Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Desmostachya bipinnata
(halfa grass)



Desmostachya bipinnata (halfa grass)


  • Last modified
  • 17 November 2021
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Desmostachya bipinnata
  • Preferred Common Name
  • halfa grass
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Monocotyledonae
  • Summary of Invasiveness
  • D. bipinnata grows commonly and abundantly in fallow agricultural fields, along roadsides and on boundaries and bunds of agricultural fields on dry and sandy soils; it often forms dense tufts producing a dominating patch of plants. It is one of the h...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Excavated shoot of D. bipinnata held at ground level, Pakistan.
TitleExcavated shoot
CaptionExcavated shoot of D. bipinnata held at ground level, Pakistan.
Copyright©Chris Parker/Bristol, UK
Excavated shoot of D. bipinnata held at ground level, Pakistan.
Excavated shootExcavated shoot of D. bipinnata held at ground level, Pakistan.©Chris Parker/Bristol, UK
D. bipinnata infestation with flower heads, Pakistan.
CaptionD. bipinnata infestation with flower heads, Pakistan.
Copyright©Chris Parker/Bristol, UK
D. bipinnata infestation with flower heads, Pakistan.
InfestationD. bipinnata infestation with flower heads, Pakistan.©Chris Parker/Bristol, UK


Top of page

Preferred Scientific Name

  • Desmostachya bipinnata (L.) Stapf

Preferred Common Name

  • halfa grass

Other Scientific Names

  • Briza bipinnata L.
  • Desmostachya cynosuroides (Retz.) Stapf ex Mussery
  • Eragrostis bipinnata (L.) K. Schum.
  • Eragrostis cynosuroides (Retz.) Beauv.
  • Leptochloa bipinnata (L.) Hochst
  • Poa cynosuroides Retz.
  • Stapfiola bipinnata (L.) O. Ktze.
  • Uniola bipinnata L.

Local Common Names

  • India: daab; dhab; durva; kusa; kush; kusha

EPPO code

  • DETBI (Desmostachya bipinnata)

Summary of Invasiveness

Top of page
D. bipinnata grows commonly and abundantly in fallow agricultural fields, along roadsides and on boundaries and bunds of agricultural fields on dry and sandy soils; it often forms dense tufts producing a dominating patch of plants. It is one of the hardiest and most aggressive weeds in agricultural fields growing either with the crop or on field margins. It is very difficult to manage or eradicate established populations because of the extensive and deep rhizomatous root system. Infestations of D. bipinnata in the introduced areas need to be removed by using appropriate mechanical and cultural techniques and controlling the spread of seeds, root slips and rhizomes as contaminants of crop seeds or forage crops. Control measures in infested areas include preventing grazing and ground disturbance to reduce spread. Herbicides can control this weed if different herbicides are used each year to prevent the development of herbicide resistance.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Monocotyledonae
  •                     Order: Cyperales
  •                         Family: Poaceae
  •                             Genus: Desmostachya
  •                                 Species: Desmostachya bipinnata

Notes on Taxonomy and Nomenclature

Top of page
Numerous synonyms have been used for Desmostachya bipinnata but there appears to be no confusion as to this as the preferred scientific name. However, on the basis of distinct morphological and reproductive characters, four new subspecies of D. bipinnata have been described by Pandeya and Pandeya (2002); subsp. longispiculata Amita Pandeya, subsp. jodhpurensis Amita Pandeya, subsp. sheelai Amita Pandeya, and subsp. agraensis Amita Pandeya. However, it is uncertain whether these subspecies represent actual genetic differences, as Pandeya and Pandeya (2002) also note the existence of biotypes of D. bipinnata occurring in response to soil and climatic conditions in western India. The species will be treated as a single undivided taxon for the purposes of this datasheet.


Top of page
It is a tall tufted, perennial rhizomatous grass, branching from the base, with stout, robust rhizomes, covered with shiny sheaths. Culms are rigid and herbaceous having glabrous nodes, covered at the base by leathery yellowish sheaths; varying in height from 30 to 150 cm. The stems are much branched, tufted and profusely rooted, and it branches from the rootstock, sending out rhizomes in all directions (Bhandari, 1990; Kaushik, 1983). The leaves are linear to linear-lanceolate, non-auriculate, acuminate and scarbid on the margins, without cross venation and persistent (Watson and Dallwitz, 1992). The leaf sheaths are glabrous, leaf blades flat or inrolled, tough, long acuminate. The inflorescence is an erect, spike-like panicle having 101-185 spikes per panicle (Pandeya and Pandeya, 2002). Each spike (rachis) is elliptic or elliptic-oblong consisting of a variable number of spikelets from 29 to 45. Spikelets are sessile, 3-10 mm long; compressed laterally and pale brown in colour during the rainy season. In each spikelet, there are 3-10 florets, floral glumes are ovate-lanceolate, lower glume 1-1.5 mm, upper glumes 1-2 mm; lemmas are ovate-lanceolate, palea keel scabrous.

