Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Cucumis anguria
(West Indian gherkin)

Toolbox

Datasheet

Cucumis anguria (West Indian gherkin)

Summary

  • Last modified
  • 22 July 2020
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Cucumis anguria
  • Preferred Common Name
  • West Indian gherkin
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • Cucumis anguria is a vine native to southern Africa, now cultivated across tropical and subtropical regions. As it can readily self-seed, it has escaped cultivation and become naturalized. It is an aggressive w...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Cucumis anguria (West Indian gherkin); leaves. Kluse, Emsland district, Lower Saxony, Germany. July 2018.
TitleLeaves
CaptionCucumis anguria (West Indian gherkin); leaves. Kluse, Emsland district, Lower Saxony, Germany. July 2018.
Copyright©Frank Vincentz/via wikipedia - CC BY-SA 3.0
Cucumis anguria (West Indian gherkin); leaves. Kluse, Emsland district, Lower Saxony, Germany. July 2018.
LeavesCucumis anguria (West Indian gherkin); leaves. Kluse, Emsland district, Lower Saxony, Germany. July 2018.©Frank Vincentz/via wikipedia - CC BY-SA 3.0
Cucumis anguria (West Indian gherkin); fruits. Kluse, Emsland district, Lower Saxony, Germany. July 2018.
TitleFruits
CaptionCucumis anguria (West Indian gherkin); fruits. Kluse, Emsland district, Lower Saxony, Germany. July 2018.
Copyright©Frank Vincentz/via wikipedia - CC BY-SA 3.0
Cucumis anguria (West Indian gherkin); fruits. Kluse, Emsland district, Lower Saxony, Germany. July 2018.
FruitsCucumis anguria (West Indian gherkin); fruits. Kluse, Emsland district, Lower Saxony, Germany. July 2018.©Frank Vincentz/via wikipedia - CC BY-SA 3.0
Cucumis anguria (West Indian gherkin); seeds. Note scale.
TitleSeeds
CaptionCucumis anguria (West Indian gherkin); seeds. Note scale.
CopyrightPublic Domain - Released by the USDA-NRCS PLANTS Database/original image by Steve Hurst
Cucumis anguria (West Indian gherkin); seeds. Note scale.
SeedsCucumis anguria (West Indian gherkin); seeds. Note scale.Public Domain - Released by the USDA-NRCS PLANTS Database/original image by Steve Hurst

Identity

Top of page

Preferred Scientific Name

  • Cucumis anguria L.

Preferred Common Name

  • West Indian gherkin

Other Scientific Names

  • Cucumis angurioides M.Roem.
  • Cucumis arada L. ex Naudin & F.Muell.
  • Cucumis erinaceus Naudin ex Huber
  • Cucumis longipes Hook.f.
  • Cucumis macrocarpus Wender. ex Mart.

International Common Names

  • English: bur cucumber; cackery horned cucumber; gooseberry gourd; jelly melon; maroon cucumber; wild cucumber
  • Spanish: pepineto; anguria; cohombro espinoso; concombro; pepino cimarrón; pepino de sabana; pepino raton; sandia de ratón
  • French: angourie des Antilles; concombre des Antilles; concombre marron; concombre-cornichon; petit concombre
  • Portuguese: maxixe-do-mato; cornichão-das-antilhas; maxixe; maxixe-bravo; pepino-castanha; pepino-espinhoso

Local Common Names

  • : Jerusalem cucumber
  • Dominican Republic: cocombre; cocombro; cohombro; concombro; pepinillo
  • Lesser Antilles: ticoncombre; warty cucumber
  • Netherlands: augurk
  • Puerto Rico: pepinillo

Summary of Invasiveness

Top of page

Cucumis anguria is a vine native to southern Africa, now cultivated across tropical and subtropical regions. As it can readily self-seed, it has escaped cultivation and become naturalized. It is an aggressive weed, outcompeting native species for space and resources. Stems usually sprawl over the ground, but can also climb into other plants for support, attaching themselves by means of tendrils. This species is regarded as an invasive weed in parts of North America, Australia, Anguilla, Costa Rica, Argentina and the French Polynesia and is a serious weed in peanut fields in the southern USA.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Violales
  •                         Family: Cucurbitaceae
  •                             Genus: Cucumis
  •                                 Species: Cucumis anguria

Notes on Taxonomy and Nomenclature

Top of page

Cucurbitaceae comprises 98 genera and about 1,000 species of climbers distributed across tropical and subtropical regions. Within this family, there are many species of economic and commercial importance such as Cucurbita pepo (pumpkin), C. moschata (squash), C. maxima (moranga), Sechium edulis (chayote), Citrullus lanatus (watermelon), Cucumis melo (melon), C. sativus (cucumber), and Luffa cylindrica (sponge gourd). The taxonomical classification of this family is particularly challenging due to the occurrence of wild progenitor and domesticated varieties. Differences in biology and patterns of evolution as well as inconsistencies in the application of concepts such as species and infraspecific taxa (including cultivars) have led to inconsistent systems of taxonomic ranks across all genera (Nesom, 2011; Malerbo-Souza et al., 2020; Stevens, 2020).

For the species Cucumis anguria there are wild and cultivated types that differ in the bitterness of the fruits (wild forms are bitter) but also in the length of fruit spines (longer in wild forms). Bitter and non-bitter forms are both cultivated worldwide (Wilkins-Ellert, 2004). The wild, bitter form from Africa was previously regarded as a separate species, Cucumis longipes, but the two varieties are fully interfertile and are now regarded as conspecific (Baird and Thieret, 1988; Garg et al., 2007). In his monograph on C. anguria, Kirkbride (1993) reviews the taxonomy and origins of the cultigen.

Description

Top of page

The following description is from Wilkins-Ellert (2004):

C anguria is an annual herbaceous plant with trailing or scandent grooved stems 2–3 m long bearing bristly hairs. Tendrils solitary, simple tendrils 3–6 cm long. Leaves simple, alternate, stipules absent, petiole (2–)6–13 cm long, 3–12 x 2–12 cm, shallowly to deeply palmately lobed with 3–5(–7) lobes, hairy on both surfaces. Flowers unisexual, regular, pentamerous, sepal triangular, narrow, 1–3 mm long, petals united at base, 4–8 mm long, yellow; male flowers borne in 2- to 10-flowered fascicles, pedicels 0.5–3 cm long, stamens 3; female flowers solitary, pedicel 2–10 cm long, ovary ellipsoid, inferior, 7–9 mm long, softly spiny, stigma 3-lobed. Fruit an ellipsoid to subglobose berry, 3–4.5 x 2–3.5 cm, stalk 2.5–21 cm long, bearing thin, soft spines, green ripening to yellow, many seeded. Seeds ellipsoid, 5–6 mm long, compressed with rounded margins and smooth.

