Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Cyperus esculentus
(yellow nutsedge)



Cyperus esculentus (yellow nutsedge)


  • Last modified
  • 19 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Cyperus esculentus
  • Preferred Common Name
  • yellow nutsedge
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Monocotyledonae
  • Summary of Invasiveness
  • C. esculentus is listed in the USDA Plants-database as a noxious weed in California, Colorado, Hawaii, Oregon and Washington (USDA-NRCS, 2012).   It is included in the...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Young plants of C. esculentus. Red disc is 1cm diameter.
TitleYoung plants
CaptionYoung plants of C. esculentus. Red disc is 1cm diameter.
CopyrightTomas Marquez/DuPont-Spain
Young plants of C. esculentus. Red disc is 1cm diameter.
Young plantsYoung plants of C. esculentus. Red disc is 1cm diameter.Tomas Marquez/DuPont-Spain
Young plants and tubers of C. esculentus.
TitleYoung plants and tubers
CaptionYoung plants and tubers of C. esculentus.
CopyrightTomas Marquez/DuPont-Spain
Young plants and tubers of C. esculentus.
Young plants and tubersYoung plants and tubers of C. esculentus.Tomas Marquez/DuPont-Spain
Young plants of C. esculentus.
TitleYoung plants
CaptionYoung plants of C. esculentus.
CopyrightTomas Marquez/DuPont-Spain
Young plants of C. esculentus.
Young plantsYoung plants of C. esculentus.Tomas Marquez/DuPont-Spain
Young plants and tubers of C. esculentus.
TitleYoung plants and tubers
CaptionYoung plants and tubers of C. esculentus.
CopyrightTomas Marquez/DuPont-Spain
Young plants and tubers of C. esculentus.
Young plants and tubersYoung plants and tubers of C. esculentus.Tomas Marquez/DuPont-Spain
C. esculentus inflorescence.
CaptionC. esculentus inflorescence.
Copyright©Chris Parker/Bristol, UK
C. esculentus inflorescence.
Inflorescence C. esculentus inflorescence.©Chris Parker/Bristol, UK
C. esculentus infestation in rice, Swaziland.
CaptionC. esculentus infestation in rice, Swaziland.
Copyright©Chris Parker/Bristol, UK
C. esculentus infestation in rice, Swaziland.
InfestationC. esculentus infestation in rice, Swaziland.©Chris Parker/Bristol, UK
C. esculentus infestation in Crotalaria, Swaziland.
CaptionC. esculentus infestation in Crotalaria, Swaziland.
Copyright©Chris Parker/Bristol, UK
C. esculentus infestation in Crotalaria, Swaziland.
InfestationC. esculentus infestation in Crotalaria, Swaziland.©Chris Parker/Bristol, UK
C. esculentus tubers as a crop ('tiger nuts'), Ghana.
CaptionC. esculentus tubers as a crop ('tiger nuts'), Ghana.
Copyright©Chris Parker/Bristol, UK
C. esculentus tubers as a crop ('tiger nuts'), Ghana.
TubersC. esculentus tubers as a crop ('tiger nuts'), Ghana.©Chris Parker/Bristol, UK


Top of page

Preferred Scientific Name

  • Cyperus esculentus L.

Preferred Common Name

  • yellow nutsedge

Other Scientific Names

  • Chlorocyperus aureus (K.Richt.) Palla ex Kneuck.
  • Chlorocyperus phymatodes (Muhl.) Palla
  • Cyperus bahiensis Steud.
  • Cyperus buchananii Boeckeler
  • Cyperus callistus Ridl.
  • Cyperus chrysostachys Boeckeler
  • Cyperus cubensis Steud.
  • Cyperus damiettensis A.Dietr.
  • Cyperus fulvescens Liebm.
  • Cyperus gracilescens Roem. & Schult.
  • Cyperus gracilescens Schult.
  • Cyperus heermannii Buckley
  • Cyperus helodes Schrad. ex Nees
  • Cyperus lutescens Torr. & Hook.
  • Cyperus melanorhizus Delile
  • Cyperus nervosus Bertol.
  • Cyperus officinalis T.Nees
  • Cyperus phymatodes Muhl.
  • Cyperus repens Elliott
  • Cyperus ruficomus Buckley
  • Cyperus sieberianus Link
  • Cyperus tenoreanus Schult.
  • Cyperus tenorei C.Presl
  • Cyperus tenorianus Roem. & Schult.
  • Cyperus tuberosus Pursh
  • Cyperus variabilis Salzm. ex Steud.
  • Pterocyperus esculentus (L.) Opiz
  • Pycreus esculentus (L.) Hayek

International Common Names

  • English: rush nut; tiger nut; yellow nut-grass; yellow nut-sedge; yellow sedge
  • Spanish: chufa comun; horchata; horchata de chufa
  • French: amande de terre; souchet comestible; souchet sucré; souchet tubéreux
  • Chinese: xiang fu zi
  • Portuguese: junquinha mansa

Local Common Names

  • Angola: olonguesso
  • Argentina: chufa
  • Brazil: chufa; junquinho; tiririca; tiririca-amarela
  • Colombia: conquito
  • Cuba: chufa
  • Dominican Republic: coquillo; coquito
  • Germany: erdmandelgas; Essbaress zypergras
  • Iran: galee
  • Italy: cipero dolce; dolcichino; ulvia di padule; zigolo dolce; zizzola terrestri
  • Japan: syokuyo-gayatsuri
  • Mexico: cebollin; coquillo amarillo; cotufa; coyolillo; coyolito; peonia; tule; tulillo; zacate de agua
  • Netherlands: aard-amandel; knolcypergras
  • Peru: coco
  • Puerto Rico: chapas
  • South Africa: geeliuintjie
  • Thailand: haeo-thai

EPPO code

  • CYPES (Cyperus esculentus)
  • CYPTU (Cyperus tuberosus)

Summary of Invasiveness

Top of page

C. esculentus is listed in the USDA Plants-database as a noxious weed in California, Colorado, Hawaii, Oregon and Washington (USDA-NRCS, 2012).   It is included in the California Invasive Plant List (2004) as a 'threat to wildlands'. Terry (2001) has revised the Cyperaceae with reference to its status in the list of 'worst weeds'.

C. esculentus behaves as a weed in almost all temperate, tropical and subtropical regions of the world. Once established, it is extremely difficult to eradicate because plants have a stratified and layered root system, with tubers and roots being interconnected. The plant can quickly regenerate if a single tuber is left in place. In its competition for light, water and nutrients it can reduce crop yields and outcompetes native plant species when it grows as an environmental weed. C. esculentus also has the potential to grow forming dense colonies which can increase by more than 1m/year. The invasiveness of this species is also high due to its great dispersal capacity. Tubers and seeds can be easily dispersed through agricultural activities, soil movement, by water and wind, and very often as contaminants in crop seeds (Holm et al., 1977; Defelice, 2002; Dodet et al., 2008). 

