wingspan 18-27 mm. Long forewings with rather rounded wing tips. Forewing pale-grey or brownish-grey, suffused with darker grey, two darker zig-zag fascias, sometimes indistinct. Hindwing white, veins and terminal line greyish-brown; hindwing not falcate as in Gelechiidae. Head, thorax and abdomen grey. The genitalia are illustrated by Roesler (1973), Carter (1984), Goater (1986) and Palm (1986).


Oval, sometimes with a slight projection at one end, greyish-white. Sculpturing of surface strong, star-shaped. Mean size 0.57 x 0.30 mm (Richards and Thomson, 1932).


Head reddish- or yellowish-brown, body pinkish-white or yellowish-white. The head capsule on newly hatched larvae will be less than the width of eggs. Thoracic and anal plates yellowish- or reddish-brown; pinacula usually dark-brown and very distinct. Differences from other species are given in keys by Aitken (1963) and Carter (1984).


Yellowish- or reddish-brown; dorsal surface of head and prothorax rough, cremaster rounded, with eight hooked setae.


Top of page E. kuehniella is a cosmopolitan pest, being spread all over the world by international trade.

It occurs especially in warm, temperate areas, but is also common in cold, temperate areas and can occur in the tropics.

In the past, there have been several disputes over the origin of this species. Richards and Thompson (1932) discussed in detail the uncertainty in origin of this pest. Turkey may be the centre of dispersion: Asia Minor has 18 species of Ephestia (out of 60 classified). Danysz (1893) asserted that E. kuehniella had been known in French mills since 1840 and described it as 'cosmopolitan'. E. kuehniella is an anthropophilic species: after adaptation it has come to live closer to humans.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.


Top of page E. kuehniella is found primarily in flour mills and bakeries. It is also found in farmhouses, warehouses, stores and bilges (in ships in quarantine), including coarse canvas covers and maize sacks.

Habitat List

Top of page

Hosts/Species Affected

Top of page E. kuehniella is a storage pest that affects many cereals, including wheat (grain, bran, flour, meal, semolina), maize, rice, sorghum, oats and barley. It also attacks nuts (e.g. almonds), date palms, carob pods, fruits and flowers, pollen, leaves, roots (dried), biscuits, human food and animal feed.

This pest attacks after harvesting, on and in the spaces between stored grains, seeds, decorticated or split fruits and dried flowers and, in general, on nutritious substrates which remain in the fields or which are close to human habitation, farms or storage sheds.

Host Plants and Other Plants Affected

Top of page

Growth Stages

Top of page Post-harvest


Top of page Damage always begins on the outside surface of grains or packaging, if these are sufficiently friable to be pierced and then cut by the mandibles of the first-instar larvae. Dried or partly dried fruits have fissures which are either natural (such as the hilum) or caused by other means (entry or exit holes made by other primary insect pests or damage caused by rodents). These fissures serve as feeding and anchoring points for the construction of the pupation cocoon, if there is enough space for good air circulation. Thus damage may be located on the edges of the stores, whether they have already been infested (the surviving caterpillars search for light and air) or during new infestations.

Flour and Semolina

Small or large heaps of particles that are bound together by caterpillar secretions (from all stages) may be detected. These heaps are composed of dejecta - easily identifiable larval or pupal exuviae. In flour mills these will be found on the tops of flour containers, and also on the edges of machines (even machines which are vibrating, i.e. inside sifters), and on all stationary processing machinery, including bagging equipment.

The sources of re-infestation are detectable by the presence of heaps of flour dust and of silk threads, both of which can be widely dispersed inside and outside buildings in poorly lit or dark places. All the storage spaces used before sifting (bran) can be possible breeding centres: clearing them out gives no immediate financial return and is thus sometimes omitted.

Stored Products: Fruit

In stored products, the eggs will be concealed in the wrinkles of fruits while they are drying, at different depths in the store. The presence of caterpillars is indicated by dejecta caught up by the silk and found either in the wrinkles or between the points of contact between fruits (such as figs, carob beans, apricots or almonds), the pulp of which may be damaged. In fruits such as dates and nuts, on the other hand, which offer a means of penetration by the ovipositor or by the first-instar larva, a 'nucleus' that is more or less separate from the fruit will generally contain a specimen which has undergone its complete development cycle there; the fruits are pierced by an exit hole 2-3 mm in diameter.

The imagos, which are immobile and concealed in shaded areas during the day, are detectable after dusk, and fly in an uncoordinated way if there is vibration or illumination.

List of Symptoms/Signs

Top of page
SignLife StagesType
Fruit / internal feeding
Fruit / internal feeding
Inflorescence / internal feeding
Roots / internal feeding
Seeds / internal feeding

Biology and Ecology

Top of page Mating

A virgin (or insufficiently fertilized) female adopts the calling position, extending her ovipositor and raising her abdomen. This position, which enables her to emit pheromones, can be taken up again over several days (Daumal, 1987). The males 'take to the air' to look for a mate and perform a courtship display. Mating takes place within a few seconds (Traynier, 1968, 1970; Traynier and Wright, 1972), and usually lasts for 4-5 hours after dusk, but may continue for longer than this. Various abiotic factors may have caused sterility in the males, even if one or more spermatophores has been emitted (Raichoudhury, 1936; Tavares and Daumal, 1983; Daumal, 1987). The biotic potential of the females is not affected by the same factors. During mating the female's wings cover those of the male. When mating is complete the female no longer adopts the calling position, because a successful mating enables her to fulfil her entire reproductive potential, 6-10 hours after (or without) separation of the partners. The male, however, can fertilize five to six females during his life, although the later matings (over 6-8 days at 20°C) become increasingly less fertile (Norris, 1932, 1933, 1934; Williams, 1938).