Plant Type

Top of page Annual
Herbaceous
Seed propagated
Vine / climber

Distribution

Top of page

Cucumis anguria is native to southern Africa, specifically the Kalahari region. It can now be found cultivated and naturalized across tropical Africa, Australia, North, Central and South America, the West Indies and the Pacific region (Flora Zambesiaca, 2020; PIER, 2020; POWO, 2020; USDA-ARS, 2020).

Although of African origin it is locally important in South America, especially Brazil, and it is also grown in the Caribbean. In Brazil bitter types and the non-bitter cultigen are widely grown in the north, northeast and midwest parts of the country (Mangan et al., 2012). Reintroduced back into Africa, the non-bitter cultigen is grown in Senegal, Sierra Leone, Congo, Madagascar and South Africa (Wilkins-Ellert, 2004Welbaum, 2015). It is also cultivated in India (Ahmed et al., 2015).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 22 Jul 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

AngolaPresentNativeUSDA-NRCS (2020)
BotswanaPresentNativeUSDA-NRCS (2020)
Burkina FasoPresentIntroducedPOWO (2020)
Cabo VerdePresentIntroducedUSDA-NRCS (2020)
Congo, Democratic Republic of thePresentNativeUSDA-NRCS (2020)
EswatiniPresentNativePOWO (2020)
MadagascarPresentIntroducedUSDA-NRCS (2020)
MalawiPresentNativeUSDA-NRCS (2020)
MozambiquePresentNativeUSDA-NRCS (2020)
NamibiaPresentNativeUSDA-NRCS (2020)
RéunionPresentIntroducedUSDA-NRCS (2020)
SenegalPresentIntroducedUSDA-NRCS (2020)
SeychellesPresentIntroducedPIER (2020)
Sierra LeonePresentIntroducedUSDA-NRCS (2020)
South AfricaPresentNative and IntroducedUSDA-NRCS (2020)Native to KwaZulu-Natal, Limpopo, Mpumalanga. Introduced in southern regions and the Cape provinces
TanzaniaPresentNativeUSDA-ARS (2020)
ZambiaPresentIntroducedUSDA-NRCS (2020)
ZimbabwePresentIntroducedUSDA-NRCS (2020)

North America

AnguillaPresentIntroducedInvasiveConnor (2008)
Antigua and BarbudaPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
ArubaPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
BarbadosPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
BelizePresentIntroducedPOWO (2020)
Bonaire, Saint Eustatius and Saba
-BonairePresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
-Sint EustatiusPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
British Virgin IslandsPresentIntroducedPOWO (2020)
Cayman IslandsPresentIntroducedPOWO (2020)
Costa RicaPresentIntroducedInvasiveChacón and Saborío (2012)
CubaPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
CuraçaoPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
Dominican RepublicPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
GreenlandPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
GuadeloupePresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
GuatemalaPresentIntroducedUSDA-ARS (2020)
HaitiPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
HondurasPresentIntroducedUSDA-ARS (2020)
JamaicaPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
MartiniquePresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
MexicoPresentIntroducedUSDA-NRCS (2020)
MontserratPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
Netherlands AntillesPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
NicaraguaPresentIntroducedUSDA-ARS (2020)
PanamaPresentIntroducedUSDA-ARS (2020)
Puerto RicoPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
Saint LuciaPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
Saint Vincent and the GrenadinesPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
Trinidad and TobagoPresentIntroducedPOWO (2020)
U.S. Virgin IslandsPresentIntroducedNaturalizedAcevedo-Rodríguez and Strong (2012)Cultivated
United StatesPresentIntroducedInvasiveUSDA-NRCS (2020)Listed as weedy and invasive
-AlabamaPresentIntroducedPOWO (2020)
-CaliforniaPresentIntroducedUSDA-NRCS (2020)
-FloridaPresentIntroducedInvasiveUSDA-NRCS (2020)Listed as weedy and invasive
-GeorgiaPresentIntroducedUSDA-NRCS (2020)
-HawaiiPresentIntroducedPIER (2020)
-MassachusettsPresentIntroducedUSDA-NRCS (2020)
-MontanaPresentIntroducedUSDA-NRCS (2020)
-New YorkPresentIntroducedUSDA-NRCS (2020)
-OregonPresentIntroducedUSDA-NRCS (2020)
-TexasPresentIntroducedUSDA-NRCS (2020)
-WashingtonPresentIntroducedUSDA-NRCS (2020)

Oceania

AustraliaPresentIntroducedInvasiveWilkins-Ellert (2004)
-New South WalesPresentIntroducedNaturalizedAustralian Tropical Rainforest Plants (2020)
-QueenslandPresentIntroducedNaturalizedAustralian Tropical Rainforest Plants (2020)
-Western AustraliaPresentIntroducedNaturalizedAustralian Tropical Rainforest Plants (2020)
French PolynesiaPresentIntroducedInvasiveFlorence et al. (2013)
New CaledoniaPresentIntroducedInvasiveMacKee (1994)

South America

ArgentinaPresentIntroducedInvasiveIABIN (2008)
BoliviaPresentIntroducedJørgensen et al. (2014)
BrazilPresentIntroducedLima (2020)
-AmapaPresentIntroducedLima (2020)
-MaranhaoPresentIntroducedLima (2020)
-Mato Grosso do SulPresentIntroducedLima (2020)
-Minas GeraisPresentIntroducedLima (2020)
-RondoniaPresentIntroducedLima (2020)
EcuadorPresentIntroducedUSDA-ARS (2020)
French GuianaPresentIntroducedUSDA-ARS (2020)
PeruPresentIntroducedUSDA-ARS (2020)
SurinamePresentIntroducedUSDA-ARS (2020)
VenezuelaPresentIntroducedUSDA-ARS (2020)

History of Introduction and Spread

Top of page

It is thought that seeds of C. anguria were taken from Africa to the Americas with the slave trade. In the Caribbean, the edible, non-bitter type was selected and it has been cultivated since the 17th century. This species was first reported in 1648 in Jamaica and for many years it was erroneously considered as native to the West Indies. From the West Indies it has spread throughout continental America (Kirkbride, 1993; Wilkins-Ellert, 2004).