Bhanwara (1986) described the female fertile spikelets as 4-6 mm long, adaxial, compressed laterally, with 6-16 female-fertile florets. Lemmas deltoid, papery and leathery entire, pointed, awnless, hairless, glabrous carinate, 3 nerved. Palea present, relatively long, apically notched and 2 nerved. Lodicules present 2, free, fleshy and glabrous. Stamens are three, which split longitudinally. Anthers are non-penicillate, ovary glabrous and stigmas two. The fruit is free from lemma and pallea, ellipsoid, compressed dorso-ventrally. Hilum is short, pericarp fused, and embryo large, not waisted. Seeds are obliquely ovoid, laterally compressed, 0.5-0.6 mm long. Ovules remain shriveled in the basal five or six florets, whereas terminal florets contain younger stages of ovules and stamens.

Plant Type

Top of page
Grass / sedge
Seed propagated
Vegetatively propagated


Top of page
This is a monotypic genus widely distributed throughout north-east Africa and western Asia from Algeria to India (Bor, 1960). It is noted as native to the Sudanian region of Africa, from Chad to Somalia and the Middle East, and was introduced into South-East Asia (Feinburn 1986, Aronson, 1989).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 21 Jul 2022
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes




ChinaPresentPresent based on regional distribution.
Cocos IslandsPresentIntroduced
-Himachal PradeshPresentNativeOriginal citation: Das et al., 1993
-Jammu and KashmirPresentNative
-Madhya PradeshPresentNative
-RajasthanPresentNativeOriginal citation: Bhandari, 1978
-Tamil NaduPresentNative
-Uttar PradeshPresentNative
-West BengalPresentNative
Saudi ArabiaPresentNative
YemenPresentNativeOriginal citation: Al Kouthayri & Hassan, 1998

History of Introduction and Spread

Top of page
There is no specific information available regarding the introduction of D. bipinnata. Within the native range, spread appears to concern rapid increases in the density of D. bipinnata in disturbed sites and some dispersal to new habitats, rather than any introduction to new, exotic locations. For example, where timber extraction and overgrazing have caused degradation of sal (Shorea robusta) forests in India, the area damaged has become dominated by D. bipinnata. It becomes dominant after regular cutting, burning and grazing in Phragmites/Saccharum/Imperata grasslands of northern India (Dabadghao and Shankarnarayan, 1973) and in managed grassland plots of Imperata cylindrica subjected to annual cutting and burning (Peet et al, 1999). On reclaimed, salt-affected soils planted with Leptochloa fusca, D. bipinnata was found to be invasive possibly due to allelopathic effects on seed germination (Mahmood et al., 1989).

Risk of Introduction

Top of page
There is a possibility of D. bipinnata being introduced as a result of seed contamination of crop seeds or by agricultural practices that break the rhizome system into fragments. It is a noxious weed. Information is not available on the spread and impacts of D. bipinnata and as such it may not yet appear on lists of regulated weeds and thus may become introduced to new areas.


Top of page
D. bipinnata is common in wastelands and abandoned agricultural fields (Sastry and Kavathekar, 1990), also is found on sand dunes, inland brackish wetlands and marshes and on reclaimed salt-affected wastelands (Mahmood et at., 1989). It frequently grows in dry places and open wastelands subject to periodic disturbance such as cutting, grazing and burning. In dry and hot conditions, D. bipinnata flourishes well, forming big tussocks in dry-sandy areas.

Habitat List

Top of page
Terrestrial ManagedCultivated / agricultural land Present, no further details Harmful (pest or invasive)
Terrestrial ManagedProtected agriculture (e.g. glasshouse production) Present, no further details
Terrestrial ManagedManaged forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Terrestrial ManagedManaged grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Terrestrial ManagedDisturbed areas Present, no further details
Terrestrial ManagedRail / roadsides Present, no further details Harmful (pest or invasive)
Terrestrial Natural / Semi-naturalNatural forests Present, no further details
Terrestrial Natural / Semi-naturalNatural grasslands Present, no further details
Terrestrial Natural / Semi-naturalRiverbanks Present, no further details Harmful (pest or invasive)
Terrestrial Natural / Semi-naturalWetlands Present, no further details
Terrestrial Natural / Semi-naturalDeserts Present, no further details
LittoralCoastal areas Present, no further details

Hosts/Species Affected

Top of page
It is a common weed in agricultural fields of sorghum (Sorghum vulgare), cotton (Gossypium hirsutum), fallow fields of wheat (Triticum aestivum) and Pennisetum typhoides and on bunds in rice (Oryza sativa) fields. D. bipinnata has been reported as a dominant weed in agricultural fields (Hussain and Rashid, 1989) and in sugarcane (Saccharum officinarum) fields in Sukkur district, Pakistan (Qureshi et al., 2001). D. bipinnata is a serious weed of various agricultural crops on the Batina coast in Arabia (Parker, 1973) and in the Wadi Hadramout valley, Yemen (Al Kouthayri and Hassan, 1998). It is also commonly found in grasslands, tree plantations and agroforestry systems.

Growth Stages

Top of page
Vegetative growing stage

Biology and Ecology

Top of page

The chromosome number is 2n=20 (Mehra et al., 1968; Christopher and Abraham, 1974).