During the day the adults remain immobile, with the antennae folded on the thorax, concealed under the wings, and the first pair of legs resting on the raised thorax (akinesis) (Sogaard-Andersen, 1968). The moths fly after dusk, with nocturnal movements ceasing before dawn; males possess a peak in activity just prior to sunrise (Edwards, 1962). The lifespan of the adults varies greatly. They can live for approximately 20 days if they do not find a mate, and for longer than this at low temperatures (10-18°C), providing that they have access to liquid feed sources (such as condensation, or fruit exudations). They tend to stay in shaded areas and almost always close to the highest thermal gradients (such as ceilings and flour-mill outlets). Emergence takes place from 17.00 to 22.00 h. Stretching and drying of the wings lasts for an average of 2 hours after the extension of the proboscis.

Egg Laying

The females are stimulated by flour and other dusts, such as talcum powder (Ullyett, 1945). The female can gather heaps of dust into fissures and then place eggs on them. Firstly the tips of the antennae and simultaneously the ovipositor become active when inserted into fissures. The combination of these two stimuli leads her to slide particles into the fissures, using the setae on the papillae of the ovipositor and movements of the abdomen, before laying eggs in the fissures in rows. The eggs may, however, also be scattered apparently at random. This behaviour is not heritable for a given population (Daumal, 1987, 1994). The structure, role and distribution of the setae of the antennae, of the tarsi and of the sensillae of the ovipositor have been studied by Anderson and Hallberg (1990). The females lay approximately 75% of their eggs in 48 hours, at 20-23°C. Females are deterred by high densities of larvae (Anderson and Löfqvist, 1996). The influence of light cycle and circadian rhythm on oviposition in E. kuehniella has been studied by Bell (1981).


Most authors have noted the wide variation in biotic potential of this species: the number of offspring can range from 50 to 500 (Richards and Thomson, 1932). This variation may be attributable to genetic (Robinson, 1971; Leibenguth and Russell, 1986) or epigenetic factors (Daumal and Pintureau, 1985; Daumal and Boinel, 1994a). At emergence, females have eight ovarian sheaths, the content (chorionic oocytes during yolk formation, oogonia, atresia, the presence of corpora lutea) and length of each of which are a reflection of both the larval life of the female (quiescences, fasts, nutritional deficiencies, movements and competitiveness) and her genome. The pathogenic or physiological state of the male and female and conditions during mating will further affect the number of offspring. Male moths maintained under continuous illumination have a much lower reproductive capacity than males maintained under alternating light conditions (Riemann and Ruud, 1974).

Eggs and Embryonic Development

The eggs (centrolecithal egg: 0.028 mg) are laid singly or close together. They adhere to the substrate because they are coated with secretions from the neck glands. The structure of the chorion (Arbogast et al., 1980) and the remarkable resistance of the eggs to abiotic factors also constitute, at this stage of development, good scope for adaptation in this species (Daumal et al., 1974; Daumal and Boinel, 1994a, 1994b). Embryonic development takes 8 days at a constant 20°C. The lower heat threshold for development from primary division is 8°C (with 16 h light and 8 h dark cycle), and the upper heat threshold at this stage is 35°C (90% RH). These thresholds vary according to the developmental stage. Embryonic development was studied by Sehl (1931) and subsequently by Hawlitzky (1972).

Post-Embryonic Development

E. kuehniella has only a few hours of autonomy in its first stage after ingestion of the serous membrane. This is the most vulnerable stage (Daumal, 1987). Because development is heterogeneous, it is difficult to establish a precise duration: if a caterpillar deviates even slightly from the typical cycle described below, it may extend or even accelerate its development period (Daumal et al., 1981 a, b; Daumal and Pintureau, 1985). As an example, the complete cycle, from egg-laying to adult emergence, will take place within 60 days at 20°C for individuals fed exclusively on hard wheat semolina. Numerous studies have been carried out in this area, and all have demonstrated the plasticity of development of the five larval stages. This plasticity is due primarily to the polymorphism of the species, to the origin of the strain (Cox et al., 1981), and to a significant number of epigenetic factors which may or may not contribute to the expression of numerous pleiotropic genes.

Larval and Pre-Pupal Development and Behaviour

From hatching to pupation, the caterpillar of E. kuehniella exhibits a stereotypical and completely solitary behaviour which may be summarized as follows:

The first-instar larva immediately shows negative phototaxis and isolates itself in a woven network even before starting to feed. It only emerges to pick up dust particles of flour or semolina - which it incorporates into this network of silk threads. It takes its first feeds within this network, which it continuously adds to, thus forming its nutritional case. This behaviour continues throughout the four subsequent larval instars, during which the exterior of the case is extended and enriched with various types of food and non-food particles. The caterpillar remains in contact with the interior network by means of the setae on the cuticle. The hooks on the coronate legs stabilize the body during moulting (exuviation).

Aerotaxis behaviour may be observed from the fourth instar: the caterpillar taking measurements of space by swinging and stretching its thoracic segments. This behaviour is clearly marked during the fifth instar: measurement-taking is accentuated after the caterpillar stops feeding and starts to construct the first pupation cocoon. The measurement enables the pest to establish the amount of space available above the cocoon: it will enable the imago to stretch its wings shortly after emerging from the second pupation cocoon (Daumal et al., 1985; Daumal, 1987). This behaviour is exhibited on any ground-level area, but always occurs in the darkest part of the area. The study of this stereotypical behaviour has served as the basis for intensive breeding of E. kuehniella for production of biological control agents (Daumal et al., 1975).