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Monocotyledonae
  •                     Order: Cyperales
  •                         Family: Cyperaceae
  •                             Genus: Cyperus
  •                                 Species: Cyperus esculentus

Notes on Taxonomy and Nomenclature

Top of page

C. esculentus var. sativus is 'chufa', which is cultivated widely for its edible tubers and other uses, and var. aureus is the wild, weedy type. The wild type is divided into two varieties: var. esculentus occurring in southern Europe, Africa and some locations in North and South America; and var. leptostachyus occurring throughout North and South America (Kukenthal, 1956). Although the cultivated chufa and the weedy yellow nutsedges are different in behaviour and aspect, their similarity and history do not provide any taxonomic grounds for separating these two groups (De Vries, 1991). Frequent references may be found to ecotypes of the species, but no systematic classification of them has been made (Holm et al., 1977).


Top of page Erect perennial herb; culms simple with triangular section, growing from perennial, tuber-bearing rhizomes; leaves in three ranks, mostly basal; inflorescence in terminal umbels; umbel subtended by unequal leaf-like brackets varying from 5 to 25 cm long; spikelets yellowish-brown or straw-coloured, 1-3 cm long, of several flowers, flattened, two-ranked; stamens three; style three-cleft; achenes (fruit) three-angled, narrowing gradually from a square-shouldered apex towards the base, about 1.5 mm long, covered with very fine granulation (Holm et al., 1977). It propagates by rhizomes, basal bulbs and tubers.

This light-bright green perennial sedge grows to about 0.8 m in height. A basal bulb is formed by a swelling of the culm below the soil surface and rhizomes grow out from this basal bulb to terminate in new shoots (under long days over 14 hours long) or underground tubers (under shorter days, less than 14 hours).

Plant Type

Top of page Grass / sedge
Seed propagated
Vegetatively propagated


Top of page

The origin of C. esculentus is uncertain. For some authors, C. esculentus is native to the Old World (mostly to areas in Africa and tropical Asia; Villaseñor and Espinosa-Garcia, 2004; Acevedo-Rodríguez and Strong, 2012; DAISIE, 2014). However, other authors consider that it is native to tropical and subtropical regions throughout the world, including Africa, Asia, Europe, and North America (Govaerts, 2014; USDA-ARS, 2014). Currently, C. esculentus occurs on all continents and from the equator to as far north as Alaska (Holm et al., 1977). Although present and sometimes troublesome in the tropics, it is most problematic in subtropical areas where longer days allow extensive spread of the plant by stolons before tubers are formed.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


AfghanistanPresentGovaerts, 2014
AzerbaijanPresentGovaerts, 2014
CambodiaPresentIntroducedHolm et al., 1979; Govaerts, 2014
ChinaPresentIntroducedJiang et al., 2011Naturalized
-ShandongPresentIntroducedUSDA-ARS, 2014Naturalized
-YunnanPresentTang, 1989
Georgia (Republic of)PresentKikodze et al., 2010; EPPO, 2014
IndiaWidespreadHolm et al., 1979; Govaerts, 2014
IndonesiaPresentHolm et al., 1979
-JavaPresentIntroducedGovaerts, 2014
IranWidespreadHolm et al., 1979; Govaerts, 2014
IraqPresentGovaerts, 2014
JapanPresentIntroducedMito and Uesugi, 2004Naturalized
-HonshuPresentKonnai et al., 1990
-KyushuPresentMorita and Nakayama, 1992
NepalPresentGovaerts, 2014Agricultural weed
PakistanPresentGovaerts, 2014
TaiwanPresentIntroduced Invasive Holm et al., 1979; Jiang et al., 2011
TurkeyPresentEPPO, 2014; Govaerts, 2014
VietnamPresentIntroducedGovaerts, 2014
YemenPresentGovaerts, 2014


AlgeriaPresentNativeGovaerts, 2014
AngolaWidespreadHolm et al., 1979; Govaerts, 2014
BeninPresentGovaerts, 2014
BotswanaPresentGovaerts, 2014
Burkina FasoPresentGovaerts, 2014
BurundiPresentGovaerts, 2014
CameroonPresentHolm et al., 1979; Govaerts, 2014
Cape VerdePresentGovaerts, 2014
Central African RepublicPresentGovaerts, 2014
ChadPresentGovaerts, 2014
ComorosPresentGovaerts, 2014
CongoPresentGovaerts, 2014Agricultural weed
Congo Democratic RepublicPresentGovaerts, 2014
Côte d'IvoirePresentGovaerts, 2014Cultivated
DjiboutiPresentGovaerts, 2014
EgyptPresentNativeTackholm, 1974; Govaerts, 2014
Equatorial GuineaPresentGovaerts, 2014
EritreaPresentGovaerts, 2014
EthiopiaPresentHolm et al., 1979; Govaerts, 2014
GabonPresentGovaerts, 2014
GambiaPresentGovaerts, 2014
GhanaPresentHolm et al., 1979; Govaerts, 2014
GuineaPresentHolm et al., 1979; Govaerts, 2014
Guinea-BissauPresentGovaerts, 2014
KenyaWidespreadHolm et al., 1979; Govaerts, 2014
LiberiaPresentGovaerts, 2014
LibyaPresentNativeGovaerts, 2014
MadagascarWidespreadHolm et al., 1979; Govaerts, 2014
MalawiPresentTerry and Michieka, 1987
MaliPresentHolm et al., 1979; Govaerts, 2014
MauritaniaPresentHolm et al., 1979; Govaerts, 2014
MauritiusPresentGovaerts, 2014
MozambiqueWidespreadHolm et al., 1979
NamibiaPresentGovaerts, 2014
NigerPresentGovaerts, 2014Cultivated
NigeriaPresentHolm et al., 1979; Govaerts, 2014Cultivated. Also listed as a weed
RwandaPresentGovaerts, 2014Agricultural weed
Saint HelenaPresentIntroducedUSDA-ARS, 2014
SenegalPresentHolm et al., 1979; Govaerts, 2014
SeychellesPresentIntroducedGovaerts, 2014
Sierra LeonePresentGovaerts, 2014
SomaliaPresentGovaerts, 2014
South AfricaWidespreadHolm et al., 1979
SwazilandPresentGovaerts, 2014
TanzaniaWidespreadHolm et al., 1979; Govaerts, 2014
TogoPresentGovaerts, 2014Cultivated
TunisiaPresentNativeGovaerts, 2014
UgandaWidespreadTerry and Michieka, 1987; Govaerts, 2014
ZambiaPresentIntroducedHolm et al., 1977; Terry and Michieka, 1987Agricultural weed
ZimbabwePresentIntroducedHolm et al., 1977Agricultural weed