Physiology and Phenology

Flowering and fruiting occurs from May to July, maturing from August to October. On moderately alkaline calcareous soils, the monsoon rains trigger active growth of D. bipinnata in June and plant biomass attains a peak during the rainy season in September (Gupta and Singh, 1982; Sinha et al., 1991). The leaves senesce with the onset of dry weather during winter months from November to February followed by a spurt of growth in summer months due to regeneration of shoots from the perennial rhizomes (Gupta and Singh, 1982). Annual net primary productivity was found to be 1080-2453 g/m² (Gupta and Singh, 1982; Sinha et al., 1991). Being a deep-rooted grass, 52-55% of the root biomass remains concentrated in the top 10 cm of the soil, whereas the rhizomes and roots penetrate deeper than 1.5 m (Gupta and Singh, 1982).

D. bipinnata exhibits a C4 photosynthetic pathway (Aronson, 1989; Malik et al., 1991; Watson and Dallwitz, 1992), as are more grass species found in the moderately temperate and moist Himalayan region near Palampur, India (Das and Vats, 1993). On the basis of acetylene reduction assay and 15N natural abundance, associative nitrogen fixation has been reported in D. bipinnata growing in saline and sodic soils in Lahore, Pakistan (Malik et al., 1991). The occurrence of D. bipinnata has been positively correlated with increased ion exchangeable, notably with increased sodium, chlorine, calcium and magnesium ion content. On sodic soil, the soil alkalinity was found to have little adverse effect on the roots of the D. bipinnata (Joshi et al., 1985). It is considered to have a salt tolerance up to 5.6 dS/m (Aronson, 1989), though seed germination decreased in response to increasing salinity levels from 3-40 dS/m (Mahmood et al., 1996). The presence of polyphenol oxidase activity in alkali soil halophytes including D. bipinnata indicated its significance in the salt resistance of plants (Sharma et al., 1983).

Reproductive Biology

In north Indian populations of D. bipinnata, there are abortive embryo sacs due to female gametophyte degeneration, possibly due to self-incompatibility caused by the failure of the pollen tube to reach the embryo sac (Bhanwara, 1986). This study signifies the importance of understanding further the reproductive biology of D. bipinnata in relation to its widespread occurrence in India, Africa and South-East Asia.

Environmental Requirements

It is widely distributed in arid and semi-arid regions of India having an annual rainfall of 250-750 mm (Dabadghao and Sharkarnarayan, 1973). It is, however, very drought tolerant and known to survive where annual rainfall may be as low as 54 mm, and will also be found in higher rainfall zones, above 1000 mm. It is very tolerant of saline soils (Khan et al., 1989; Mahmood et al., 1994), alkaline and calcareous soils (Gupta and Singh, 1982; Gupta et al., 1990; Sinha et al., 1991) and highly sodic soils (Singh, 1994; Kaur et al., 2002a,b). On alluvial saline soils with restricted water penetration, D. bipinnata constitutes the dominant weed, which occurs in dense patches (Mahmood et al., 1994).


In the Dudhwa National Park, Uttar Pardesh, India, D. bipinnata occurs commonly as undergrowth in dry deciduous sal (Shorea robusta) forest as well as in mesophyllous grasslands along with other perennial grasses such as Themeda aurndinacea, Saccharum spontaneum, S. bengalensis, Vetiveria zizanioides, Dichanthium annulatum and Echinochloa spp. In degraded forest land in the Siwalik Hills between the rivers Ganga and Yamuna, India, it grows along with Eulaliopsis binata, Arundinella setosa, Phragmites karka, Hetero pogon contortus and Cenchrus ciliaris (Gupta et al., 1996). D. bipinnata has been reported as undergrowth in mixed plantations of Dalbergia sissoo, Acacia nilotica and Eucalyptus camadulensis in Lal Suhanra National Park, Bahawalpur, Pakistan (Hameed et al., 2002).

It is an important constituent of the Banni grasslands of the Kutch district of Gujarat, India (Sastry et al., 2003), where it occurs in five main associations, Desmostachya/Cenchrus, Desmostachya/Eragrostis, Desmostachya/Heylandia, Sporobolus, and Isleima/Dichanthium (Pandya and Sidha, 1987). D. bipinnata occurs as the most prominent constituent of the grassland sites at Jhansi, Uttar Pradesh, India (Gupta, 1987). In grassy savannas of Keoladeo National Park, Rajasthan, India, D. bipinnata grows along with Prosopis cineraria, Acacia nilotica, Capparis sepieria, Vetiveria zizanioides and Cynodon dactylon. D. bipinnata has been reported to grow in saline tracts of Delhi, India and grows in association with Sporobolus marginatus and Alhagi maurorum (Maheshwari, 1963).

On the young alluvial soils along river courses subjected to erosion and deposition of soil, D. bipinnata and Phragmites species grow along with Saccharum benghalense, S. spontaneum (Gupta and Saxena, 1972). In the swampy areas of sunderbans, tallgrass patches of Imperata cylindrica, Phragmites karka and Saccharum spontaneum are associated with low forests and tall grasses such as D. bipinnata, Saccharum arundinaceum and Vetiveria zizanioides (Dabadghoa and Shankarnaryan, 1973; Singh and Gupta, 1992). It occurs as a dominant halophyte in saline areas of Peshawar district of Pakistan where it occurs with Sueda fructicosa, Juncellus laevigatus, Saccharum spontaneum and Cynodon dactylon (Sarir et al., 1986). D. bipinnata is often found associated with other serious perennial weeds such as Avena fatua, Cynodon doctylon and Cyperus rotundus in parts of its native range (Al Kouthayri and Hassan, 1998).