The dispersion of the different stages, and particularly of the fifth-instar larvae, which might appear to indicate negative geotaxis-type behaviour in warehouses or flour mills, is in fact only deterrence behaviour (when there is a high degree of competition in an area), or reactions to the discovery of a light and heat gradient.`Flight'-type behaviour is exhibited when the caterpillar is parasitized by a microbial agent or by an endoparasite which causes it to deviate from its normal behaviour. It should also be noted that the aggressive `cannibal' behaviour in situations where there is a high population density, described by various authors, is not a biological reality: the caterpillars competing for a case or a territory only `deter' each other by advancing and retreating, and following an excess of secretions from the mandibles some caterpillars abandon their territory. At high population densities (particularly in overcrowded laboratory production systems), an excess of secretions from older caterpillars can also lead to death by poisoning of younger first- and second-instar caterpillars. Nonetheless, particularly in flour mills, a series of cocoons may be discovered, in which fifth-instar larvae are living among fragments of parasitized or healthy pupae or pro-pupae which they have partially devoured while the pupae were in an inactive, immobile state. These fifth-instar larvae may, in their turn, be displaced by another healthy or parasitized specimen seeking to use their niche (J Daumal, INRA Laboratoire de Biologie des Invertébrés, Antibes, France, personal communication, 1996).

Information on developmental times in relation to temperature and humidity are given by Siddiqui and Barlow (1973), Bell (1975) and Jacob and Cox (1977). The effect of cultural factors on development can be found in Bell(1976) and Cerutti et al. (1992). Some earlier studies are referred to in Richards and Thomson (1932) and information on the development of the eggs in relation to temperature can be found in Voute (1936). A simulation model on the population dynamics of E. kuehniella has been presented by Skovgård et al. (1999).


According to Cox et al. (1981) diapause in E. kuehniella is recognized as a delay in development between cessation of feeding and the start of pupation. Diapause is influenced by the strain and nutrition as well as by temperature and photoperiod (Cole and Cox, 1981; Cox et al., 1981, 1984a; Cox, 1987). Diapause increased the tolerance of larvae to fumigants at low temperature (Cox et al., 1984b). High temperature and darkness during larvae development, conditions common in flour mills, will result in a high number of diapausing larvae (Cox et al., 1981).

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Adalia decempunctata Predator
Anomalochrysa frater Predator
Anthocoris nemoralis Predator
Bacillus cereus Pathogen Larvae
Bacillus thuringiensis Pathogen Larvae
Bacillus thuringiensis kurstaki Pathogen Larvae
Bacillus thuringiensis morrisoni Pathogen Larvae
Bacillus thuringiensis thuringiensis Pathogen Larvae
Beauveria bassiana Pathogen
Blattisocius tarsalis Predator Eggs
Bracon hebetor Parasite Larvae/Pupae
Bracon kirkpatricki Parasite Larvae
Ceraeochrysa cubana Predator
Chelonus curvimaculatus Parasite Larvae
Chelonus eleaphilus Parasite Larvae
Chelonus inanitus Parasite Larvae
Chrysoperla carnea Predator
Copidosomopsis tanytmemus Parasite
Cybocephalus micans Predator
Cycloneda zischkai Predator
Cyzenis albicans Parasite Larvae
Diadegma chrysostictos Parasite Pupae
Diadromus pulchellus Parasite
Dufouriellus ater Predator
Encarsia porteri Parasite Eggs
Exochomus flaviventris Predator
Goniozus legneri Parasite
Harmonia axyridis Predator
Harmonia doublieri Predator
Hippodamia undecimnotata Predator
Itoplectis maculator Parasite
Macrolophus caliginosus Predator
Mattesia dispora Pathogen Larvae
Mermis gigantea Parasite
Metarhizium anisopliae Pathogen
Nineta pallida Predator
Orius albidipennis Predator
Orius laevigatus Predator
Orius majusculus Predator
Orius minutus Predator
Orius vicinus Predator
Paecilomyces farinosus Pathogen
Peregrinator biannulipes Predator Adults/Eggs
Phanerotoma leucobasis Parasite Larvae
Pimpla contemplator Parasite
Platynaspis capicola Predator
Sinea diadema Predator
Steinernema feltiae Parasite
Tjederina gracilis Predator
Tolypocladium cylindrosporum Pathogen
Trichogramma agrotidis Parasite Eggs
Trichogramma bourarachae Parasite Eggs
Trichogramma brasiliense Parasite Eggs
Trichogramma brassicae Parasite
Trichogramma buesi Parasite Eggs
Trichogramma cacoeciae Parasite Eggs
Trichogramma chilonis Parasite Eggs
Trichogramma cordubensis Parasite Eggs
Trichogramma danubiense Parasite
Trichogramma daumalae Parasite Eggs
Trichogramma demoraesi Parasite Eggs
Trichogramma dendrolimi Parasite Eggs
Trichogramma distinctum Parasite Eggs
Trichogramma evanescens Parasite Eggs
Trichogramma galloi Parasite Eggs
Trichogramma maidis Parasite Eggs
Trichogramma minutum Parasite Eggs
Trichogramma mwanzai Parasite Eggs
Trichogramma ostriniae Parasite Eggs
Trichogramma pintoi Parasite Eggs
Trichogramma pretiosum Parasite Eggs
Trichogramma principium Parasite Eggs
Trichogramma rhenanum Parasite Eggs
Trichogramma semifumatum Parasite Eggs
Trichogramma telengai Parasite Eggs
Trichogramma turkeiensis Parasite Eggs
Trichogramma voegelei Parasite Eggs
Trichogrammatoidea annulata Parasite
Trichogrammatoidea lutea Parasite Eggs
Trichospilus diatraeae Parasite
Venturia canescens Parasite Larvae/Pupae
Xylocoris sordidus Predator

Notes on Natural Enemies

Top of page Note: the natural enemies listed occur in the `natural' conditions of flour mills or warehouses

Cocoons of E. kuehniella may contain solitary larvo-pupal parasitoid Hymenoptera such as Venturia canescens. When cocoons are pinkish-white, measure 1.8-2 mm and are found in groups of five to ten near larval exuviae, they are infected by the exoparasitoid Bracon hebetor. Third-instar larvae are sometimes attacked by Apanteles sp.

The pupae may also contain Diadegma chrysostictos, a solitary endoparasitoid. It should also be noted that fourth- or fifth-instar E. kuehniella larvae which are seeking a place for moulting or pupation may devour healthy or parasitized pupae of their own species.