North America

CanadaWidespreadHolm et al., 1979
-British ColumbiaPresentIntroducedUSDA-NRCS, 2014
-New BrunswickPresentIntroducedMulligan and Junkins, 1976; USDA-NRCS, 2004
-Nova ScotiaPresentIntroducedMulligan and Junkins, 1976; USDA-NRCS, 2014
-OntarioPresentIntroducedMulligan and Junkins, 1976; USDA-NRCS, 2014
-QuebecPresentIntroducedMulligan and Junkins, 1976; USDA-NRCS, 2014
MexicoPresentIntroduced Invasive Holm et al., 1979; Villaseñor and Espinosa-Garcia, 2004
USAPresentPresent based on regional distribution.
-AlabamaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-AlaskaPresentHolm et al., 1979
-ArizonaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-ArkansasWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-CaliforniaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-ColoradoWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-ConnecticutWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-DelawareWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-District of ColumbiaPresentUSDA-NRCS, 2014Areas with native and introduced infra-taxa
-FloridaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-GeorgiaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-HawaiiPresentIntroduced Invasive Holm et al., 1979; Wagner et al., 1999Noxious weed
-IdahoWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-IllinoisWidespreadLorenzi and Jeffery, 1987
-IndianaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-IowaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-KansasWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-KentuckyWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-LouisianaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-MaineWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-MarylandWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-MassachusettsWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-MichiganWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-MinnesotaPresentLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-MississippiWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-MissouriWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-MontanaAbsent, intercepted onlyUSDA-NRCS, 2004
-NebraskaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-NevadaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-New HampshireWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-New JerseyWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-New MexicoWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-New YorkWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-North CarolinaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-North DakotaPresentUSDA-NRCS, 2014Areas with native and introduced infra-taxa
-OhioWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-OklahomaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-OregonWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-PennsylvaniaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-Rhode IslandWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-South CarolinaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-South DakotaPresentLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-TennesseeWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-TexasWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-UtahWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-VermontWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-VirginiaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-WashingtonWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-West VirginiaWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-WisconsinWidespreadLorenzi and Jeffery, 1987; USDA-NRCS, 2014
-WyomingAbsent, intercepted onlyUSDA-NRCS, 2004

Central America and Caribbean

ArubaPresentIntroducedAcevedo-Rodriguez and Strong, 2012
BahamasPresentIntroducedAcevedo-Rodriguez and Strong, 2012
BelizePresentIntroducedDavidse et al., 1994
BonairePresentIntroducedAcevedo-Rodriguez and Strong, 2012
British Virgin IslandsPresentIntroducedAcevedo-Rodriguez and Strong, 2012Anegada
CubaPresentIntroduced Invasive Holm et al., 1979; Oviedo Prieto et al., 2012
CuraçaoPresentIntroducedAcevedo-Rodriguez and Strong, 2012
Dominican RepublicPresentIntroduced Invasive IABIN, 2008
El SalvadorPresentIntroducedDavidse et al., 1994
GuatemalaPresentIntroducedDavidse et al., 1994
HaitiPresentIntroducedAcevedo-Rodriguez and Strong, 2012
HondurasPresentIntroducedDavidse et al., 1994
JamaicaPresentIntroducedAcevedo-Rodriguez and Strong, 2012
MartiniqueWidespreadIntroducedBroome et al., 2007
NicaraguaPresentIntroducedHolm et al., 1979; Davidse et al., 1994
PanamaPresentIntroducedDavidse et al., 1994
Puerto RicoPresentIntroduced Invasive Holm et al., 1979; Acevedo-Rodriguez and Strong, 2012
Saint LuciaWidespreadIntroducedBroome et al., 2007
Trinidad and TobagoPresentIntroducedAcevedo-Rodriguez and Strong, 2012
United States Virgin IslandsPresentIntroduced Invasive Acevedo-Rodriguez and Strong, 2012St Thomas

South America

ArgentinaPresentIntroducedHolm et al., 1979; Zuloaga et al., 2008Casual alien
BoliviaPresentIntroducedUSDA-ARS, 2014
BrazilPresentPresent based on regional distribution.
-ParanaPresentIntroducedZuloaga et al., 2008
-Rio Grande do SulPresentIntroducedZuloaga et al., 2008
-Santa CatarinaPresentIntroducedZuloaga et al., 2008
ChilePresentIntroducedSánchez-Zapata et al., 2012Cultivated and naturalized: also a weed
ColombiaPresentIntroducedHolm et al., 1979; Davidse et al., 1994Weed
EcuadorPresentIntroducedDavidse et al., 1994
ParaguayPresentIntroduced Invasive IABIN, 2008
PeruPresentIntroducedHolm et al., 1979; Sánchez-Zapata et al., 2012Weed and cultivated
UruguayPresentIntroduced Invasive IABIN, 2008
VenezuelaPresentHolm et al., 1979; USDA-ARS, 2014


AlbaniaPresentEPPO, 2014; Govaerts, 2014
AustriaPresentEPPO, 2014; Govaerts, 2014
BelgiumPresentDAISIE, 2014; EPPO, 2014
BulgariaPresentEPPO, 2014; Govaerts, 2014
CroatiaPresentDAISIE, 2014; EPPO, 2014
CyprusPresentIntroducedDAISIE, 2014Naturalized
FrancePresentBernard, 1996; Holm et al., 1979; EPPO, 2014
-CorsicaPresentDAISIE, 2014; EPPO, 2014
GermanyPresentDAISIE, 2014; EPPO, 2014
GreecePresentDAISIE, 2014; EPPO, 2014
-CretePresentEPPO, 2014
HungaryPresentDancza et al., 2004; DAISIE, 2014; EPPO, 2014
ItalyRestricted distributionCostalonga and Pavan, 2001; DAISIE, 2014; EPPO, 2014
-SicilyPresentEPPO, 2014
NetherlandsPresentDAISIE, 2014; EPPO, 2014
PolandRestricted distributionMilczak et al., 2001
PortugalWidespreadHolm et al., 1979; EPPO, 2014; Govaerts, 2014
-AzoresPresentDAISIE, 2014; EPPO, 2014
RomaniaPresentIntroducedDAISIE, 2014Casual alien
SlovakiaPresentIntroducedDAISIE, 2014Naturalized
SpainRestricted distributionPascual Espana et al., 2000; EPPO, 2014
-Balearic IslandsPresentEPPO, 2014
SwitzerlandWidespreadHolm et al., 1979; DAISIE, 2014; EPPO, 2014
UkrainePresentEPPO, 2014; Govaerts, 2014