Termites are an important group of soil fauna affecting decomposition rates of litter and roots (Gupta et al., 1981). On the decomposition leaf litter of D. bipinnata (kept on the soil surface and buried at 5 cm depth), the predominant species of fungi were Acrophialophora fusispora, Aspergillus spp, Curvurtlaria spp, Penicillium spp. and Pericornia minuisima (Aneja and Mehotra, 1979, 1980). In D. bipinnata grasslands on moderate to highly alkaline soils, the vesicular-arbuscular mycorrhization of roots varied from 14 to 72%, the spore count averaged 507 to 372 spores per 100 g of soil, and belonged to species of Acaulospora, Entrophospora, Endogone, Glomus, Gigaspora and Sclerocystis (Neeraj, 2001; Neeraj et al., 2003). The diazotrophs isolated from the roots of D. bipinnata included Citrobacter freundi and Enterobacter agglomerans (Malik et al., 1991).


Top of page
ParameterLower limitUpper limitDescription
Dry season duration04number of consecutive months with <40 mm rainfall
Mean annual rainfall541016mm; lower/upper limits

Rainfall Regime

Top of page

Soil Tolerances

Top of page

Soil drainage

  • free
  • impeded
  • seasonally waterlogged

Soil reaction

  • alkaline
  • neutral

Soil texture

  • heavy
  • light
  • medium

Special soil tolerances

  • infertile
  • infertile
  • saline
  • shallow
  • sodic

Notes on Natural Enemies

Top of page
D. bipinnata is infected by a wide range of species including Puccinia spp., Striiformis spp. and Uromyces eragrostidis. Cervoannulatus graminous (Tylenchinae) has been reported from soils under D. bipinnata (Bajaj, 1997). Laprius ikrami is a new report of Pentatomidae collected from Punjab, Pakistan (Ahmad and Kamaluddin, 1987). In the D. bipinnata dominated grassland, herbivores constitute 80% of the total insect population and predators accounted for 11% (Kaushal and Vats, 1987); the total density and biomass of Orthoptera being maximum in rainy season (Kaushal and Vats, 1984; 1986). Two new insect species, Nazeeriana angulatus and N. dirhynehus were described, collected from D. bipinnata in Pakistan (Kamaludin and Ahmad, 1988). The phytophagous insects Heiroglyphus banian and Belenois sp. lay eggs on D. bipinnata and fed on this species (Vats and Kaushal, 1981). D. bipinnata is an alternative host of the sorghum stem fly, Atherigona varia var. soccata Rondani (Anthomyidae: Diptera) which breeds on the plant and remains active throughout the year (Moiz and Naqvi, 1969).

Means of Movement and Dispersal

Top of page
Natural Dispersal (Biotic)

Propagation is mainly vegetative from the underground rhizomes. Short-distance dispersal occurs due to wind, whereas long-distance dispersal is mainly achieved by water. The broken rhizome fragments spread along waterways, as D. bipinnata commonly grows along riverbanks, streams and channels. Under dry conditions, high winds may blow the aerial parts as a 'tumble weed', scattering seed and vegetative fragments along the way.

Agricultural Practices

The roots cut by cultivation equipment form small pieces which can produce plants in new locations.

Accidental Introduction

The contamination of seed crops with D. bipinnata seed could be responsible for long-distance distribution to different countries and continents.

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Land vehicles Yes
Plants or parts of plants Yes
Soil, sand and gravel Yes

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Fruits (inc. pods)
Stems (above ground)/Shoots/Trunks/Branches

Impact Summary

Top of page
Biodiversity (generally) Positive
Crop production Negative
Environment (generally) Positive
Human health Positive
Livestock production Positive
Native fauna Positive
Native flora Positive
Tourism Negative
Trade/international relations Negative
Transport/travel Negative


Top of page
D. bipinnata is one of the ten most important weeds in Pakistan (Ghafoor et al., 1987) as well as being reported as an aggressive weed from agricultural systems in India. Due to its presence with many other weed species, separating the economic cost of this species individually is not possible, although even as a component it may be expected to be considerable.

Environmental Impact

Top of page
There appear to be environmental benefits from the presence of D. bipinnata, particularly in sodic and alkaline soils. Productivity and nutrient cycling patterns in a D. bipinnata grassland (soil pH 9.3, ESP 32) showed that sodic soils are potentially productive under this adaptive native vegetation and the protection of native vegetation on wastelands affected by soil sodicity could improve soil organic matter (Gupta et al., 1990). The integration of D. bipinnata with agroforestry species has been shown to improve the physical, chemical and biological properties of sodic soils (Kaur et al., 2002a,b).