When brown carcasses of the third- to fifth-instar caterpillars are found outside the cocoons, this may indicate an infection by the endocellular protozoan Mattesia dispora. When the caterpillars are infected before the fifth instar, they will eventually shrivel up and die (the cuticle turning red in colour), but they may survive for a considerable time. Examination of the larvae haemolymph under high binocular magnification against a black background will show a large quantity of diamond-shaped refractive particles, which are characteristic of the complete invasion of the caterpillar's cells by the spores of M. dispora. This protozoan often infests laboratory cultures, but procedures have been described which take care of the problem (Hansen et al., 1999).

Very black fifth-instar larva carcasses indicate an earlier infection by the bacterium Bacillus thuringiensis (e.g. in dried fruits) or by other entomopathogens which are difficult to identify because of the condition of the tissues.

Eggs may be parasitized by Trichogramma spp., particularly in stored food products, causing the healthy eggs (white to pinkish-beige in colour) to turn completely black. Eggs will also be attacked and sucked out by the predatory mite Blattisocius tarsalis. The eggs may also be sucked by acarids or by reduviids or anthocorids in warehouses where dried fruits are stored.

Predators include: anthocorids, reduviids, Psocoptera, spiders, acarids and pyemotids. Birds and bats may eat caterpillars, cocoons and adults.

Some records of natural enemies are given by Richards and Thomson (1932), Abdel Rahman et al. (1977) and Gordh and Hartman (1991).

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Containers and packaging - wood Yes
Land vehicles Yes

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
True seeds (inc. grain) adults; eggs; larvae; pupae Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Growing medium accompanying plants
Seedlings/Micropropagated plants


Top of page Infestation by E. kuehniella is endemic in flour mills, particularly in the Mediterranean Basin. It is usually well controlled in 'developed' countries, but populations will quickly build up if there is opportunity for larval development and a lack of control measures. In an FAO survey of pests of stored products in 1972 it was given as a pest of major importance only in Czechoslovakia (Champ and Dyte, 1977). Nevertheless, extensive resources are used to control this pest species in industrial flour mills (Nielsen, 2000a, b).

In contrast, in the relatively unindustrialized areas of the Mediterranean coast, and particularly in Africa, infested commodities (produced locally or imported) may be unsuitable for processing into human food. This results from a lack of plant health inspections or quarantine procedures, or from no systematic destruction of permanent centres of infestation.

Detection and Inspection

Top of page Adults

Adults may be caught in light traps, or in pheromone traps placed in warehouses, flour mills or shops (Fleurat-Lessard, 1986). Identification may be confirmed by examination of the male genitalia.

In flour mills the adults are often to be seen at rest on walls, especially in the warmer parts of the mill.

After the identification of the female sex pheromone components in E. kuehniella in the 1970s, one of the components (Z,E)-9,12-Tetradecadienyl acetate (ZETA or TDA), has been used for monitoring (Trematerra, 1994a). Commercial pheromone traps are now used in many modern industrial flour mills as an effective tool in the early detection of pest problems. Research on pheromones in mass-trapping, mating disruption and as attracticides have been conducted in industrial flour mills (Trematerra, 1994a, b). Some positive results have been obtained, but the effect have been influenced by other factors such as cleaning routines. One of the main limitations on the use of pheromone traps is that only males are caught and that the numbers caught over a period will be a relative estimate of population size, certainly reflecting activity as well (Nielsen, 2000a). The use of pheromone traps has demonstrated that male E. kuehniella fly out of doors (Wohlgemuth et al., 1987; Nielsen 2000b).

Larvae and Pupae

Larvae and pupae may be detected by a visual examination of the various cracks in ceilings and discharge outlets, of the corners of walls, and under tracks or runners of equipment that is mobile but which includes dark areas. The covers and casing of all equipment, if they have any type of slit, may contain larvae and pupae. Clusters of silk may be detected with cocoons, containing caterpillars at different stages or their exuviae (head capsule) or carcasses. Pupae are protected by a double cocoon. The external cocoon is composed of a variety of dejecta.


Eaggs of E. kuehniella are very difficult to detect under natural conditions. The eggs may be concealed in old cocoons near flour dust or scattered in any shaded location where only traces of such dust remain. The eggs are particularly resistant to abiotic factors such as high or low temperatures or humidity levels, or mechanical disturbances. If situated in flour, the eggs can be detected by passing the flour through a sieve with a mesh size of 200 µm.

(See also Symptoms.)

Similarities to Other Species/Conditions

Top of page For flour and semolina

Pyralis farinalis caterpillars may be found in the same habitat as E. kuehniella: they are detitrivorous and often found in dark, humid areas in flour warehouses. They appear different, however: P. farinalis caterpillars have blackish cuticles, whereas E. kuehniella have pink or whitish cuticles. The P. farinalis imago has a wing-span of 28-30 mm and is yellow and brown with white lunulae.

For stored fruits and dried fruits

E. kuehniella may also be confused with Cadra cautella, Cadra figulilella, Plodia interpunctella, Ephestia elutella, Ectomyelois ceratoniae [Apomyelois ceratoniae] or Paramyelois transitella [Apomyelois transitella]. Imagos of Ephestia sp. and Ectomyelois sp., which often have the same habitat (dried fruits), can be confused: the species can be distinguished by examining the genitalia of both sexes. These species are all of similar shape, and when worn, specimens are difficult to distinguish from each other.

Corcyra cephalonica is also superficially similar.

Prevention and Control

Top of page

For large volumes of produce, disinfestation should be carried out in accordance with the standards of the various countries.

This banning of methyl bromide has increased research activity to finding new and alternative methods for control of E. kuehniella which can be adopted in the future. Many of the alternatives can only be expected to function in IPM systems (Taylor, 1999).