The non-bitter edible form was reintroduced into Africa (e.g. Cape Verde, Senegal, Sierra Leone, DR Congo, Réunion, Madagascar, South Africa), where it is now cultivated. Across Africa, both wild (bitter) populations and naturalized (non-bitter) populations that have escaped from cultivation can be found and, in some cases, misidentified as element of the native flora (Wilkins-Ellert, 2004).

Habitat

Top of page

Outside of cultivation, C. anguria can be found growing in open woodland, grasslands, wastelands, savannas, arid and semiarid thickets, semi-desert areas and edges of forests at elevations from 200 m up to 1500 m. Naturalized forms occur near homesteads and it is also found as a weed in cultivated and abandoned farmland (Wilkins-Ellert, 2004; Australian Tropical Rainforest Plants, 2020; Flora of Panama, 2020; Hyde et al., 2020).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedManaged grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Managed grasslands (grazing systems) Present, no further details Natural
Managed grasslands (grazing systems) Present, no further details Productive/non-natural
Disturbed areas Present, no further details Harmful (pest or invasive)
Disturbed areas Present, no further details Natural
Disturbed areas Present, no further details Productive/non-natural
Rail / roadsides Present, no further details Harmful (pest or invasive)
Rail / roadsides Present, no further details Natural
Rail / roadsides Present, no further details Productive/non-natural
Urban / peri-urban areas Present, no further details Harmful (pest or invasive)
Urban / peri-urban areas Present, no further details Natural
Urban / peri-urban areas Present, no further details Productive/non-natural
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details Harmful (pest or invasive)
Natural forests Present, no further details Natural
Natural forests Present, no further details Productive/non-natural
Natural grasslands Present, no further details Harmful (pest or invasive)
Natural grasslands Present, no further details Natural
Natural grasslands Present, no further details Productive/non-natural
Deserts Present, no further details Harmful (pest or invasive)
Deserts Present, no further details Natural
Deserts Present, no further details Productive/non-natural
Arid regions Present, no further details Harmful (pest or invasive)
Arid regions Present, no further details Natural
Arid regions Present, no further details Productive/non-natural

Hosts/Species Affected

Top of page

Cucumis anguria is a weed of beans, corn and cotton. It is a serious weed in peanut fields of the southern United States (Buchanan et al., 1981; Balsinhas, 1983; Wilkins-Ellert, 2004; Flora of North America Editorial Committee, 2020; Malerbo-Souza et al. 2020).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Arachis hypogaea (groundnut)FabaceaeMain
Gossypium (cotton)MalvaceaeMain
Phaseolus vulgaris (common bean)FabaceaeMain
Zea mays (maize)PoaceaeMain

Growth Stages

Top of page Flowering stage, Fruiting stage, Post-harvest, Vegetative growing stage

Biology and Ecology

Top of page

Genetics

The chromosome number reported for Cucumis anguria is 2n=24 (Ramachandran and Narayan, 1990; Flora of North America Editorial Committee, 2020).

Reproductive Biology

Cucumis anguria is a monoecious species, with individual male and female flowers appearing on both plants, that depends of pollinators to transfer pollen grains in order to produce fruits. Although self-fertile, a degree of outcrossing results from insect pollination. Zagorcheva (1988) has suggested that C. anguria may also be a facultative apomict.

The flowering season is of about 55-58 days. Male flowers appear before female flowers and both male and female flowers remain open for one day (from 7:30 am to 4:00 pm). The relationship between male and female flowers is on average 5.5 male flowers for each female flower. The greater number of male flowers compared to female flowers produces a greater flow of pollen in the crop and ensures pollination.

Flowers are visited and pollinated by insects. In a study in Brazil, the most important visitor was Apis mellifera (72% of all visits) followed by native bees from the genera Plebeia sp. (16.7%), Exomalopsis sp. (8.3%) and Melissodes sp. (2.8%). Flowers are also visited by butterflies (Malerbo-Souza et al., 2020).

Physiology and Phenology

Cucumis anguria is an annual species. Early growth is upright, followed by branching at the base to produce several trailing stems. Within its native distribution range, this species germinates in a few days during the summer rains when night temperatures are above 12°C and the soil is sufficiently wet. When plants are about 2–3 m length, they start to develop flowers. Fruits are often produced within 60 days after germination. Plants may produce up to 50 fruits per stem. Fruits remain attached to the withered annual stems long after these have died back at the end of the growing season (Wilkins-Ellert, 2004). Photoperiod is important and longer days coupled with higher temperatures confines plants to the production of male flowers. Shorter days and a drop in temperature stimulate the production of female flowers. Fruiting occurs within 60 days of planting and fruit are produced continuously, with as many as 50 fruits per plant produced during the growing season (Wilkins-Ellert, 2004).

Environmental Requirements

Cucumis anguria prefers to grow in tropical and subtropical climates. It grows best in areas with mean annual temperatures ranging from 15°C to 28°C (tolerates 8°C-35°C) and mean annual rainfall between 800mm - 1000 mm (tolerates 300 mm - 1700 mm). It is well adapted to soils with low fertility and is adapted to grow in a wide range of soil types, including Kalahari sands (regosols), red clays and black cotton soils (vertisols) with pH in the range 6 - 7.5 (tolerates 5.5 - 8.3), but it grows best on well drained sandy soils (Fernandes, 2011). This species is sensitive to cold and does not tolerate frost (Wilkins-Ellert, 2004; Useful Tropical Plants, 2020).

Climate

Top of page
ClimateStatusDescriptionRemark
Af - Tropical rainforest climate Tolerated > 60mm precipitation per month
Am - Tropical monsoon climate Tolerated Tropical monsoon climate ( < 60mm precipitation driest month but > (100 - [total annual precipitation(mm}/25]))
As - Tropical savanna climate with dry summer Tolerated < 60mm precipitation driest month (in summer) and < (100 - [total annual precipitation{mm}/25])
Aw - Tropical wet and dry savanna climate Tolerated < 60mm precipitation driest month (in winter) and < (100 - [total annual precipitation{mm}/25])
BS - Steppe climate Preferred > 430mm and < 860mm annual precipitation
BW - Desert climate Preferred < 430mm annual precipitation
Cs - Warm temperate climate with dry summer Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
35 40

Air Temperature

Top of page
Parameter Lower limit Upper limit
Mean annual temperature (ºC) 15 35

Rainfall

Top of page
ParameterLower limitUpper limitDescription
Dry season duration6number of consecutive months with <40 mm rainfall
Mean annual rainfall3001700mm; lower/upper limits

Rainfall Regime

Top of page Bimodal
Summer
Uniform
Winter

Soil Tolerances

Top of page

Soil drainage

  • free

Soil reaction

  • acid
  • alkaline
  • neutral

Soil texture

  • heavy
  • light
  • medium

Special soil tolerances

  • infertile

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Cucumber green mottle mosaic virus Pathogen Whole plant not specific
Meloidogyne Pathogen Roots not specific
Papaya ringspot virus Pathogen Whole plant not specific

Notes on Natural Enemies

Top of page

Cucumber green mottle mosaic virus, root-knot nematodes, and papaya ring spot virus may infect C. anguria. The fruits are occasionally parasitized by fruit fly larvae (Wilkins-Ellert, 2004; Rashmi et al., 2005a, b).