Impact: Biodiversity

Top of page
D. bipinnata in its native range of distribution grows well in association with other plants. Though it becomes spread in wastelands, there are no reports of D. bipinnata having adverse impact on biodiversity.

Social Impact

Top of page
The coarse leaves and very sharp tillers can cause small painful cuts when in contact with the skin; these are a nuisance to farmers especially during manual weeding operations.

Risk and Impact Factors

Top of page
  • Invasive in its native range
  • Highly adaptable to different environments
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Highly mobile locally
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
Impact outcomes
  • Damaged ecosystem services
  • Ecosystem change/ habitat alteration
  • Negatively impacts agriculture
  • Negatively impacts tourism
  • Reduced amenity values
Impact mechanisms
  • Competition - monopolizing resources
  • Pest and disease transmission
  • Produces spines, thorns or burrs
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect as a commodity contaminant
  • Difficult/costly to control


Top of page
This grass branches from the rootstock, sending out rhizomes in all directions and making it an excellent sand binder (Bhandari, 1990; Kaushik, 1983). It is used for fibre in Sudan, the culms used for thatching and making rough rope and brooms. The pulp (35% of total biomass) is suitable for papermaking; however, the fibre strength is lower than that of sisal and sun hemp (Chand and Agnihotri, 1993). Young shoots have a crude protein content of 6.75% and are a good fodder for buffaloes in arid zones. On saline wastelands and sandy deserts in Pakistan, D. bipinnata along with Cynodon dactylon, Atriplex spp., Sesbania and Prosopis spp. serve as potential forage crops (Ahmad et al., 1994). In Varanasi, India, the annual net production of D. bipinnata protected from grazing was 8.3 t/ha (Ambasht and Tothill, 1986). Silvopastoral agroforestry systems comprising indigenous trees and grasses such as Dichanthium annulatum, Sporobolus spp, and D. bipinnata have been suggested as having an important role for controlling soil erosion and revegetating areas in northern India (Chinnamani, 1994). On a highly sodic soil at Saraswati, Kurukshetra, India, integration of Acacia nilotica, Dalbergia sissoo and Prosopis juliflora with D. bipinnata resulted in an increased diversity of plant species, particularly of forbs. D. bipinnata can also be used for the reclamation of saline soils in Pakistan (Alam, 2002) and has been grown for this purpose with Prosopis juliflora, Acacia leucophloea and Tamarix spp. under rainfed conditions in India (Singh, 1994). Medicinally, it is diuretic, used to treat urinogenital disorders and dysentery as well as being a mild stimulant. D. bipinnata has been mentioned as an important medicinal plant in the Atri-samhita associated with mythological significance in India (Sensarma, 2000), as well as being used in rituals and Hindu ceremonies (Singh et al., 1990).

Uses List

Top of page

Animal feed, fodder, forage

  • Fodder/animal feed

Medicinal, pharmaceutical

  • Traditional/folklore

Similarities to Other Species/Conditions

Top of page
This genus is closely related to Eragrostis spp., differing mainly by the structure of the inflorescence.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Cultural Control

In West Africa, Vetveria zizanioides is used as a border to prevent the spread of D. bipinnata into gardens and cultivated fields (World Bank, 1990).

Mechanical Control

In orchards in Israel, mechanical cultivation after 3-4 weeks has been found to be effective for controlling D. bipinnata (Oren, 1988). Mechanical methods are preferred for controlling D. bipinnata in cotton fields and by manual weeding in fruit orchards in India.

Chemical Control

Applications of herbicides control D. bipinnata on the bunds of rice fields. In orchards in northern India, perennial grasses such as Imperata cylindrica, D. bipinnata and Saccharum munja have been controlled effectively by application of dalapon + paraquat (Joolka et al., 1991). On non-cultivated land, an application of imazarpyr during winter effectively controlled D. bipinnata during the following summer (Anon., 1985). In vineyards, citrus and other fruit orchards, glufosinate controlled many invasive weeds including D. bipinnata (Bhat, 1985).


Top of page

Abdul Waheed, Rahmatullah Qureshi, Jakhar, G. S., Hayatullah Tareen, 2009. Weed community dynamics in wheat crop of district Rahim Yar Khan, Pakistan. Pakistan Journal of Botany, 41(1), 247-254.

Ahmad I; Kamaluddin S, 1987. A new genus and two species of Myrocheini Stal (Pentatomidae: Pentatominp) from Pakistan with a note on their relationships. Pakistan Journal of Zoology, 19(3):283-290

Ahmad R; Ismail S; Bodla MA; Chaudhry MR; Squires VR; Ayoub AT, 1994. Potentials for cultivation of halophytic crops on saline wastelands and sandy deserts in Pakistan to overcome feed gap for grazing animals. Halophytes as a resource for livestock and for rehabilitation of degraded lands. Proceedings of a international workshop on halophytes for reclamation of saline wastelands and as a resource for livestock problems and prospects, Nairobi, Kenya, 22-27 November 1992, 223-230.

Al Kouthayri GR; Hassan AA, 1998. Survey of major weeds in Hadramout Valley, Yemen. Arab Journal of Plant Protection, 16(1):19-26.