Biological control methods are expected to become an important component of IPM strategies for many types of stored commodities (Brower et al., 1996; Schöller, 1998). Promising results have been obtained with Trichogramma species (Schöller et al., 1996; Prozell and Schöller, 1997, 1998; Hansen, 2000) and Blattisocius tarsalis (Nielsen, 1998a, 1999a, b). Habrobracon hebetor is another potentially useful species in this area (Schöller and Prozell, 2000).

Disinfestation and cleaning of warehouses before they are used for storage are effective but costly measures. In France, the INRA research stations at Bordeaux and Antibes are researching this area and considering control measures using trichogrammatids, braconids and predators.

E. kuehniella are intensively bred as a basis for the commercial production of various parasitoids and predators to combat pests such as Lepidoptera and aphids (Wajnberg and Hassan, 1994).

Diatomaceous earth can be used against E. kuehniella (Trewin and Reichmuth, 1997; Nielsen, 1998b). The efficacy of diatomaceous earth is generally improved at higher temperatures (Fields and Korunic, 2000) and these products can be combined with heat treatment of food processing facilities (Fields et al., 1997).


Top of page

Abdel-Rahman HA; Shaumar NF; Soliman ZA; El-Agoze MM, 1977. Survey and taxonomy of parasites and predators of stored grain and grain products insects. Bulletin de la Societe Entomologique d'Egypte, No. 61:53-74

A-Ibrahim A; El-Zoghby A; Shairra S, 2003. True spiders in Egyptian fields. Annals of Agricultural Science, Moshtohor, 41(2):979-986.

Aitken AD, 1963. A key to the larvae of some species of Phycitinae (Lepidoptera, Pyralidae) associated with stored products, and of some related species. Bulletin of Entomological Research, 54:175-188.

Anderson P; Hallberg E, 1990. Structure and distribution of tactile and bimodal taste/tactile sensilla on the ovipositor, tarsi and antennp of the flour moth, Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). International Journal of Insect Morphology & Embryology, 19(1):13-23

Anderson P; L÷fqvist J, 1996. Asymmetric oviposition behaviour and the influence of larval competition in the two pyralid moths Ephestia kuehniella and Plodia interpunctella. Oikos, 76(1):47-56; 27 ref.

Arbogast RT; LeCato GL; Byrd Rvan, 1980. External morphology of some eggs of stored-product moths (Lepidoptera: Pyralidae, Gelechiidae, Tineidae). International Journal of Insect Morphology and Embryology, 9(3):165-177

Athanassiou CG; Kavallieratos NG; Palyvos NE; Buchelos CT, 2003. Evaluation of a multisurface trap for the capture of Ephestia kuehniella in stored wheat. Phytoparasitica, 31(1):39-50.

Babendreier D; Schoch D; Kuske S; Dorn S; Bigler F, 2003. Non-target habitat exploitation by Trichogramma brassicae (Hym. Trichogrammatidae): what are the risks for endemic butterflies? Agricultural and Forest Entomology, 5(3):199-208.

Bell CH, 1975. Effects of temperature and humidity on development of four pyralid moth pests of stored products. Journal of Stored Products Research, 11(3/4):167-175

Bell CH, 1976. Effect of cultural factors on the development of four stored-product moths. Journal of Stored Products Research, 12(3):185-193

Bell CH, 1981. The influence of light cycle and circadian rhythm on oviposition in five pyralid moth pests of stores products. Physiological Entomology, 6(3):231-239

Benson JF, 1973. The biology of Lepidoptera infesting stored products, with special reference to population dynamics. Biological Reviews, 48:1-26

Brower JH; Smith L; Vail PV; Flinn PW, 1996. Biological control. In: Subramanyam B, Hagstrum DW, eds. Integrated management of insects in stored products. New York, USA: Marcel Dekker Inc., 223-286.

Carter DJ, 1984. Pest Lepidoptera of Europe with special reference to the British Isles. Dordrecht, Netherlands: Dr. W. Junk.

Cerutti F; Bigler F; Eden G; Bosshart S, 1992. Optimal larval density and quality control aspects in mass rearing of the Mediterranean flour moth, Ephestia kuehniella Zell. (Lep., Phycitidae). Journal of Applied Entomology, 114(4):353-361

Champ BR; Dyte CE, 1977. FAO Global Survey of Pesticide Susceptibility of Stored Grain Pests. FAO Plant Protection Bulletin, 25(2):49-67

Cole DB; Cox PD, 1981. Studies on three moth species in a Scottish port silo, with special reference to overwintering Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal of Stored Products Research, 17(4):163-181

Coskuncu KS; KovancI B, 2005. The adult population fluctuations of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) in flour factories in Bursa province. Türkiye Entomoloji Dergisi, 29(1):35-48.

Cox PD, 1987. Cold tolerance and factors affecting the duration of diapause in Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 23(3):163-168

Cox PD; Allen LP; Pearson J; Beirne MA, 1984. The incidence of diapause in seventeen populations of the flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 20(3):139-143

Cox PD; Bell CH; Pearson J; Beirne MA, 1984. The effect of diapause on the tolerance of larvae of Ephestia kuehniella to methyl bromide and phosphine. Journal of Stored Products Research, 20(4):215-219

Cox PD; Mfon M; Parkin S; Seaman JE, 1981. Diapause in a Glasgow strain of the flour moth, Ephestia kuehniella. Physiological Entomology, 6(4):349-356

Danysz J, 1893. Origine et multiplication de l'Ephestia kuehniella (Zeller) dans les moulins de France. [Origin and breeding of Ephestia kuehniella (Zeller) in French mills.]. Comptes Rendus de L'Académie des Sciences France, 66(5):207-209.

Daumal J, 1987. Contribution à l'étude de la biologie d'Ephestia kuehniella Zeller (Lepidoptera: Pyralidae - Phycitinae). Application aux élevages intensifs. [Contribution to the study of the biology of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae - Phycitinae). Application to intensive production.]. PhD Dissertation. Aix-Marseille, France: St Jérôme University.