Means of Movement and Dispersal

Top of page

Cucumis anguria spreads by seeds. Its spiny dry fruits can be dispersed after becoming attached to animals. However, humans have been the most important vector in dispersing this species beyond its native distribution range. Cucumis anguria has been intentionally introduced across tropical and subtropical regions since the 17th century (Kirkbride, 1993; Wilkins-Ellert, 2004).

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Crop productionCultivated for its fruits Yes Yes Wilkins-Ellert, 2004
DisturbanceNaturalized in wastelands, open areas and along roadsides Yes Yes Wilkins-Ellert, 2004
Escape from confinement or garden escapeEscaped from cultivation. Often naturalized outside cultivation Yes Yes Wilkins-Ellert, 2004
Internet salesSold online Yes Yes
Medicinal useFruits and leaves used in traditional medicine Yes Yes Useful Tropical Plants, 2020
People foragingFor its fruits Yes Yes Wilkins-Ellert, 2004

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Debris and waste associated with human activitiesEscaped from cultivation. Often naturalized outside cultivation Yes Yes Wilkins-Ellert, 2004
MailSold online Yes Yes

Impact Summary

Top of page
CategoryImpact
Cultural/amenity Positive
Economic/livelihood Positive and negative
Environment (generally) Positive and negative
Human health Positive

Economic Impact

Top of page

Cucumis anguria is a noxious agricultural weed that can reduce crop yields and quality. During peanut harvesting the fruits of C. anguria are picked along with the peanuts and cause difficulty in drying the crop because of their high moisture content (Buchanan et al., 1981; Wilkins-Ellert, 2004).

Environmental Impact

Top of page

Cucumis anguria listed as invasive in North America, Australia, Anguilla, Costa Rica, Argentina and French Polynesia. This species is often reported as a cultivation escapee that, once naturalized, behaves as a weed and outcompetes native species for space and resources. It usually grows spreading over the ground, but can also climb using other plants (Wilkins-Ellert, 2004; Connor, 2008; IABIN, 2008; Chacón and Saborio, 2012; Flora of North America Editorial Committee, 2020; USDA-ARS, 2020). 

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Has a broad native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Pioneering in disturbed areas
  • Benefits from human association (i.e. it is a human commensal)
  • Fast growing
  • Has high reproductive potential
  • Gregarious
Impact outcomes
  • Ecosystem change/ habitat alteration
  • Modification of successional patterns
  • Negatively impacts agriculture
  • Reduced native biodiversity
  • Threat to/ loss of native species
Impact mechanisms
  • Competition - monopolizing resources
  • Rapid growth
  • Produces spines, thorns or burrs
Likelihood of entry/control
  • Highly likely to be transported internationally deliberately
  • Difficult/costly to control

Uses

Top of page

Cucumis anguria is cultivated as a food crop. In Africa the leaves and young shoots are mostly cooked and used as a leafy vegetable. It may be formed into cakes and dried for storage. Elsewhere in the world the fruits are used raw, cooked or pickled. In the USA, the fresh fruits are added to salads or pickled; they are also added to soups and stews. In Brazil they are the main component of a traditional soup known as maxixada. The fruits are popular in the northeast and north of Brazil, where they are key ingredient in the local version of cozido (meat-and-vegetable stew). Fruits from bitter genotypes are used as natural pesticides (Dzomba and Mupa, 2012). In Zimbabwe pieces of fruit are left around the home as a snake deterrent and, as elsewhere in Africa, the juice of the fruit is used as an antifeedant to protect stored crops (Maroyi, 2013).

It is widely used in traditional medicine. In Tanzania an enema prepared from the whole plant is used to treat stomach pains, while in Zimbabwe juice from the fruit is used to treat septic wounds in livestock. Root decoctions are used in Mexico to relieve stomach problems and, in Cuba, to reduce oedema. Fruits are also eaten to treat jaundice and kidney stones, and are also applied to haemorrhoids. Poultices of leaves steeped in vinegar are used to treat ringworm (Wilkins-Ellert, 2004). Ethanolic fruit extracts have antimicrobial activity (Kumar and Kamaraj, 2010) but Bharti et al. (2013) noted that methanolic extracts of C. anguria failed to exhibit activity against Escherichia coli. Phytochemical analysis undertaken by Dzomba and Mupa (2012) revealed that leaves contain alkaloids, flavonoids, tannins, carotenoids, steroids and anthocyanins, and possess significant antioxidant activity.

Uses List

Top of page

Animal feed, fodder, forage

  • pesticide, pest repellent

Human food and beverage

  • Fruits
  • Vegetable

Medicinal, pharmaceutical

  • Traditional/folklore

Similarities to Other Species/Conditions

Top of page

Cucumis anguria looks similar to Cucumis zeyheri. These two species may be distinguished by the following traits: C. zeyheri is perennial species while C. anguria is annual; C. zeyheri has very bitter, inedible fruit while C. anguria has edible fruits; C. zeyheri fruits are smaller and more globose; C. zeyheri has shorter, backwardly pointed bristly hairs on stems and petioles (Hyde et al., 2020).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Herbicides such as dinoseb, 2,4-DB, and toxaphene have been used to control Cucumis anguria as a weed in peanut plantations (Buchanan et al., 1981).