Alam SM, 2002. Utilization of salt-lands: salinity poses distinct physiological threat to plants. Gulf Pakistan Economist, 16-22 September, 2002.

Ambasht RS; Tothill JC; Mott JC, 1986. Primary productivity and soil and nutrient stability of an Indian savanna land. Ecological and management of the world's savannas, 217-219.

Aneja KR; Mehrotra RS, 1980. Studies on microorganisms decomposing aboveground parts of "the grass' (Desmostachya bipinnata). Proceedings of National Academy of Science, India, 50:12-20.

Aneja; KR; Mehrotra RS, 1979. Qualitative and quantitative changes in the microflora on Desmostachya bipinnata litter buried in soil. Botanical Progress, 2:50-54.

Anon., 1985. Imazapyr - a new herbicide for weed control on non-cultivated land. Phytoparasitica, 13:238.

Aronson JA, 1989. Haloph, a Database of Salt Tolerant Plants of the World. University of Arizona, Tucson, USA: Office of Arid Land Studies.

Bajaj HK, 1997. Description of Cervoannulatus graminus gen. n., sp. n. and Psilenchus mixus sp. n. (Tylenchida) from Haryana, India. Indian Journal of Nematology, 27(2):156-161; 8 ref.

Bamber CJ, 1916. Plants of Punjab. Punjab, India: Superintendent Government Printing.

Bhandari MM, 1990. Flora of the Indian Desert. Jodhpur, India: MPS Repros.

Bhanwara RK, 1986. Abortive embryo sacs in Desmostachya bipinnata (Poaceae). Current Science, 55:1033-1034.

Bhat A, 1985. Glufosinate ammonium for general weed control in vineyards, citrus and other fruit orchards, and uncultivated areas. Phytoparasitica, 13:3-4, 239.

Bor LN, 1960. The Grasses of Burma, Ceylon, India and Pakistan. Oxford, UK: Pergamon Press.

Chand N; Agnihotri MP, 1993. Mechanical characteristics of kusha grass fibre. Indian Textile Journal, 103:58-60.

Chinnamani S, 1994. Silvipasture in Chambal ravines. Range Management and Agroforestry, 15(1):79-86.

Christopher J; Abraham A, 1974. Studies on the cytology and phylogeny of south Indian grasses II. Subfamily Eragrostoideae. Cytologia, 39:561-571.

Dabadghao PM; Shankarnarayan KA, 1973. The Grass Cover of India. New Delhi, India: Indian Council of Agricultural Research.

Das VSR; Vats SK, 1993. A Himalayan monsoon location exhibiting unusually high preponderance of C grasses. Photosynthetica, 28(1):91-97; 16 ref.

Feinburn N, 1986. Flora Palaestina. Part IV, Jerusalem, Israel: Israel Academy of Sciences.

Flora of China Editorial Committee, 2003. Flora of China Web. Cambridge, Massachusetts, USA: Harvard University Herbaria.

Ghafoor A; Shad RA; Sher MA, 1987. Ten most important weeds in Pakistan. Progressive Farming, 7(1):17-20

Gupta JN, 1987. Ecophysiological association and balance among some grassland communities of Jhansi - India. Journal of Agronomy and Crop Science, 159:293-298.

Gupta RK; Chauhan A; West NE, 1996. Restoration of degraded rangelands and biodiversity of the Siwalik Hills between the Ganga and Yamuna Rivers, India. Rangelands in a sustainable biosphere. Proceedings of the Fifth International Rangeland Congress, Salt Lake City, Utah, USA, 23-28 July, 1995. Volume I: Contributed presentations, 191-192.

Gupta RK; Saxena SK, 1972. Potential grassland types and their ecological succession in Rajasthan desert. Annals of Arid zone, 11:198-211.

Gupta SR; Rajvanshi R; Singh JS, 1981. The role of the termite Odontotermes gurdaspurensis (Isoptera: Termitidae) in plant decomposition in a tropical grassland. Pedobiologia, 22:254-261.

Gupta SR; Singh JS, 1982. Influence of floristic composition on the net primary production and dry matter turnover in a tropical grassland. Australian Journal of Ecology, 7:363-374.

Gupta SR; Sinha A; Rana RS, 1990. Biomass dynamics and nutrient cycling in a sodic grassland. International Journal of Ecology and Environmental Sciences, 16:57-70.

Hameed M; Chaudhry AA; Mann MA; Gill AH, 2002. Diversity of plant species in Lal Suhanra National Park, Bhaglpur, Pakistan. On line Journal of Biological sciences, 2:267-274.

Hussain F; Rashid A, 1989. A checklist to the monocotyledonous weeds of Pakistan I. Family Poaceae. Sarhad Journal of Agriculture, 5(2):183-197.

Joolka NK; Angiras NN; Bhutani VP, 1990. Chemical weed control in Kinnow orchard. Indian Journal of Weed Science, 22(1-2):83-85

Joshi YC; Qadar A; Sharma SK, 1985. Root growth of Desmostachya, Diplachne, Triticum and Brassica on sodic soils. Indian Journal of Agricultural Sciences, 55:434-437.