Daumal J; Boinel H, 1994. Trophic quality of eggs of Ephestia kuehniella Zell. after freezing treatment for the rearing of Trichogramma species. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 67(3-4):373-383

Daumal J; Boinel H, 1994. Variability in fecundity and plasticity of oviposition behaviour in Anagasta kuehniella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 87(2):250-256

Daumal J; Jourdheuil P; Tomassone, 1974. Variabilité des effets létaux des basses températures en fonction du développement embryonnaire auxquelles elles sont appliquées chez la pyrale de la farine (Anagasta kuehniella Zell., Lepid., Pyralidae). [Variation in the lethal effects of low temperatures as a function of the embryonic development to which they are applied in the flour pyralid (Anagasta kuehniella Zell., Lepidoptera: Pyralidae).]. Annales de Zoologie Ecologie Animale, 6:229-243.

Daumal J; Marconi D; Chassain C, 1985. Small-scale automated rearing of Ephestia kuehniella Zeller (Lepidoptera- Pyralidae). Bulletin de la Societe Linneenne de Lyon, 54(1):7-12

Daumal J; Pintureau B, 1985. Study of the variability of the duration of development in Ephestia kuehniella Zeller (Lep. Pyralidae). Acta Oecologica, Oecologia Applicata, 6(4):367-380

Daumal J; Voegele J; Benoit M; Pizzol J, 1981a. Le ralentissement du développement préimaginal d'Ephestia kuehniella Zell. à température basse et maîtris sanitaire de l'élevage. [Slowing of preimaginal development of Ephestia kuehniella Zell. at low temperatures and hygienic management of production]. In: Reunion Biological Control of Pests USAID, 9-13 February 1981, Dakar (Sénégal), 116-132.

Daumal J; Voegele J; Brun P, 1975. Trichogramma. II. - A unit for the mass production on a daily basis of a substitute host Ephestia kuehniella Zell. (Lepidoptera, Pyralidae). Annales de Zoologie, Ecologie Animale, 7(1):45-59

Daumal J; Voegele J; Pintureau B, 1981b. Durée du développement d'Ephestia kuehniella Zeller (Lep. Pyralidae), en fonction de la température à laquelle est soumise la chenille. [Duration of development of Ephestia kuehniella Zeller (Lep. Pyralidae), as a function of the temperature to which the caterpillar is subjected.]. In: Proceedings, IX Reunion Nacional de Control Biologico, Oaxaca (Mexique), 96-106.

Edwards DK, 1962. Laboratory determinations of the daily flight times of separate sexes of some moths in naturally changing light. Canadian Journal of Zoology, 40(4):511-530.

Fields P; Dowdy A; Marcotte M, 1997. Structural pest control: The use of an enhanced diatomaceous earth product combined with heat treatment for the control of insect pests in food processing facilities. In: Pentland AL, ed. Environment Bureau, Agriculture and Agri-Food Canada and USDA.

Fields P; Korunic Z, 2000. The effects of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored-product beetles. Journal of Stored Products Research, 36(1):1-13.

Fleurat-Lessard F, 1986. Use of a synthetic attractant for monitoring and trapping of phycitine pyralids in premises used for the storage and processing of foodstuffs of vegetable origin. Agronomie, 6(6):567-573

Goater B, 1986. British pyralid moths. A guide to their identification. British pyralid moths. A guide to their identification., 175pp.; [8 col. pl., 12 fig., 22x16 cm].

Gordh G; Hartman H, 1991. Hymenopterous parasites of stored-food insect pests. In: Gordham JR, ed. Ecology and management of food-industry pests, 217-227.

Hansen LS, 1999. Biological control of the Mediterranean flour moth Ephestia kuehniella. In: Bille N, Christensen M, eds. Danish Pest Infestation Laboratory. Annual Report 1998. Lyngby, Denmark, 76-78.

Hansen LS, 2000. Development time and activity threshold of Trichogramma turkestanica [Trichogramma evanescens] on Ephestia kuehniella in relation to temperature. Entomologia Experimentalis et Applicata, 96(2):185-188; 15 ref.

Hansen LS; Nielsen PS, 2001. Biological control of the Mediterranean flour moth (Ephestia kuehniella) in flour mills. (Biologisk bekæmpelse af melmøl (Ephestia kuehniella) i møllerier.) DJF Rapport, Markbrug [Slutkonference 'Biologisk og mikrobiologisk bekæmpelse af skadevoldere' København, 4. maj 2001.], No. 49:105-110.

Hawlitzky N, 1972. Mode of penetration of an egg-larval parasite Phanerotoma flavitestacea Fish.(Hym.:Braconidae) into the eggs of its host, Anagasta kuehniella Zell.(Lep.:Pyralidae). Entomophaga, 17(4):375-389

Iraira S; Rebolledo R; Aguilera PA, 2000. Biological aspects of the Mediterranean flour moth Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae) reared on pollen. (Aspectos biológicos de la polilla mediterránea de la harina Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae) criada en polen.) Revista Chilena de Entomología, 27:79-84.

Jacob TA; Cox PD, 1977. The influence of temperature and humidity on the life-cycle of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 13(3):107-118

Khebbeb MEH; Gaouaoui R; Bendjeddou F, 2008. Tebufenozide effects on the reproductive potentials of the mediterranean flour moth, Ephestia kuehniella. African Journal of Biotechnology, 7(8):1166-1170.

Leibenguth F, 1986. Genetics of the flour moth, Ephestia kuhniella. Agricultural zoology reviews. Volume 1 [edited by Russell, G.E.] Newcastle upon Tyne, UK; Intercept, 39-72

Lepigre A, 1951. Les insectes du logis et du magasin. [Insects of houses and shops]. Algiers: Baconnier Alger.

Mahla JC, 2001. Population dynamics of storage pests and their incidence in wheat grain under different climatic zones of Haryana. Annals of Agri Bio Research, 6(2):151-154.