References

Top of page

Acevedo-Rodríguez, P., Strong, M. T., 2012. Catalogue of the Seed Plants of the West Indies, Washington, DC, USA: Smithsonian Institution.1192 pp. http://botany.si.edu/Antilles/WestIndies/catalog.htm

Assis, J. G. de A., Andrade, D. C. L., Prates Júnior, P., Borges, R. M. E., Souza, R. de C. D. de, 2012. Genetic resources of traditional and underutilized cucurbits in the state of Bahia, Brazil. (Recursos genéticos de cucurbitáceas convencionais e subutilizadas no estado da Bahia, Brasil). Magistra, 24(4), 323-331. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/93582/1/Rita-2013.pdf

Australian Tropical Rainforest Plants, 2020. http://www.canbr.gov.au/cpbr/cd-keys/RFK7/key/RFK7/Media/Html/index_rfk.htm

Baird, J. R., Thieret, J. W., 1988. The bur gherkin (Cucumis anguria var. anguria) Cucurbitaceae. Economic Botany, 42(3), 447-451.

Balsinhas, A. A., 1983. The weeds of abandoned cotton fields in Mozambique. In: Bothalia , 14(3/4) . 971-975.

Benevides, C. M. de J., Souza, R. D. B., Souza, M. V. de, Lopes, M. V., 2013. Effect of processing on oxalate and tannin levels in maxine (Cucumis anguria L.), eggplant (Solanum gilo), green bean (Vigna unguiculata (L.) Walp) and andu bean (Cajanus cajan (L.) Mill SP). (Efeito do processamento sobre os teores de oxalato e tanino em maxixe (Cucumis anguria L.), jiló (Solanum gilo), feijão verde (Vigna unguiculata (L.) Walp) e feijão andu (Cajanus cajan (L.) Mill SP)). Alimentos e Nutrição, 24(3), 321-327. http://serv-bib.fcfar.unesp.br/seer/index.php/alimentos/article/view/321/2192

Bharti, D., Gupta, S., Chugh, C. A., 2013. Antimicrobial activity of medicinal plants against some pathogenic microbial strains. International Journal of Phytomedicine, 5(2), 154-158. http://www.arjournals.org/index.php/ijpm/article/view/815

Bindiya, Y., Srihari, D., Babu, J. D., 2016. Effect of gamma irradiation and refrigeration on extending shelf-life of gherkin (Cucumis anguria L.). Indian Journal of Horticulture, 73(3), 410-415. http://www.indianjournals.com/ijor.aspx?target=ijor:ijh&type=home

Buchanan, G. A., Hauser, E. W., Patterson, R. M., 1981. Control of bur gherkins (Cucumis anguria) in peanuts (Arachis hypogaea) with herbicides. Peanut Science, 8(1), 66-73. doi: 10.3146/i0095-3679-8-1-17

Cáceres, A., Perpiña, G., Ferriol, M., Picó, B., Gisbert, C., 2017. New Cucumis rootstocks for melon: 'UPV-FA' and 'UPV-FMy'. HortScience, 52(5), 792-797. http://hortsci.ashspublications.org/

Chacón, E., Saborío, G., 2012. Interamerican network of information on invasive species, Costa Rica. (Red Interamericana de Información de Especies Invasoras, Costa Rica). In: Red Interamericana de Información de Especies Invasoras, Costa Rica . San José, Costa Rica: Asociación para la Conservación y el Estudio de la Biodiversidad.http://invasoras.acebio.org

Chandru Patil, Narayana, J., 2017. Impact of bio fertilizers along with combination of different level of N, P and K on nutrient uptake in gherkin (Cucumis anguria L.). International Journal of Plant Sciences (Muzaffarnagar), 12(2), 120-124. http://www.researchjournal.co.in/online/IJPS.htm doi: 10.15740/HAS/IJPS/12.2/120-124

Connor, RA, 2008. Anguilla Invasive Species Strategy. http://www.gov.ai/documents/Anguilla%20Invasive%20Species%20Strategy%202008%20%282%29.pdf

Dabauza, M., González-Candelas, L., Bordas, M., Roig, L. A., Ramón, D., Moreno, V., 1998. Regeneration and characterisation of Cucumis melo L. (+) Cucumis anguria L. var. longipes (Hook. fil.) Meeuse somatic hybrids. Plant Cell, Tissue and Organ Culture, 52(3), 123-131. doi: 10.1023/A:1005926802672

Dzomba P, Mupa M, 2012. Wild Cucumis anguria leaves: phytochemical profile and antioxidant capacity. Asian Pacific Journal of Tropical Medicine, 1-5.

Fernandes, C. A. P., 2011. Evaluation of seed sources and cultural practices of maxixe (Cucumis anguria L.) for production in Massachusetts. Masters thesis. Amherst, USA: University of Massachusetts. 39 pp. https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1665&context=theses

Flora of North America Editorial Committee, 2020. Flora of North America North of Mexico. In: Flora of North America North of Mexico St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria.http://www.efloras.org/flora_page.aspx?flora_id=1

Flora of Panama, 2020. Flora of Panama (WFO). In: Flora of Panama (WFO) St. Louis, MO and Cambridge, MA, USA: Missouri Botanical Garden and Harvard University Herbaria.http://www.tropicos.org/Project/FOPWFO

Flora Zambesiaca, 2020. Flora Zambesiaca. Richmond, UK: Royal Botanic Gardens, Kew.https://apps.kew.org/efloras/search.do

Genesys, 2019. Global Gateway to Genetic Resources. https://www.genesys-pgr.org

Hyde MA, Wursten BT, Ballings P, Coates Palgrave M, 2020. Flora of Zimbabwe. https://www.zimbabweflora.co.zw/index.php

IABIN, 2008. Inter-American Biodiversity Information Network (IABIN). Organization of American States (OAS).https://www.oas.org/en/sedi/dsd/iabin/

Jeyakumar, J. J., Kamaraj, M., Thiruvengadam, M., 2014. Efficient plant regeneration from petiole explants of West Indian gherkin (Cucumis anguria L.) via indirect organogenesis. Journal of Plant Biochemistry and Biotechnology, 23(3), 307-315. http://rd.springer.com/article/10.1007/s13562-013-0215-9

Johnson, A. M. A., Vidya, T., Papaiah, S., Srinivasulu, M., Bikash Mandal, Gopal, D. V. R. S., 2013. First report of Zucchini yellow mosaic virus infecting Gherkin (Cucumis anguira) in India. Indian Journal of Virology, 24(2), 289-290. http://rd.springer.com/article/10.1007/s13337-013-0134-3 doi: 10.1007/s13337-013-0134-3

Ju HoJong, Jeyakumar, J., Malayandi Kamaraj, Nagella Praveen, Chung IllMin, Kim SeungHyun, Muthu Thiruvengadam, 2014. High frequency somatic embryogenesis and plant regeneration from hypocotyl and leaf explants of gherkin (Cucumis anguria L.). Scientia Horticulturae, 169, 161-168. http://www.sciencedirect.com/science/journal/03044238 doi: 10.1016/j.scienta.2014.02.023

Kavyashri, V. V., Anil Pappachan, Padmaja, A. S., Nagaraju, N., Rangaswamy, K. T., 2016. Biological and molecular characterization of Cucumber mosaic virus isolate causing severe mosaic in gherkin (Cucumis anguria L.) in India. Journal of Pure and Applied Microbiology, 10(3), 2089-2098. http://www.microbiologyjournal.org/jmabsread.php?snoid=2551&month=&year=

Kirkbride, J. H., Jr., 1993. Biosystematic monograph of the genus Cucumis (Cucurbitaceae): botanical identification of cucumbers and melons, Boone, North Carolina, USA: Parkway Publishers.x + 159 pp.

Koch, P. S., Costa, C. P. da, 1991. Inheritance of plant and fruit characters in gherkin. (Herança de caracteres de plant e fruto em maxixe). Horticultura Brasileira, 9(2), 73-77.

Kumar, S. S., 2013. Direct regeneration of the medicinal herb Cucumis anguria L from shoot tip explants. African Journal of Plant Science, 7(10), 488-491. http://www.academicjournals.org/article/article1381823620_Kumar.pdf

Kumar, S. S., Kamaraj, M., 2010. Analysis of phytochemical constituents and antimicrobial activities of Cucumis anguria L. against clinical pathogens. American-Eurasian Journal of Agricultural and Environmental Science, 7(2), 176-178. http://www.idosi.org/aejaes/jaes7(2)/9.pdf

Li, Z., Bi, Y. F., Wang, X., Wang, Y. Z., Yang, S. Q., Zhang, Z. T., Chen, J. F., Lou, Q. F., 2018. Chromosome identification in Cucumis anguria revealed by cross-species single-copy gene FISH. Genome, 61(6), 397-404. https://doi.org/10.1139/gen-2017-0235

MacKee, H. S., 1994. Catalogue des plantes introduites et cultivées en Nouvelle-Calédonie, Paris, France: Muséum National d'Histoire Naturelle.164 pp.

Malerbo-Souza DT, Andrade MOD, Siqueira RAD, Medeiros NMGD, Farias LRD, Silva TGD, Nascimento LDS, Pimentel ACS, 2020. Bees biodiversity, forage behavior and fruit production in gherkin crop (Cucumis anguria L.). Acta Scientiarum. Animal Sciences, 42

Mangan, F. X., Mendonça, R. U. de, Moreira, M., Nunes, S. del V., Finger, F. L., Barros, Z. de J., Galvão, H., Almeida, G. C., Silva, R. A. N., Anderson, M. D., 2008. Production and marketing of vegetables for the ethnic markets in the United States. Horticultura Brasileira, 26(1), 6-14. http://www.scielo.br/scielo.php/script_sci_serial/pid_0102-0536/lng_en/nrm_iso doi: 10.1590/S0102-05362008000100002

Mangan, F., Barros, Z., Fernandes, C., Moreira, M., Finger, F., Almeida, G., 2012. Developing sustainable production practices for new tropical vegetables for the Northeastern United States. Acta Horticulturae, (No.936), 53-60. http://www.actahort.org/books/936/936_5.htm

Maroyi, A., 2013. Traditional use of medicinal plants in south-central Zimbabwe: review and perspectives. Journal of Ethnobiology and Ethnomedicine, 9(31), (4 May 2013). http://www.ethnobiomed.com/content/pdf/1746-4269-9-31.pdf

Matsumoto, Y., Miyagi, M., 2012. A single dominant gene confers resistance to Fusarium oxysporum f. sp. melonis race 1 in West Indian Gherkin (Cucumis anguria L.) accessions. South African Journal of Botany, 83, 117-120. http://www.sciencedirect.com/science/article/pii/S0254629912001202 doi: 10.1016/j.sajb.2012.08.003

Matsumoto, Y., Miyagi, M., 2012. Mapping of a gene conferring alleviation of pollen-pistil incongruity found in an interspecific cross between Cucumis anguria L. and Cucumis melo L. (melon). Scientia Horticulturae, 146, 81-85. http://www.sciencedirect.com/science/journal/03044238 doi: 10.1016/j.scienta.2012.08.021

Matsumoto, Y., Watanabe, N., Kuboyama, T., 2012. Cross-species amplification of 349 melon (Cucumis melo L.) microsatellites in gherkin (Cucumis anguria L.). Journal of Plant Breeding and Crop Science, 4(2), 25-31. http://www.academicjournals.org/JPBCS/PDF/pdf%202012/30%20Jan/Matsumoto%20et%20al.pdf

Matsumoto, Y., Watanabe, N., Kuboyama, T., 2012. Cross-species transferability of 86 cucumber (Cucumis sativus L.) microsatellite markers to gherkin (C. anguria L.). Scientia Horticulturae, 136, 110-114. http://www.sciencedirect.com/science/journal/03044238 doi: 10.1016/j.scienta.2012.01.009

Misra, H. P., Mukherjee, S. K., 2012. Control of red pumpkin beetle, Aulacophora foveicollis (Lucas) on Gherkins Cucumis anguria (L.) by a new insecticide Cyazypyr (HGW 86 10 OD W/V). Journal of Plant Protection and Environment, 9(2), 19-23.

Modolo, V. A., Costa, C. P. da, 2003. Evaluation of Paulista Gherkin lines grown in beds with polyethylene mulching. (Avaliação de linhagens de maxixe paulista cultivadas em canteiros com cobertura de polietileno). Horticultura Brasileira, 21(3), 534-538. doi: 10.1590/S0102-05362003000300024

Modolo, V. A., Costa, C. P. da, 2003. Paulista Gherkin evaluation in greenhouse. (Avaliação de linhagens de Maxixe Paulista em ambiente protegido). Horticultura Brasileira, 21(4), 632-634. doi: 10.1590/S0102-05362003000400011

Modolo, V. A., Costa, C. P. da, 2004. Production of Paulista gherkin using trellis net support. Scientia Agricola, 61(1), 43-46. doi: 10.1590/S0103-90162004000100008

Murthy, T. C. S., Nagegowda, V., Basavaiah, 2007. Influence of growth regulators on growth, flowering and fruit yield of gherkin (Cucumis anguria L.). Asian Journal of Horticulture, 2(1), 44-46.

Naveen Garg, Sidhu, A. S., Cheema, D. S., 2007. Systematics of the genus Cucumis: a review of literature. Haryana Journal of Horticultural Sciences, 36(1/2), 192-197.

Nesom GL, 2011. Toward consistency of taxonomic rank in wild/domesticated Cucurbitaceae. Phytoneuron, 1-33.

Núcleo de Estudos e pesquisas em Alimentação, 2011. Tabela Brasileira de Composição de Alimentos (TACO), 4ª edição revisada e ampliada , Campinas, Brazil: Universidade Estadual de Campinas.161 pp. http://www.cfn.org.br/wp-content/uploads/2017/03/taco_4_edicao_ampliada_e_revisada.pdf

Oliveira, F. A., Oliveira, M. K. T., Medeiros, J. F., Silva, O. M. P., Paiva, E. P., Maia, P. M. E., 2014. Yield of gherkin cultivated in substrate and fertirrigated with different nutrient solutions. (Produtividade do maxixeiro cultivado em substrato e fertirrigado com soluções nutritivas). Horticultura Brasileira, 32(4), 464-467. http://www.scielo.br/scielo.php/script_sci_serial/pid_0102-0536/lng_en/nrm_iso doi: 10.1590/S0102-053620140000400015

Paiva, E. P. de, Torres, S. B., Almeida, J. P. N. de, Silva Sá, F. V. da, Oliveira, R. R. T., 2017. Tetrazolium test for the viability of gherkin seeds. Revista Ciência Agronômica, 48(1), 118-124. http://www.ccarevista.ufc.br/seer/index.php/ccarevista/article/view/4714/1499

Paterniani, M. E. A. G. Z., Costa, C. P. da, 1992. Evaluation of interspecific hybridization in the genus Cucumis L. Revista Brasileira de Genética, 15(2), 399-405.

PIER, 2020. Honolulu, Hawaii, USA: HEAR, University of Hawaii.http://www.hear.org/pier/index.html

POWO, 2020. Plants of the World Online. In: Plants of the World Online London, UK: Royal Botanic Gardens, Kew.http://www.plantsoftheworldonline.org

Praveen, H. M., Nandeesh, M., Mouli, M. R. C., Rao, G. V. G., Vijaysegaran, S., 2012. Management of melon fly, Bactrocera cucurbitae (Coquillett) infesting gherkin: an area-wide control programme adopted in peninsular India. Journal of Horticultural Sciences, 7(1), 68-74.

Ramachandran, C., Narayan, R. K. J., 1990. Satellite DNA specific to knob heterochromatin in Cucumis metuliferus (Cucurbitaceae). Genetica, 80(2), 129-138. doi: 10.1007/BF00127133

Rashmi, C. M., Reddy, C. N. L., Praveen, H. M., Nagaraju, 2005. Natural occurrence of cucumber green mottle mosaic virus on gherkin (Cucumis anguria L.). Environment and Ecology, 23S(Special 4), 781-784.

Rashmi, C. M., Reddy, M. K., Praveen, H. M., Nagaraju, 2005. Occurrence of papaya ring spot virus (PRSV-p) on gherkin (Cucumis anguria L.). Environment and Ecology, 23S(Special 4), 785-788.

Sanches, A. G., Silveira, A. G., Silva, M. B. da, Cordeiro, C. A. M., 2018. Cutting type and calcium chloride on the conservation of the minimally processed maxixe. (Tipo de corte e cloreto de cálcio sobre a conservação do maxixe minimamente processado). Brazilian Journal of Applied Technology for Agricultural Science, 11(2), 53-65. https://revistas.unicentro.br/index.php/repaa/article/view/5275/3680

Santana, G. A., Oliveira, J. B. de, Santos, L. S., Gonçalves, M. S., Borges, M. V., Silva, M. V. da, 2018. Maxixe fruits (Cucumis anguria L.) submitted at different storage temperatures: pigment stability during post-harvest. (Frutos de maxixe (Cucumis anguria L.) submetidos a diferentes temperaturas de armazenamento: estabilidade de pigmentos durante a pós-colheita). REBRAPA - Brazilian Journal of Food Research, 9(1), 12-24. https://periodicos.utfpr.edu.br/rebrapa/article/view/4012/pdf doi: 10.3895/rebrapa.v9n1.4012

Silva, F. C., Ribeiro, W. S., França, C. M., Araújo, F. F., Finger, F. L., 2015. Action of potassium permanganate on the shelf-life of Cucumis anguria fruit. Acta Horticulturae, (No.1071), 105-111. http://www.actahort.org/books/1071/1071_9.htm

Silveira, P. T. S., Silva, G. V., Amorim, F. L., Costa, E. K. C., Silva, N. M. C., 2014. Evaluation of weight loss in gherkin (Cucumis anguria) treated with different types of edible coatings. (Avaliação da perda de massa em maxixes (Cucumis anguria L.) tratados com diferentes tipos de revestimentos comestíveis). Magistra, 26(CBPFH), 305-308. http://www2.ufrb.edu.br/magistra/noticias/19-magistra-publica-numero-especial-do-volume-26-com-os-trabalhos-cientificos-relacionados-ao-iii-congresso-brasileiro-de-processamento-de-frutos-e-ho

Stevens, P. F., 2020. Angiosperm Phylogeny Website. Version 14. In: Angiosperm Phylogeny Website. Version 14 . St. Louis, Missouri, USA: Missouri Botanical Garden.http://www.mobot.org/MOBOT/research/APweb/

Tanveer Ahmed, Reddy, B. V. C., Umesh, K. B., Sudheesh Kulkarni, Khan, T. A., 2015. Economic efficiency and determinants of gherkin production in Karnataka. International Journal of Tropical Agriculture, 33(2 (Part III)), 1359-1364. http://serialsjournals.com/archives.php?journals_id=56

Thiruvengadam, M., Chung, I. M., 2014. Optimization of factors influencing in vitro flowering of gherkin (Cucumis anguria L.). Acta Biologica Hungarica, 65(1), 72-84. http://metapress.com/content/4484036u7512k222/ doi: 10.1556/ABiol.65.2014.1.7

Thiruvengadam, M., Jeyakumar, J., Kamaraj, M., Chung IllMin, 2013. Optimization of Agrobacterium-mediated genetic transformation in gherkin (Cucumis anguria L.). Plant Omics, 6(3), 231-239. http://www.pomics.com/muthu_6_3_2013_231_239.pdf

USDA-ARS, 2020. Germplasm Resources Information Network (GRIN). Online Database. In: Germplasm Resources Information Network (GRIN). Online Database Beltsville, Maryland, USA: National Germplasm Resources Laboratory.https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx

USDA-NRCS, 2020. The PLANTS Database. In: The PLANTS Database Greensboro, North Carolina, USA: National Plant Data Team.https://plants.sc.egov.usda.gov

Useful Tropical Plants, 2020. Useful tropical plants database. In: Useful tropical plants database : K Fern.http://tropical.theferns.info/

Wang ZhiWei, Li Han, Sun DeXi, Deng Yun, Xu XiaoJun, Liu JunPu, 2014. Evaluation of four melon relatives for resistance to Meloidogyne incognita. China Cucurbits and Vegetables, 27(1), 13-16.

Welbaum, G. E., 2015. Vegetable production and practices, [ed. by Welbaum, G. E.]. Wallingford, UK: CABI.ix + 476 pp. http://www.cabi.org/cabebooks/ebook/20153005488 doi:10.1079/9781780645346.0000

Wilkins-Ellert, M. H., 2004. Cucumis anguria L. In: Plant Resources of Tropical Africa (PROTA) 2: Vegetables, [ed. by Grubben, G. J. H., Denton, O. A.]. Wageningen, Netherlands: PROTA Foundation, Backhuys, CTA. 238-242. http://edepot.wur.nl/417517

Yagi, K., Pawelkowicz, M., Osipowski, P., Siedlecka, E., Przybecki, Z., Tagashira, N., Hoshi, Y., Malepszy, S., Plader, W., 2015. Molecular cytogenetic analysis of Cucumis wild species distributed in southern Africa: physical mapping of 5S and 45S rDNA with DAPI. Cytogenetic and Genome Research, 146(1), 80-87. http://www.karger.com/Article/Abstract/433572 doi: 10.1159/000433572

Yoon, J. Y., Chung, I. M., Thiruvengadam, M., 2015. Evaluation of phenolic compounds, antioxidant and antimicrobial activities from transgenic hairy root cultures of gherkin (Cucumis anguria L.). South African Journal of Botany, 100, 80-86. http://www.sciencedirect.com/science/article/pii/S0254629915002914

Zagorcheva, L. I., 1988. Autonomous apomictic propagation and matromorfy in Cucumis ficifolius A. Rich and Cucumis anguria L. In: Cucurbitaceae 88. Proceedings of the Eucarpia meeting on cucurbit genetics and breeding, Avignon-Montfavet, France, May 31-June 2, 1988 [Cucurbitaceae 88. Proceedings of the Eucarpia meeting on cucurbit genetics and breeding, Avignon-Montfavet, France, May 31-June 2, 1988], Paris, France: Institut National de la Recherche Agronomique. 109-111.

Zhang YunXia, Cheng ChunYan, Li Ji, Yang ShuQiong, Wang YunZhu, Li Ziang, Chen JinFeng, Lou QunFeng, 2015. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping. BMC Genomics, 16(730), (25 September 2015). http://www.biomedcentral.com/1471-2164/16/730

Zich, F. A., Hyland, B. P. M., Whiffin, T., Kerrigan, R. A., 2019. Australian Tropical Rainforest Plants, Edition 7. http://www.canbr.org/cpbr/cd-keys/RFK7/key/RFK7/Media/Html/entities/index.htm

Distribution References

Acevedo-Rodríguez P, Strong M T, 2012. Catalogue of the Seed Plants of the West Indies. Washington, DC, USA: Smithsonian Institution. 1192 pp. http://botany.si.edu/Antilles/WestIndies/catalog.htm

Australian Tropical Rainforest Plants, 2020. Australian Tropical Rainforest Plants, version 7.1. http://www.canbr.gov.au/cpbr/cd-keys/RFK7/key/RFK7/Media/Html/index_rfk.htm

Chacón E, Saborío G, 2012. Interamerican network of information on invasive species, Costa Rica. (Red Interamericana de Información de Especies Invasoras, Costa Rica.). In: Red Interamericana de Información de Especies Invasoras, Costa Rica. San José, Costa Rica: Asociación para la Conservación y el Estudio de la Biodiversidad. http://invasoras.acebio.org

Connor RA, 2008. Anguilla Invasive Species Strategy., http://www.gov.ai/documents/Anguilla%20Invasive%20Species%20Strategy%202008%20%282%29.pdf

Florence J, Chevillotte H, Ollier C, Meyer J-Y, 2013. Nadeaud botanical database of the Herbarium of French Polynesia. (Base de données botaniques Nadeaud de l'Herbier de la Polynésie Française (PAP))., https://nadeaud.ilm.pf/

IABIN, 2008. [English title not available]. (Paraguay. Red interamericana de Informacion sobre Biodiversidad Red de Informacion sobre Especies Invasoras (I3N)).,

Jørgensen P M, Nee M H, Beck S G, 2014. Catálogo de las plantas vasculares de Bolivia. St. Louis, Missouri, USA: Missouri Botanical Garden Press. 1741 pp.

Lima LFP, 2020. Cucumis anguria. Rio de Janeiro, Brazil: Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB82117

MacKee H S, 1994. Catalogue des plantes introduites et cultivées en Nouvelle-Calédonie. Paris, France: Muséum National d'Histoire Naturelle. unpaginated.

PIER, 2020. Pacific Islands Ecosystems at Risk. Honolulu, Hawaii, USA: HEAR, University of Hawaii. http://www.hear.org/pier/index.html

POWO, 2020. Plants of the World Online. In: Plants of the World Online, London, UK: Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org

USDA-ARS, 2020. Germplasm Resources Information Network (GRIN). Online Database. In: Germplasm Resources Information Network (GRIN). Online Database, Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx

USDA-NRCS, 2020. The PLANTS Database. In: The PLANTS Database, Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov

Wilkins-Ellert MH, 2004. Cucumis anguria L. Record from PROTA4U. [ed. by Grubben GJH, Denton OA]. Wageningen, Netherlands. PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale). http://www.prota4u.org/search.asp

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.

Contributors

Top of page

18/02/20 Original text by:

Julissa Rojas-Sandoval, Department of Botany-Smithsonian NMNH, Washington DC, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map