Kamaluddin S; Ahmad I, 1988. A revision of the tribe Phyllocephalini (Hemiptera: Pentatomidae: Phyllocephalinp) from Indo-Pakistan subcontinent with description of five new species. Oriental Insects, No. 22:185-240

Kaur B; Gupta S R; Singh G, 2002. Carbon storage and nitrogen cycling in silvopastoral system on a sodic soil in northwestern India. Agroforestry Systems, 54:21-29.

Kaur B; Gupta SR; Singh G, 2002. Bioamelioration of a sodic by silvopastoral system in northwestern India. Agroforestry Systems, 54:13-20.

Kaushal BR; Vats LK, 1984. Population dynamics, biomass and secondary net production of orthopterans with emphasis on acridians in a tropical grassland. Acta Oecologica, Oecologia Generalis, 5(4):333-349

Kaushal BR; Vats LK, 1986. Intraspecific variation in calorific content of two phytophagous insects Hieroglyphus banian and Belenois mesentina. Indian Journal of Ecology, 13(1):167-168

Kaushal BR; Vats LK, 1987. Population density, biomass and secondary net production of coleopterans in a tropical grassland. Entomon, 12(2):161-165

Kaushik JP, 1983. Flora of Shivpuri (Madhya Pardesh). Shivpuri, Agra, India: Mehra Offset Press.

Khan D; Rafiq Ahmad; Shoab Ismail, 1989. Structure composition and above ground standing phytomass of some grazable grass-dominated communities of Pakistan coast. Pakistan Journal of Botany, 21:88-106.

Maheshwari JK, 1963. The Flora of Delhi. New Delhi, India: CSIR.

Mahmood K; Malik KA; Lodhi MAK; Sheikh KH, 1994. Soil-plant relationships in saline wastelands: vegetation, soils, and successional changes, during biological amelioration. Environmental Conservation, 21(3):236-241; 25 ref.

Mahmood K; Malik KA; Lodhi MAK; Sheikh KH, 1996. Seed germination and salinity tolerance in plant species growing on saline wastelands. Biologia Plantarum, 38:309-315.

Mahmood K; Malik KA; Sheikh KH; Lodhi MAK, 1989. Allelopathy in saline agricultural land: vegetation successional changes and patch dynamics. Journal of Chemical Ecology, 15:565-579.

Malik KA; Bilal R; Rasul G; Mahmood K; Sajjad MI, 1991. Associative N2-fixation in plants growing in saline-sodic soils and its relative quantification based on 15N natural abundance. Plant and Soil, 137:67-74.

Mehra PN; Khosla PK; Kohli BL; Koonar JS, 1968. Cytological studies in the North Indian Grasses. Research Bulletin Punjab University, 19:157-230.

Mitra JN, 1958. Flowering plants of Eastern India. Calcutta, UK: The World Press Private Ltd.

Moiz SA; Naqvi KM, 1969. Studies on sorghum stem fly Atherigona varia var. soccata Rondani (Anthomyidae : Diptera). Agriculture Pakistan, 19:161-164.

Neeraj, 2001. Plant Diversity, Soil Microbial Activity and Nitrogen Mimolization in a Grassland Ecosystem. PhD Thesis, Kurukshetra University, Kurukshetra, India: Department of Botany.

Neeraj; Gupta SR; Malik V; Parkash V, 2003. Tree-based systems for restoring the fertility of a sodic soil in northwestern India. In international conference on Ecorestoration 14-21 October 2003, Dehradun and New Delhi, India.

Oren Y, 1988. A new approach to weed control in orchards. Phytoparasitica, 16(4):386

Pandeya A; Pandeya SC, 2002. Environment and population differentiation in Desmostachya bipinnata (Linn.) Stapf in western India. Tropical Ecology, 43:359-362.

Pandya SM; Sidha VK, 1987. Ecological studies of grazing lands of Kutch (Gujrat State), India. Indian Journal of Range Management, 8:1-20.

Parker C, 1973. Weeds in Arabia. PANS, 19:345-352.

Peet NB; Watkinson AR; Bell DJ; Sharma UR, 1999. The conservation management of Imperata cylindrical grassland in Nepal with fire and cutting: an experimental approach. Journal of Applied Ecology, 36:374-387.

Qureshi R; Bhatti GR; Ghanghro AS, 2001. Survey of weed communities of sugarcane (Saccharum officinarum Linn.) crop in district Sukkur, Sindh, Pakistan. Hamdard Medicus, 44:107-11.

Rahmatullah Qureshi, Bhatti, G. R., 2001. Determination of weed communities in wheat (Triticum aestivum L.) fields of district Sukkur. Pakistan Journal of Botany, 33(1), 109-115.

Sarir MS; Marwat KB; Khattak JK, 1986. Studies on some halophytes of Peshwar district. Pakistan Journal of Science, 38:39-42.

Sastry CS; Kavathekar KY, 1990. Plants for Reclamation of Wastelands. New Delhi, India: CSIR Publication and Information Directorate.

Sastry KLN; Thakker PS; Jadhav R, 2003. Biodiversity threat through exotic species monitoring and management using remotely secured data and GIS techniques. Map India 2003. Forestry and Biodiversity. Map India Conference 2003.