Markova L, 2001. Carbon dioxide under high pressure as an alternative in Ephestia kuehniella (Zeller) and Plodia interpunctella (Hübner) (Lepidoptera, Pyralidae) control. Bulgarian Journal of Agricultural Science, 7(3):285-289.

Mills R; Pedersen J, 1990. A flour mill sanitation manual. Minnesota, USA; Eagen Press, 164 pp.

Nielsen PS, 1998. Blattisocius tarsalis (Berlese), would this predatory mite be effective against moth eggs in Scandinavian flour mills?. Bulletin OILB/SROP, 21(3):83-87; 15 ref.

Nielsen PS, 1998. The effect of a diatomaceous earth formulation on the larvae of Ephestia kuehniella Zeller. Journal of Stored Products Research, 34(2/3):113-121; 23 ref.

Nielsen PS, 1999. The impact of temperatures on activity and consumption rate of moth eggs by Blattisocius tarsalis (Berlese) (Acari:Ascidae), a predatory mite on moth eggs. Experimental & Applied Acarology, 23(2):149-157.

Nielsen PS, 1999. The use of Blattisocius tarsalis (Berlese) (Acari: Ascidae) for biological control in flour mills. In: Jin Z, Liang Q, Liang Y, Tan X, Guan L, eds. Stored product protection. Proceedings of the 7th international working conference on stored-product protection, 14-19 October 1998, Beijing, P.R. China, Vol. 2, 1265-1268.

Nielsen PS, 2000. Alternatives to Methyl Bromide. IPM in Flour Mills: Comparison of a Norwegian and Danish Mill. TemaNord, 510:1-35.

Nielsen PS, 2000. Alternatives to Methyl Bromide: IPM in three typical Danish flour mills. Danish Environmental Protection Agency. Environmental News 55.

Norris JM, 1932. Contributions towards the study of insect fertility. I. The structure and operation of the reproduction organs of the genera Ephestia and Plodia (Lepidoptera: Phycitidae). Proceedings of the Zoological Society of London, 1932:595-611.

Norris JM, 1933. Contributions towards the study of insect fertility. II. Experiments on the factors influencing fertility of Ephestia kuehniella Z. (Lepidoptera, Phycitidae). Proceedings of the Zoological Society of London, 1933:903-934.

Norris JM, 1934. Contributions towards the study of insect fertility. III. Adult nutrition, fecundity and longevity in the genus Ephestia (Lepidoptera, Phycitidae). Proceedings of the Zoological Society of London, 1934:333-380.

Pereira AP; Carvalho MO; Rodrigues J; Mexia A, 2002. Survey and estimate of moth population density in a flour mill in Cape Verde Islands. Bulletin OILB/SROP [Proceedings of the IOBC/WPRS Working Group "Integrated Protection in Stored Products", Lisbon, Portugal, 3-5 September, 2001.], 25(3):53-63.

Prozell S; Sch÷ller M, 1997. Die Insektenfauna einer Grossbackerei nach Massenfreilassung von Trichogramma evanescens Westwood und Verzicht auf synthetische chemische Insektizide. Mitteilunger der Deutschen Gesellschaft fnr Allgemeine und Angewandte Entomologie, 11(1-6):293-296.

Prozell S; Sch÷ller M, 1998. Insect fauna of a bakery, processing organic grain and applying Trichogramma evanescens Westwood. IOBC/WPRS Bulletin, 21(3):39-44.

Prozell S; Schöller M, 2003. Five years of biological control of stored-product moths in Germany. In: Advances in stored product protection. Proceedings of the 8th International Working Conference on Stored Product Protection, York, UK, 22-26 July 2002 [ed. by Credland, P. F.\Armitage, D. M.\Bell, C. H.\Cogan, P. M.\Highley, E.]. Wallingford, UK: CABI Publishing, 322-324.

Raichoudhury DP, 1936. Retardation of spermatogenesis and reduction of mobility of sperm in Ephestia kuehniella Z. (Lepidoptera, Phycitidae) caused by high temperature. Proceedings of the Zoological Society of London, 1936:789-805.

Richards OW; Thomson WS, 1932. A contribution to the study of the genera Ephestia, GN. (including Strymax, Dyar) and Plodia, GN. (Lepidoptera, Phycitidae), with notes on parasites of the larvae. London, UK: Transactions of the Royal Entomological Society, 80:169-250.

Riemann JG; Ruud RL, 1974. Mediterranean flour moth: effects of continuous light on the reproductive capacity. Annals of the Entomological Society of America, 67(6):857-860

Robinson R, 1971. Lepidoptera Genetics. Oxford, UK: Pergamon Press.

Roesler RU, 1973. Trifine Acrobasinae. In: Amsel HG, Gregor F, Reisser H, eds. Microlepidoptera Palaearctica 4. Vienna, Austria: Fromm.

Sasaki T; Ishikawa H, 2000. Transinfection of Wolbachia in the Mediterranean flour moth, Ephestia kuehniella, by embryonic microinjection. Heredity, 85(2):130-135.

Sch÷ller M, 1998. Integration of biological and non-biological methods for controlling arthropods infesting stored products. Postharvest News and Information, 9(2):15-20.

Sch÷ller M; Hassan SA; Reichmuth C, 1996. Efficacy assessment of Trichogramma evanescens and T. embryophagum (Hym.: Trichogrammatidae), for control of stored products moth pests in bulk wheat. Entomophaga, 41(1):125-132; 19 ref.

Sch÷ller M; Prozell S, 2000. Einsatzm÷glichkeiten der Mehlmottenschlupfwespe Habrobracon hebetor (Say) im Vorratsschutz. Mitteilungen aus der Biologischen Bundesanstalt fnr Land- und Forstwirtschaft, 376:425-426.

Schöller M, 2002. Commercial application of parasitoids to control stored product pests in Germany and Austria. In: COST Action 842 (1999-2004). Biological control of pest insects and mites, with special reference to entomophthorales. Proceedings of the First Meeting of Working Group 4: Bio-control of arthropod pests in the stored products, Lisbon, Portugal, 6-7th September 2001 [ed. by Zd'árková, E.\Hubert, J.\Luká?, J.]. Prague, Czech Republic: Research Institute of Crop Production, 29-32.

Sehl A, 1931. Furchung und bildung der keimanlage bei der mehlmotte Ephestia kühniella Zell. nbst einer allgemeinen ubersi über den verlauf der embryonalentwicklung. Zeitschriften Morphologische Okologische der Tiere, 20(2):533-598.

Siddiqui WH; Barlow CA, 1973. Population growth of Anagasta kuehniella (Lepidoptera: Pyralidae) at constant and alternating temperatures. Annals of the Entomological Society of America, 66(3):579-585.

Sieminska E; Ryne C; Löfstedt C; Anderbrant O, 2009. Long-term pheromone-mediated mating disruption of the Mediterranean flour moth, Ephestia kuehniella, in a flourmill. Entomologia Experimentalis et Applicata, 131(3):294-299.

Skovg+rd H; Holst N; Nielsen PS, 1999. Simulation model of the mediterranean flour moth (Lepidoptera: Pyralidae) in Danish flour mills. Environmental Entomology, 28(6):1060-1066; 28 ref.

Small GJ, 2007. A comparison between the impact of sulfuryl fluoride and methyl bromide fumigations on stored product insect populations in UK flour mills. Journal of Stored Products Research, 43(4):410-416.

Sogaard-Andersen F, 1968. Sleep in moths and its dependence on the frequency of stimulation in Anagasta kuehniella. Opuscula Entomology, 33(1,2):15-24.

Steidle JLM; Rees D; Wright EJ, 2001. Assessment of Australian Trichogramma species (Hymenoptera: Trichogrammatidae) as control agents of stored product moths. Journal of Stored Products Research, 37(3):263-275.

Stejskal V; Luká? J, 2002. Spatial arrangement of Venturia canescens and Ephestia kuehniella in the extremely infested pasta-producing factory: a case history. In: COST Action 842 (1999-2004). Biological control of pest insects and mites with special reference to entomophthorales. Proceedings of the Second Meeting of Working Group 4: Bio-control of arthropod pests in the stored products, Prague, Czech Republic, 30-31st May 2002 [ed. by Zd'árková, E.\Wakefield, M.\Luká?, J.\Hubert, J.]. Prague, Czech Republic: Research Institute of Crop Production, 116-117.

Tavares J; Daumal J, 1983. Durée de développement et fécondité d'Ephestia kuehniella Zeller aprFs le ralentissement préimaginal et nymphal à basse température. [Period of development and fertility of Ephestia kuehniella Zeller after preimaginal and pupal slowing of development caused by low temperatures.]. Arquipelago, Rev. Univ. Atores, 4:46-63.

Taylor RW, 1999. Alternatives and potential alternatives to methyl bromide for disinfesting durable commodities. In: UNEP. Methyl Bromide Alternatives for North Africa and Southern European Countries, 61-74.

Traynier RMM, 1968. Sex attraction in the Mediterranean flour moth Anagasta kuehniella: location of the female by the male. Canadian Entomologist, 100:5-10.

Traynier RMM, 1970. Sexual behavior of the Mediterranean flour moth Anagasta kuehniella: some influence of age, photoperiod and light intensity. Canadian Entomologist, 102:534.

Traynier RMM; Wright RH, 1972. Behaviour of the male Mediterranean flour moth, Ephestia huehniella, following attraction to a source of female sex pheromone. Entomologia Experimentalis et Applicata, 15(4):509-516

Trematerra P, 1994. Control of Ephestia kuehniella Zell. by sex pheromones in the flour mills. Anzeiger fnr SchSdlingskunde Pflanzenschutz Umweltschutz, 67:74-77.

Trematerra P; Fiorilli F, 2000. Stored-product insects pests in feed-mill in Central Italy. Bulletin OILB/SROP [IOBC/WPRS Working Group 'Integrated Protection in Stored Products'. Proceedings of the meeting at Berlin, Germany, 22-24 August, 1999.], 23(10):103-110.

Trewin B; Reichmuth Ch, 1997. Wirksamkeit des kieselgurprSparates Dryacide gegen vorratsschSdliche Insekten. Anzeiger fnr SchSdlingskunde, Pflanzenschutz und Umweltshutz 70, 51-54.

Ullyett GC, 1945. Oviposition by Ephestia kuehniella Zell. Journal of the Entomological Society of Southern Africa, 7:53-59.

Vieira; Pintureau, 1993. Diversité comparée des LépidoptFres (Insecta) dans les îles des Atores: révision avec de nouvelles données. [Comparative diversity of Lepidoptera (Insecta) in the Azores: revised version with new data.] Arquipelago, published by the University of the Azores, 107-112.

Voute AD, 1936. Die Eientwicklung der Mehlmotte, Ephestia Knhniella Zell., bei konstanten und schwankenden temperaturen. Teil I, 22(1):1-25.

Wajnberg E; Hassan SA, 1994. Biological Control with Egg Parasitoids. Wallingford, UK: CAB International

Williams JH, 1938. The mating of Ephestia kuehniella Zeller and its results. Entomologists Newsletter, 49:121-127.

Wohlgemuth R; Reichmuth C; Rothert H; Bode E, 1987. Occurrence of moths, harmful to stored products, of the genera Ephestia and Plodia outside warehouses and food-processing factories in Germany. Anzeiger fur Schadlingskunde, Pflanzenschutz, Umweltschutz, 60(3):44-51

Links to Websites

Top of page
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway source for updated system data added to species habitat list.
Global register of Introduced and Invasive species (GRIIS) source for updated system data added to species habitat list.

Distribution Maps

Top of page
You can pan and zoom the map
Save map