AustraliaWidespreadHolm et al., 1979
-New South WalesPresentIntroduced Invasive USDA-ARS, 2014Weed
-QueenslandPresentIntroduced Invasive Auld and Medd, 1987; USDA-ARS, 2014Weed
New ZealandPresentIntroduced Invasive USDA-ARS, 2014
Papua New GuineaPresentIntroducedGovaerts, 2014


Top of page

C. esculentus is found on low ground, in wet fields, in heavily irrigated crops, along river banks and roadsides, and in ditches. It tolerates high soil moisture much better than C. rotundus. It grows very well on all soil types including black peat soils and performs equally well at pH 5 to 7 (Holm et al., 1977). It can establish in cooler climatic conditions than C. rotundus. Stoller and Wax (1973) reported that 50% of tubers were killed at -6.5°C and that tubers were able to survive in areas of low air and soil temperatures.

Habitat List

Top of page
Terrestrial – ManagedCultivated / agricultural land Present, no further details Harmful (pest or invasive)
Protected agriculture (e.g. glasshouse production) Present, no further details Harmful (pest or invasive)
Managed forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Managed grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Disturbed areas Present, no further details
Rail / roadsides Present, no further details
Urban / peri-urban areas Present, no further details
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details Harmful (pest or invasive)
Natural grasslands Present, no further details Harmful (pest or invasive)
Riverbanks Present, no further details
Wetlands Present, no further details Harmful (pest or invasive)
Cold lands / tundra Present, no further details Harmful (pest or invasive)
Deserts Present, no further details Harmful (pest or invasive)
Coastal areas Present, no further details Harmful (pest or invasive)

Host Plants and Other Plants Affected

Top of page

Biology and Ecology

Top of page

The basal bulb and tubers are the organs for vegetative propagation of C. esculentus, as well as the short-lived rhizomes, which extend for 5-30 cm, or sometimes further, before turning up and forming a further shoot and basal bulb, or a dormant tuber. The rhizomes occasionally branch, but have no viable buds at their nodes, and they decay at the end of the growing season. The number of rhiozomes is unaffected by photoperiod but tuber formation is promoted in short photoperiods (Holm et al., 1977). In the southern USA, only new shoots and basal bulbs are formed at daylengths over 14 hours, whereas all rhizomes terminate in tubers as soon as days are shorter than 14 hours (Jansen, 1971).

According to Coskuner et al. (2002), C. esculentus tubers contain on average 932.8 g/kg dry matter, 245.0 g/kg crude lipid, 256.8 g/kg starch, 14.3 g/kg ash, 50.5 g/kg protein, 89.1 g/kg crude fibre, 17.1 g/kg reducing sugar, 154.3 g/kg total sugar and 130.4 g/kg sucrose. Individual tuber weight ranges from 0.224 to 0.283 g. The fatty acid composition of the tuber oil includes 689.2-732.9 g/kg oleic acid, 125.5-141.2 g/kg palmitic acid and 99.6-154.6 g/kg linoleic acid, which is comparable to that of olive oil. Oil composition may be affected by storage.

Temperature is crucial to the successful establishment of C. esculentus (Li et al., 2000). The percentage of bud sprouting increases with increasing temperature within the range 12 to 38°C; no sprouting occurs at 10°C, and few tubers sprout at 42°C. The rate of sprouting also increases with temperature up to 35°C. A base temperature of 11.4°C was determined for bud-sprouting of C. esculentus tubers. Higher temperatures may lead to larger sprouts and greater survival rate. In particular, increased temperature favours root growth and causes a high root:shoot ratio of the sprouts. Larger tubers produce larger sprouts as a consequence of mobilizing a greater amount of their reserves. The efficiency of reserve utilization differs significantly with incubation temperature, and the relationship with temperature follows a quadratic pattern.

The longevity of tubers increases with tuber weight, and removing plants from the tubers at 2-week intervals allowed all buds present to sprout (Thullen and Keeley, 1975). Under a photoperiod of 12-14 hours, inflorescences appear on shoots, and large quantities of good seeds are produced under favourable growing conditions.

Seed is an important means of dispersal of C. esculentus (Holm et al., 1977). The seeds are normally dormant when shed but lose their dormancy with moist storage at 10°C. Germination is enhanced by alternating temperatures of 20 to 30°C. Seedlings emerge readily from a depth of 1.3 cm depth but more slowly from 2.5 cm (Holm et al., 1977).

C. esculentus is an exotic clonal weed in Japan (Li et al., 2001) and is steadily increasing its range. Five clones of C. esculentus, which showed considerable variation, were studied to investigate interclonal variation and phenotypic plasticity in response to water availability. Water availability could partially regulate the mode of reproduction; wet conditions favour tuber production (vegetative propagation) whereas dry conditions favour sexual reproduction. A number of trade-offs occur between the traits of clonal growth, storage and sexual reproduction, indicating that allocation among the competing functions/organs is mutually exclusive in plants. The results suggest that C. esculentus is more likely to invade wet habitats than dry habitats.

Environmental Requirements

Once formed, the tubers are dormant and behave almost like seeds in being tolerant of frost and desiccation (unlike those of Cyperus rotundus). Storage at low temperatures such as 3-10°C breaks tuber dormancy (Holm et al., 1977).

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Bactra verutana Herbivore Seedlings
Cercospora caricis Pathogen
Chorizococcus rostellum Herbivore Leaves/Roots
Puccinia canaliculata Pathogen Seedlings

Notes on Natural Enemies

Top of page

The rust fungus, Puccinia canaliculata, has potential for control of C. esculentus; release of the pathogen on C. esculentus early in the spring reduced its density, tuber formation and flowering (Phatak et al., 1987). In the USA, P. canaliculata was developed as a mycoherbicide in rice (Phatak, 1992); further research is needed on the integrated application of the mycoherbicide with registered chemical herbicides (Smith, 1994). The insect Bactra verutana attacks newly emerging plants of C. esculentus to suppress the growth of the weed (Keeley et al., 1970). Chorizococcus rostellum attacked leaves and roots of C. esculentus in southern California, USA (Poinar, 1964). Dactylaria higginsiii has been investigated as a mycoherbicide against both C. esculentus and C. rotundus (Shabana et al., 2010). Morales-Payan et al. (2005) review biological enemies of the nutsedges for biocontrol potential, with a focus on fungi.

Means of Movement and Dispersal

Top of page

Seed is an important means of dispersal of C. esculentus (Holm et al., 1977).

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Soil, sand and gravel Yes

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Growing medium accompanying plants
True seeds (inc. grain) Pest or symptoms not visible to the naked eye but usually visible under light microscope
Plant parts not known to carry the pest in trade/transport
Fruits (inc. pods)
Seedlings/Micropropagated plants
Stems (above ground)/Shoots/Trunks/Branches

Wood Packaging

Top of page
Wood Packaging liable to carry the pest in trade/transportTimber typeUsed as packing
Non-wood No

Impact Summary

Top of page
Animal/plant collections Negative
Animal/plant products Negative
Crop production Negative
Livestock production Negative

Economic Impact

Top of page

C. esculentus is a serious or principal weed of sugarcane in Hawaii, Peru, South Africa and Swaziland; of maize in Angola, South Africa, Tanzania and USA; of cotton in Mozambique, Zimbabwe and USA; of soyabeans in Canada and USA; of potatoes in Canada, South Africa and USA; of coffee in Kenya; of cereals in Angola and Tanzania; of vegetables in Mozambique and USA; of groundnuts and sugarbeet in USA; of pineapples in Swaziland; and of sisal in Tanzania (Holm et al., 1977).

In a study on the effect of C. esculentus on fruit weight of polyethylene-mulched bell pepper, Motis et al. (2001) found that pepper plants were intolerant of nutsedge planted 30.5 cm from the plant, for which total yield loss was 65% or greater.

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Highly adaptable to different environments
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Highly mobile locally
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
Impact outcomes
  • Negatively impacts agriculture
  • Negatively impacts tourism
  • Reduced amenity values
Impact mechanisms
  • Competition - monopolizing resources
  • Pest and disease transmission
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect as a commodity contaminant
  • Difficult/costly to control


Top of page

In Spain, when tubers of 'tiger nuts' are washed and crushed in water, the filtered white, milky-pepper tasting product is called 'horchata'. This beverage may be drunk cool in hot summers. It is commercially produced by a farmers' cooperative in Valencia (Pascual España, 2002).

Yin-Hua (2003) investigated the processing of C. esculentus pulp to make a beverage. Lee SungKyu et al. (2002) determined the nutritive value of C. esculentus as a forage resource. Milczak et al. (2001) established the nutritious value of C. esculentus in the Lublin region of Poland. 

Uses List

Top of page

Human food and beverage

  • Beverage base
  • Vegetable

Medicinal, pharmaceutical

  • Traditional/folklore

Similarities to Other Species/Conditions

Top of page

Cyperus rotundus, C. longus and C. blysmoides resemble C. esculentus morphologically, especially in forming rhizomes and tubers.

Confusion commonly occurs with C. esculentus and C. rotundus, because in certain areas their niches appear to overlap. In C. esculentus the tubers are almost round and pale coloured; they have a pleasant, mild, nutty flavour and are attached to the plant by a rather soft, easily broken rhizome. In C. rotundus, however, they are elongated and very dark in colour, have a very unpleasant resinous flavour and are attached to the plant (and to other tubers) by a tough, wiry rhizome. In addition, the leaf tips of C. esculentus are acuminate, coming gradually to a long, acute tip, whereas those of C. rotundus come quite abruptly to an acute tip. In the field, C. esculentus appears as a more robust, taller and lighter green plant than C. rotundus. At flowering, the achenes of C. esculentus are bright yellow, whereas those of C. rotundus are dark brown.

C. longus does not produce true tubers and the basal part of the stem and the apex of the woody rhizome are swollen as the pseudotuber. C. blysmoides is mainly distributed in Africa; it produces almost spherical, 2-6-mm diameter, black, tuber-like bulbs and has no leafy bracts at the base of the small, dark inflorescence.

Prevention and Control

Top of page

Mechanical Control

Tillage has little effect on C. esculentus when tubers are dormant during the off-season: the tubers are then less susceptible to desiccation than those of C. rotundus. Conversely, when the tubers have sprouted, and before new stolons and tubers are formed, C. esculentus is much more susceptible than C. rotundus to disturbance and desiccation by tillage. Hence in the USA, pre-sowing cultivations before late sowing of soyabean can cause useful reductions (Wax et al., 1972), and inter-row cultivation in maize, etc. can also be effective at an early growth stage when the reserves of the parent tuber are newly depleted. Wax et al. (1972) emphasize the value of shading from the crop in the suppression of C. esculentus. Improved drainage and crop rotation are other techniques mentioned by Lorenzi and Jeffery (1987).

Cultural, Mechanical and Physical Control

Alternative treatments to methyl bromide [a banned chemical] for strawberry have been investigated by Locascio et al. (1999), who found that napropamide, soil solarization treatments and black polyethylene mulches allowed similar plant growth and yields when tested at three locations in Florida, USA.

Johnson and Mullinix (2002) studied weed management techniques in watermelon (Citrullus lanatus) and cantaloupe (Cucumis melo) transplanted on polyethylene-covered seedbeds in Georgia, USA. Herbicide systems that included halosulfuron or glyphosate applied post-shielding improved control of C. esculentus compared with ethalfluralin alone.

Biological Control

Kadir and Charudattan (2000) investigated the potential of the fungus Dactylaria higginsii against C. rotundus and C. esculentus in greenhouse and laboratory trials, and found that the fungus was highly pathogenic against these weeds, without causing ill-effects on crop plants or weedy grasses also tested. Shabana et al. (2010) found that conidia of this fungus were virulent against both nutsedge species, but that C. rotundus was the most susceptible. A range of potential biocontrol agents are reviewed by Morales-Payan et al. (2005).

Chemical Control

Like C. rotundus, C. esculentus is susceptible to the thiocarbamate group of herbicides (EPTC, vernolate, pebulate, butylate) which may be used to delay emergence in maize and a wide range of broad-leaved crops (Lorenzi and Jeffery, 1987), although tubers are rarely killed completely and the need for pre-plant incorporation limits their usefulness on less mechanized farms. Fortunately, C. esculentus is more susceptible than C. rotundus to the acetanilide herbicides alachlor and metolachlor (Riley and Smith, 1974). These may be used as pre-emergence treatments, although their best performance is dependent on good soil moisture and, under drier conditions, pre-plant incorporation is preferred (Grichar et al., 1996).

Cyperus esculentus var. esculentus is less susceptible than C. esculentus var. leptostachyus to pre-plant applications of atrazine or metribuzin (Costa and Appleby, 1976), but neither form is reliably controlled by pre-emergence treatment with these herbicides. Atrazine gives some control when used as an early post-emergence treatment with added oil, but results are mediocre and there is some risk of affecting maize yield (Ferron, 1974).

Glyphosate is effective in plantation crops. In the Netherlands, it is also used as a directed spot treatment in maize in attempts at eradication following metolachlor pre-planting and a mixture of metolachlor and atrazine post-emergence (Rotteveel et al., 1993).

With the exception of halosulforon, the sulfonylurea herbicide group has not generally been effective, though it has been noted that tuber development was adversely affected by increasing concentrations of pyrazosulfuron (Ogasawara et al., 1995). Field experiments to evaluate halosulfuron and glyphosate for C. esculentus control in glyphosate-resistant field maize (Fischer and Harvey, 2002) demonstrated that single applications of glyphosate provided <75% control of C. esculentus but sequential applications of glyphosate provided 85% or greater control.

Nelson and Renner (2002) determined the effects of glufosinate, glyphosate and glyphosate plus additional adjuvant on C. esculentus control and tuber production. Glyphosate reduced the dry weight of C. esculentus by 64%, whereas glufosinate reduced dry weight by only 22% when averaged over diammonium sulfate and spray volume. In the field, glufosinate and glyphosate controlled C. esculentus by 19-53%. Glyphosate reduced tuber density (51%), tuber fresh weight (59%) and tuber sprouting (17%) 42 weeks after treatment in the field. The addition of nonionic surfactant, methylated seed oil, or crop oil concentrate to glyphosate plus diammonium sulfate did not increase control of C. esculentus.

In high-value situations, soil fumigants may be used. Eitel (1995) notes that dazomet performs better with plastic sheeting than with irrigation only.

Unruh et al. (2002) evaluated fumigant alternatives for methyl bromide prior to turfgrass establishment. They found that metam-sodium plus several herbicide combinations gave acceptable control.

The addition of atrazine to mesotrione improved control of C. esculentus in maize (Johnson et al., 2002).

Hoss et al. (2003) conducted experiments to determine the efficacy, absorption and translocation of glyphosate, glufosinate and imazethapyr in selected weed species. The rate of glufosinate injured C. esculentus more than other weeds. The differential response of these weed species may be caused by differences in herbicide translocation.

Sulfentrazone followed by glyphosate increased control of C. esculentus (Krausz and Young, 2003).

Tuber sprouting was reduced to 19% in plots treated with halosulfuron and pyrithiobac compared with C. esculentus (Nelson and Renner, 2002).

Locascio et al. (2001) found that the addition of chloropicrin to metam-sodium generally did not significantly increase the performance of the herbicide in weed control, pest control and enhanced tomato fruit production compared to treatments with metam-sodium without chloropicrin.

Integrated Control

The effects of several crop rotations and herbicide programmes on populations of several grasses and on C. rotundus were studied by Manley et al. (2002). Grass and yellow nutsedge densities were generally affected by an interaction between crop rotations and herbicide programmes.


Top of page

Acevedo-Rodríguez P, Strong MT, 2012. Catalogue of the Seed Plants of the West Indies. Smithsonian Contributions to Botany, 98:1192 pp. Washington DC, USA: Smithsonian Institution.

Adekunle AA, Badejo AA, 2002. Biochemical properties of essential oil extracted from Cyperus esculentus L. (Cyperaceae) corm. Tropical Agriculture, 79(2):129-132.

Auld BA, Medd RW, 1987. Weeds. An illustrated botanical guide to the weeds of Australia. Melbourne, Australia; Inkata Press, 255 pp.

Booth BD, Murphy SD, Swanton CJ, 2003. Weed ecology in natural and agricultural systems. Weed ecology in natural and agricultural systems, viii + 303 pp.; many ref.

Broome R, Sabir K, Carrington S, 2007. Plants of the Eastern Caribbean. Online database. Barbados: University of the West Indies.

Coskuner Y, Ercan R, Karababa E, Nazlican AN, 2002. Physical and chemical properties of chufa (Cyperus esculentus L) tubers grown in the (Cukurova region of Turkey). Journal of the Science of Food and Agriculture, 82(6):625-631.

Costa J, Appleby AP, 1976. Response of two yellow nutsedge varieties to three herbicides. Weed Science, 24(1):54-58

Costalonga S, Pavan R, 2000. Isoenzyme evaluation of intra-specific competitivity of purple nutsedge biotypes. Planta Daninha, 18(2):199-206.

Costalonga S, Pavan R, 2001. Floristic findings from Friuli-Venezia Giulia Region. IX (166-176). Gortania, 23:129-135.

DAISIE, 2014. Delivering Alien Invasive Species Inventories for Europe. European Invasive Alien Species Gateway.

Dancza I, Pathy Hoffmann Z, Doma C, 2004. Cyperus esculentus (yellow nutsedge) - a new weed in Hugary. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 19: 223-229.

Davidse G, Sousa Sánchez M, Chater AO, 1994. Alismataceae a Cyperaceae. Flora Mesoamericana, 6:i-xvi,1-543.

Defelice MS, 2002. Yellow nutsedge Cyperus esculentus L. - snack food of the gods. Weed Technology, 16(4):901-907.

Dodet M, Petit RJ, Gasquez J, 2008. Local spread of the invasive Cyperus esculentus (Cyperaceae) inferred using molecular genetic markers. Weed Research (Oxford), 48(1):19-27.

Eitel J, 1995. The effectiveness of dazomet as influenced by the use of plastic sheeting. Acta Horticulturae, No. 382:104-109.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization.

Erasmo EAL, Pinto LP, Terra M, Didonet J, Peluzio JM, 2000. Competition between Cyperus esculentus and irrigated rice under greenhouse conditions. Planta Daninha, 18(2):301-307; 8 ref.

Femke T de Vries, 1991. Chufa (Cyperus esculentus, Cyperaceae): a weedy cultivar or a cultivated weed? Economic Botany, 45(1):27-37.

Ferron M, 1974. Comportement de quelques herbicides sur le souchet en presence de luzerne ou de mais. Res. Rep. Canada. Weed Comm. (East Sect). Halifax, Nova Scotia, Canada.

Fischer DW, Harvey RG, 2002. Yellow nutsedge (Cyperus esculentus) and annual weed control in glyphosate-resistant field corn (Zea mays). Weed Technology, 16(3):482-487; 19 ref.

Gitaitis R, Walcott R, Culpepper S, Sanders H, Zolobowska L, Langston D, 2002. Recovery of Pantoea ananatis, causal agent of center rot of onion, from weeds and crops in Georgia, USA. Crop Protection, 21(10):983-989; 22 ref.

Govaerts R, 2014. World Checklist of Cyperaceae. London, UK: Royal Botanic Gardens, Kew.

Grey TL, Wehtje GR, Walker RH, Paudel KP, 1995. Comparison of imazethapyr and paraquat-based weed control systems in peanut (Arachis hypogaea). Weed Technology, 9(4):813-818; 17 ref.

Grichar WJ, Colburn AE, Baumann PA, 1996. Yellow nutsedge (Cyperus esculentus) control in peanut (Arachis hypogaea) as influenced by method of metolachlor application. Weed Technology, 10(2):278-281; 19 ref.

Hollowell JE, Shew BB, 2001. Yellow nutsedge (Cyperus esculentus L.) as a host of Sclerotinia minor. Plant Disease, 85(5):562; 1 ref.

Holm LG, Pancho JV, Herberger JP, Plucknett DL, 1979. A geographical atlas of world weeds. New York, USA: John Wiley and Sons, 391 pp.

Holm LG, Plucknett DL, Pancho JV, Herberger JP, 1977. The World's Worst Weeds. Distribution and Biology. Honolulu, Hawaii, USA: University Press of Hawaii.

Hoss NE, Al Khatib K, Peterson DE, Loughin TM, 2003. Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Science, 51(1):110-117.

IABIN, 2008. Paraguay. Red interamericana de Informacion sobre Biodiversidad. Red de Informacion sobre Especies Invasoras (I3N) ([English title not available]).

ISSG, 2004. Invasive Species Specialists Group. World Wide Web at http:/// List.

Ito K, Inoue J, Furuya T, 1968. Comparison of auto-ecology of purple nutsedge (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.). Weed Research Japan, 7:29-34.

Jansen L, 1971. Morphology and photoperiodic responses of yellow nutsedge. Weed Science, 19:210-219.

Jiang H, Fan Q, Li JT, Shi S, Li SP, Liao WB, Shu WS, 2011. Naturalization of alien plants in China. Biodiversity Conservation, 20:1545-1556.

Johnson BC, Young BG, Matthews JL, 2002. Effect of postemergence application rate and timing of mesotrione on maize (Zea mays) response and weed control. Weed Technology, 16(2):414-420; 16 ref.

Johnson WC, Mullinix BG, 2002. Weed management in watermelon (Citrullus lanatus) and cantaloupe (Cucumis melo) transplanted on polyethylene-covered seedbeds. Weed Technology, 16(4):860-866.

Kadir J, Charudattan R, 2000. Dactylaria higginsii, a fungal bioherbicide agent for purple nutsedge (Cyperus rotundus). Biological Control, 17(2):113-124.

Keeley PE, Thullen RJ, Miller JH, 1970. Biological control of yellow nutsedge by Bactra verutana Zeller. Weed Science, 18:393-395.

Kikodze D, Memiadze N, Kharazishvili D, Manvelidze Z, Mueller-Schaerer, 2010. The alien flora of Georgia. Second Edition. Swiss National Science Foundation, Swiss Agency for Development and Cooperation and SCOPES, 40 pp.

Konnai M, Ichizen N, Anzai T, Takematsu T, 1990. Ecological studies on yellow nutsedge (Cyperus esculentus L.). Weed Research, Japan, 35(2):175-179.

Krausz RF, Young BG, 2003. Sulfentrazone enhances weed control of glyphosate in glyphosate-resistant soybean (Glycine max). Weed Technology, 17(2):249-255.

Kukenthal G, 1956. Cyperaceae. In: Engler A, ed. Das Pflanzenreich. Im Verlag von Engelmann HR, (J. Cramer). Stuttgart. Sec 4. Vol. 20. Pt 2. 116-121.

Lee SungKyu, Hwang EuiKyung, Lee SK, Hwang EK, 2002. Growth characteristics and nutritive value of chufa (Cyperus esculentus L.) for forage resource. Journal of the Korean Society of Grassland Science, 22(1):1-8.

Li B, Shibuya T, Yogo Y, Hara T, 2000. Effects of temperature on bud-sprouting and early growth of Cyperus esculentus in the dark. Journal of Plant Research, 113(1109):19-27; 33 ref.

Li Bo, Shibuya T, Yogo Y, Hara T, Yokozawa M, 2001. Interclonal differences, plasticity and trade-offs of life history traits of Cyperus esculentus in relation to water availability. Plant Species Biology, 16(3):193-207; many ref.

Lorenzi HJ, Jeffery LS(Editors), 1987. Weeds of the United States and their control. New York, USA; Van Nostrand Reinhold Co. Ltd., 355 pp.

Manley BS, Wilson HP, Hines TE, 2002. Management programs and crop rotations influence populations of annual grass weeds and yellow nutsedge. Weed Science, 50(1):112-119; 32 ref.

Milczak M, Wiercinski J, Sawicki B, 2001. Nutritious value of Cyperus esculentus L. from cultivation in the natural conditions of the Lublin upland. Annales Universitatis Mariae Curie Sklodowska. Sectio E, Agricultura, 56:43-48.

Mito T, Uesugi T, 2004. Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects. Global Environmental Research, 8(2):171-191.

Morales Payan JP, Stall WM, Shilling DG, Charudattan R, Dusky JA, Bewick TA, 2003. Above and belowground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Science, 51(2):181-185.

Morales-Payan JP, Charudattan R, Stall WM, 2005. Fungi for biological control of weedy Cyperaceae, with emphasis on purple and yellow nutsedges (Cyperus rotundus and C. esculentus). Outlooks on Pest Management, 16(4):148-155.

Morita H, 1989. Invasion of yellow nutsedge (Cyperus esculentus L) into arable lands of Japan. Journal Japan Botany, 62(2):54-56.

Morita H, Nakayama S, 1992. Emergence and growth of yellow nutsedge (Cyperus esculentus L.) in paddy fields of southern Japan. Weed Research (Tokyo), 37(4):267-275

Motis TN, Locascio SJ, Gilreath JP, 2001. Yellow nutsedge interference effects on fruit weight of polyethylene-mulched bell pepper. Proceedings of the Florida State Horticultural Society, 114:268-271; 11 ref.

Mulligan GA, Junkins BE, 1976. The biology of Canadian weeds. 17. Cyperus esculentus L. Canadian Journal of Plant Science, 56(2):339-350

Negbi M, 1992. A sweetmeat plant, a perfume plant and their weedy relatives: a chapter in the history of Cyperus esculentus L. and C. rotundus L. Economic Botany, 46(1):64-71.

Nelson KA, Renner KA, 2002. Yellow nutsedge (Cyperus esculentus) control and tuber production with glyphosate and ALS-inhibiting herbicides. Weed Technology, 16(3):512-519; 47 ref.

Ogasawara M, Kitamura S, Yoneyama K, Takeuchi Y, Konnai M, 1995. Effects of pyrazosulfuron-ethyl and imazaquin on the tuber formation and shoot tillering of yellow nutsedge (Cyperus esculentus L.). Weed Research (Tokyo), 40(3):215-217; 10 ref.

Oviedo Prieto R, Herrera Oliver P, Caluff MG, et al. , 2012. National list of invasive and potentially invasive plants in the Republic of Cuba - 2011. (Lista nacional de especies de plantas invasoras y potencialmente invasoras en la República de Cuba - 2011). Bissea: Boletín sobre Conservación de Plantas del Jardín Botánico Nacional de Cuba, 6(Special Issue 1):22-96.

Pascual B, Maroto JV, López-Galarza S, Sanbautista A, Alagarda J, 2000. Chufa (Cyperus esculentus L. var. sativus Boeck.): an unconventional crop. Studies related to applications and cultivation. Economic Botany, 54(4):439-448.

Pascual Espana B, 2002. Tiger nuts (Cyperus esculentus L. var. sativus Boeck.), a typically Valencian crop. Agricultura, Revista Agropecuaria, 71(838):294-298.

Pascual Espana B, Lopez Galarza S, Alagarda Pardo J, San Bautista Primo AJ, Maroto Borrego JV, Castell Zeising V, Verdonck O, Mathe A, Relf PD, Matsuo E, Groening GD, Rammeloo J, 2000. Selection and characterization of "chufa" cultivars (Cyperus esculentus L. var. sativus Boeck). Proceeding of the XXV International Horticultural Congress. Part 13. New and specialized crops and products, botanic gardens, and human-horticulture relationship. Brussels, Belgium, 2-7 August, 1998. Acta Horticulturae, No. 523: 37-44.

Phatak SC, 1992. Development and commercialization of rust (Puccinia canaliculata) for biological control of yellow nutsedge (Cyperus esculentus L.). Proceedings of the 1st International Weed Control Congress Melbourne, Australia; Weed Science Society of Victoria, Vol. 2:388-390

Phatak SC, Callaway MB, Vavrina CS, 1987. Biological control and its integration in weed management systems for purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technology, 1(1):84-91

PIER, 2004. Hawaiian Ecosystems at Risk Project-HEAR. Pacific Island Ecosystems at Risk (PIER).

Poinar GO, 1964. Studies on nutgrass insects in California and their effectiveness on biological control agents. J Economic Entomology, 57:379-383.

Riley WR, Smith AL, 1974. Nutsedge control with alfalfa and EPTC. Res. Rep. Canada Weed Comm. (East Sect.) Halifax, Nova Scotia, Canada.

Rotteveel AJW, Straathof HJM, Naber H, 1993. The decline of a yellow nutsedge (Cyperus esculentus L.) population under three chemical management systems aimed at eradication. Mededelingen van de Faculteit Landbouwwetenschappen, Universiteit Gent, 58(3A):893-900

Sánchez-Zapata E, Fernández-López J, Pérez-Alvarez JA, 2012. Tiger nut (Cyperus esculentus) commercialization: health aspects, composition, properties, and food applications. Comprehensive Reviews in Food Science and Food Safety, 11(4):366-377.

Scott GH, Askew SD, Wilcut JW, Bennett AC, 2002. Economic evaluation of HADSS computer program in North Carolina peanut. Weed Science, 50(1):91-100; many ref.

Shabana YM, Charudattan R, Tabl AHA, Morales-Payan JP, Rosskopf EN, Klassen W, 2010. Production and application of the bioherbicide agent Dactylaria higginsii on organic solid substrates. Biological Control, 54(3):159-165.

Smith RJ Jr, 1994. Biological control as components of integrated weed management for rice in the United States. In: Integrated Management of Paddy and Aquatic Weeds in Asia, FFTC Book Series No. 45:175-183.

Stoller EW, Wax LM, 1973. Yellow nutsedge shoot emergence and tuber longevity. Weed Science, 21(1):76-81

Tackholm V, 1974. Students' Flora of Egypt. 2nd edition. Cairo, Egypt: University of Cairo.

Tang HY, 1989. Coloured Illustrations of Weeds in Arable Land of China. Shanghai, China: Shanghai Science and Technology Public Company.

Terry PJ, 2001. The Cyperaceae - still the world's worst weeds?. The world's worst weeds. Proceedings of an international Symposium, Hilton Brighton Metropole Hotel, UK, 12 November 2001, 3-18; many ref.

Terry PJ, Michieka RW, 1987. Common Weeds of East Africa. Rome, Italy: Food and Agriculture Organization of the United Nations.

Thullen RJ, Keeley PE, 1975. Yellow nutsedge sprouting and resprouting potential. Weed Science, 23(4):333-337

USDA, 2004. Federal Noxious Weed List. USDA, APHIS, PPQ, Riverdale, Maryland, USA. World Wide Web at:http://

USDA-ARS, 2014. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory.

USDA-NRCS, 2004. The PLANTS Database, Version 3.5. Baton Rouge, USA: National Plant Data Center.

USDA-NRCS, 2014. The PLANTS Database. Baton Rouge, USA: National Plant Data Center.

Villaseñor JL, Espinosa-Garcia FJ, 2004. The alien flowering plants of Mexico. Diversity and Distributions, 10(2):113-123.

Wagner WL, Herbst DR, Sohmer SH, 1999. Manual of the flowering plants of Hawaii. Revised edition. Honolulu, Hawaii, USA: University of Hawaii Press/Bishop Museum Press, 1919 pp.

Wax LM, 1972. Weed control for close-drilled soybeans. Weed Science, 20(1):16-19

Williamson M, Preston C, Telfer M, 2003. On the rates of spread of alien plants in Britain. In: Child LE, Brock JH, Brundu G, Prach K, Pysek P, Wade PM, Williamson M, eds. Plant Invasions: Ecological Threats and Management Solutions. Backhuys, Leiden, 63-74.

Yin Hua, 2003. Study on processing technology of chufa pulp beverage. Journal of Hunan Agricultural University, 29(3):262-264.

Zuloaga FO, Morrone O, Belgrano MJ, 2008. Catalogue of vascular plants of southern South America (Argentina, South Brazil, Chile, Paraguay and Uruguay). (Catalogo de las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay).) Catalogue of vascular plants of southern South America.

Links to Websites

Top of page
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway source for updated system data added to species habitat list.
Global register of Introduced and Invasive species (GRIIS) source for updated system data added to species habitat list.


Top of page

22/04/14 Updated by:

Julissa Rojas-Sandoval, Department of Botany-Smithsonian NMNH, Washington DC, USA

Pedro Acevedo-Rodríguez, Department of Botany-Smithsonian NMNH, Washington DC, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map