Sensarma P, 2000. Plants in Atri-samhita. Ethnobotany, 12:39-41.

Sharma SK; Bal AR; Joshi YC, 1983. Polyphenol oxidase activity in glycophytes and alkali halophytes under salt stress. Current Agriculture, 7:71-74.

Shukla U, 1996. The Grasses of North-Eastern India. Jodhpur, India: Scientific Publishers, 325 pp.

Singh JS; Gupta SR, 1992. Grasslands of Southern Asia. In: Coupland RT, ed. Natural Grasslands. Amsterdam, The Netherlands: Elsevier Scientific Publishing Co., 83-123.

Singh K, 1994. Site suitability and tolerance limits of trees, shrubs and grasses on sodic soils of Ganga-Yamuna Doab. Indian Forester, 120:225-235.

Singh Y; Wadhwani AM; Johri BM, 1990. Dictionary of Economic Plants of India. New Delhi, India: Indian Council of Agricultural Research.

Sinha A; Rana RS; Gupta SR, 1991. Growth patterns, net primary production and energy transfers in two grassland communities of sodic soils. Tropical Ecology, 32:105-116.

USDA-ARS, 2003. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory.

Vats LK; Kaushal BR, 1981. Population dynamics, Secondary productivity and energy budget of Parahieroglyphus bilineatus Bol. (Orthopetra: Acridiae: Catantopinae). Acta Oecologia/Oecologia Generalis, 2:355-369.

Watson L; Dallwitz MJ, 1992. The grass genera of the world. Version: 18th December 2012. URL: [Accessed 04 September 2013]

World Bank, 1990. Vetiver Newsletter. Newsletter of the Vetiver information network, ASTAG, 4:61-64.

Distribution References

Abdul Waheed, Rahmatullah Qureshi, Jakhar G S, Hayatullah Tareen, 2009. Weed community dynamics in wheat crop of district Rahim Yar Khan, Pakistan. Pakistan Journal of Botany. 41 (1), 247-254.

Bamber CJ, 1916. Plants of Punjab., Punjab, India: Superintendent Government Printing.

CABI, Undated. Compendium record. Wallingford, UK: CABI

CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI

CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

Dabadghao PM, Shankarnarayan KA, 1973. The Grass Cover of India., New Delhi, India: Indian Council of Agricultural Research.

Feinburn N, 1986. (Flora Palaestina. Part IV)., Jerusalem, Israel: Israel Academy of Sciences.

Flora of China Editorial Committee, 2003. Flora of China Web., Cambridge, Massachusetts, USA: Harvard University Herbaria.

Gupta S R, Singh J S, 1982. Influence of floristic composition on the net primary production and dry matter turnover in a tropical grassland. Australian Journal of Ecology. 7 (4), 363-374. DOI:10.1111/j.1442-9993.1982.tb01311.x

Huma Qureshi, Tauseef Anwar, Sammer Fatima, Shamim Akhtar, Sadiqullah Khan, Muhammad Waseem, Muhammad Mohibullah, Madeeha Shirani, Saba Riaz, Muhammad Azeem, 2020. Invasion impact analysis of Broussonetia papyrifera in Pakistan. Polish Journal of Environmental Studies. 29 (4), 2825-2831. DOI:10.15244/pjoes/111320

Kalyan Singh, 1994. Site suitability and tolerance limits of trees, shrubs and grasses on sodic soils of Ganga-Yamuna Doab. Indian Forester. 120 (3), 225-235.

Maheshwari JK, 1963. The Flora of Delhi., New Delhi, India: CSIR.

Mitra J N, 1958. Flowering plants of Eastern India. Calcutta, India: The World Press Private Ltd.

Rahmatullah Qureshi, Bhatti G R, 2001. Determination of weed communities in wheat (Triticum aestivum L.) fields of district Sukkur. Pakistan Journal of Botany. 33 (1), 109-115.

Rasthra Vardhana, 2007. Plant's havoc by Cuscuta spp. in district Meerut U.P. India. Plant Archives. 7 (2), 917-918.

Rasthra Vardhana, 2007a. Plant's havoc by Cuscuta spp. in district Ghaziabad U.P. India. Plant Archives. 7 (2), 921-922.

Rehmat Ullah, Kalim Ullah, Khan M A, Imdad Ullah, Zahid Usman, 2014. Summer weeds flora of district Dera Isamail Khan Khyber Pakhtunkhwa Pakistan. Pakistan Journal of Weed Science Research. 20 (4), 505-517.

Shukla U, 1996. The Grasses of North-Eastern India., Jodhpur, India: Scientific Publishers. 325 pp.

Singh JS, Gupta SR, 1992. Grasslands of Southern Asia. In: Natural Grasslands, [ed. by Coupland RT]. Amsterdam, The Netherlands: Elsevier Scientific Publishing Co. 83-123.

USDA-ARS, 2003. Hedychium flavescens. In: Germplasm Resources Information Network (GRIN). Online Database, Beltsville, USA: National Germplasm Resources Laboratory.

Distribution Maps

Top of page
You can pan and zoom the map
Save map
Select a dataset
Map Legends
  • CABI Summary Records
Map Filters
Third party data sources: