Cryptotermes brevis (powderpost termite)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- History of Introduction and Spread
- Risk of Introduction
- Habitat
- Habitat List
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Growth Stages
- Symptoms
- List of Symptoms/Signs
- Biology and Ecology
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Vectors
- Plant Trade
- Wood Packaging
- Impact Summary
- Impact
- Economic Impact
- Diagnosis
- Detection and Inspection
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Cryptotermes brevis (Walker, 1853)
Preferred Common Name
- powderpost termite
Other Scientific Names
- Calotermes brevis
- Calotermes piceatus
- Calotermes pseudobrevis
- Cryptotermes grassii
- Cryptotermes piceatus
- Cryptotermes pseudobrevis
- Cryptotermes rospigliosi
- Kalotermes brevis
- Kalotermes piceatus
- Kalotermes pseudobrevis
International Common Names
- English: dry wood termite; furniture termite; tropical rough-headed powder-post termite; West Indian dry wood termite
Local Common Names
- Latin America: polilla de madera
- Dominican Republic: comején
- Puerto Rico: comején
EPPO code
- CRYRBR (Cryptotermes brevis)
- CRYRPI (Cryptotermes piceatus)
Summary of Invasiveness
Top of pageC. brevis is the most widely and frequently introduced termite in the world. Within the genus Cryptotermes, it is also the most important, invasive, and widespread of pest species. Other invasive congenerics include C. cynocephalus, C. domesticus, C. dudleyi and C. havilandi (Edwards and Mill, 1986). Endemic species of Cryptotermes, e.g. C. primus in Australia and C. bengalensis in India, may also colonize structural wood (Edwards and Mill, 1986). The majority of Cryptotermes species are not structural pests because they have higher moisture requirements and other ecological restrictions.
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Metazoa
- Phylum: Arthropoda
- Subphylum: Uniramia
- Class: Insecta
- Order: Isoptera
- Family: Kalotermitidae
- Genus: Cryptotermes
- Species: Cryptotermes brevis
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageThe coloration of both C. brevis eggs and larvae (first- and second-instars) are whitish. The eggs are kidney-shaped and the chorion has a superficial honeycomb texture. The larvae resemble miniature pseudergates. The eggs and larvae are not useful for taxonomic verification.
Pseudergates (Pseudoworkers) and Nymphs
The pseudergates are sausage-shaped and very soft bodied. The slightest jarring causes the abdomen to burst. The nymphs are similar to pseudergates but possess wing pads that become longer with each of three successive moults until the winged reproductive is formed. Pseudergates and nymphs are not useful for taxonomic verification.
Soldiers
C. brevis soldiers are approximately 4-5 mm long and have a plug-like (phragmotic) head that is nearly black, deeply wrinkled, and about 1.2-1.4 mm wide. Their mandibles do not project nearly as far as those of other drywood termite genera, but they use their heads to plug-off galleries from invading ants. The pronotum of a drywood termite soldier such as C. brevis, is as wide or wider than the head capsule. The typical soldier:pseudergate/nymph proportion is about 1:50. The presoldier or 'white' soldier, is the instar between the pseudergate and soldier. The presoldier has the coloration of the pseudergate, but morphology more like that of the soldier. Soldiers are useful for taxonomic verification because of their characteristic head morphology and, unlike alates, they are present in the colony throughout the year. For measurements of a C. brevis soldier see Scheffrahn and Krecek (1999).
Reproductives (Imagos, Alates, Dealates)
C. brevis alates have two pairs of hairless, membranous wings that are about equal in size and shape and have three or four darkened and enlarged veins (subcosta and branches of the radial sector) in the leading (costal) margin of each wing. In general, the termite alates are weak fliers and flights are slow and fluttering, and the wings are often shed within minutes of landing. When the alate sheds its wings, it is called a dealate. If successfully paired and sealed within a nuptial chamber, a dealate pair becomes primary reproductives that are the young king and queen of an incipient colony. The bodies of C. brevis alates are medium-brown and are approximately 11-12 mm long with wings. Shed wings are about 9 mm long and the median vein usually curves in the outer third to terminate in the costal margin. C. brevis wings have a prismatic sheen when dry. For measurements of C. brevis alates see Scheffrahn and Krecek (1999).
The formation of secondary reproductives is common in groups of C. brevis pseudergates isolated from their primary reproductives (Williams et al., 1982). Unlike the primary reproductives, neotenic reproductives require the presence of a few pseudergates to produce brood (Lenz, 1987). Neotenic, or secondary reproductives moult from the pseudergate, never have wings, and remain in the colony to share reproductive duties. The coloration of neotenic reproductives is lighter than that of primary reproductives.
Distribution
Top of pageC. brevis is the most widespread drywood termite in the tropics and subtropics worldwide. Humans have probably imported C. brevis to every corner of the world, because it may infest the smallest of woody or cellulosic objects. Hong Kong is the only locality in Asia where this termite has been reported. Either C. brevis has gone unreported in the rest of Asia, or Asia is the single subtropical/tropical region in the world where this species is uncommon. Unlikely sites of introduction and isolated establishment include such temperate locations as England (Hickin, 1961), Ontario, Canada (Myles, 1995), Wisconsin, USA (Gay, 1967), and Alaska, USA (RH Scheffrahn, University of Florida, USA, and MI Haverty, USA Forest Service, Albany, California, USA, personal communication, 2004). In addition to records in the distribution table of this datasheet, C. brevis is present in Anguilla, Antiga and Barbuda (RH Scheffrahn, University of Florida, USA, personal communication, 2004) and Azores, Portugal (TG Myles, University of Toronto, Canada, personal communication, 2004).
Although described from specimens collected in Jamaica in 1853 and now occurring on all inhabited islands of the West Indies, C. brevis is not indigenous to the islands of that region. This species only infests structural lumber, therefore its origin remains unknown, but is likely endemic to an obscure location on the neotropical mainland, possibly coastal Peru or northern Chile (J Krecek, University of Florida, USA, personal communication, 2004). Another clue to the endemic locality of C. brevis may be the occurrence of C. darwini, a species that closely resembles C. brevis. C. darwini occurs in standing dead trees and branches of the Galapagos Islands (Light, 1935), and like C. brevis, has no arolium between the pretarsal claws (Bacchus, 1987).
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 17 Dec 2021Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Cabo Verde | Present, Few occurrences | Introduced | Invasive | ||||
Congo, Democratic Republic of the | Present | Introduced | 1945 | Invasive | |||
Egypt | Present, Localized | Introduced | Invasive | ||||
Gambia | Present | Introduced | Invasive | ||||
Ghana | Present | Introduced | 1973 | Invasive | |||
Madagascar | Present, Widespread | Introduced | 1959 | Invasive | |||
Nigeria | Present, Widespread | Introduced | Invasive | ||||
Saint Helena | Present | Introduced | 1960 | Invasive | |||
Senegal | Present | Introduced | 1964 | Invasive | |||
Sierra Leone | Present | Introduced | 1936 | Invasive | |||
South Africa | Present, Widespread | Introduced | 1918 | Invasive | |||
Uganda | Present | Introduced | 1966 | Invasive | |||
Zimbabwe | Present, Few occurrences | Introduced | 1964 | Invasive | |||
Asia |
|||||||
China | Present | Present based on regional distribution. | |||||
Hong Kong | Present | Introduced | Invasive | ||||
Europe |
|||||||
Germany | Absent, Formerly present | ||||||
Italy | Present, Localized | Introduced | Invasive | ||||
Portugal | Present, Few occurrences | Introduced | Pest detected in one building in Lisbon. | ||||
-Azores | Present | Introduced | 2005 | ||||
-Madeira | Present, Localized | Introduced | Invasive | ||||
Spain | Present, Few occurrences | Introduced | Pest detected in five buildings in Barcelona. | ||||
-Canary Islands | Present, Localized | Introduced | Invasive | ||||
North America |
|||||||
Bahamas | Present, Widespread | Introduced | 1922 | Invasive | |||
Barbados | Present | Introduced | 1936 | Invasive | |||
Belize | Present | Introduced | Invasive | ||||
Bermuda | Present | Introduced | 1938 | Invasive | |||
British Virgin Islands | Present, Widespread | Introduced | Invasive | ||||
Canada | |||||||
-Ontario | Absent, Eradicated | 1990 | |||||
Cayman Islands | Present | Introduced | Invasive | ||||
Costa Rica | Present | Introduced | 1929 | Invasive | |||
Cuba | Present, Widespread | Introduced | Invasive | ||||
Curaçao | Present | Introduced | Invasive | ||||
Dominica | Present, Widespread | Introduced | Invasive | ||||
Dominican Republic | Present, Widespread | Introduced | Invasive | ||||
El Salvador | Present | Introduced | 1942 | Invasive | |||
Grenada | Present | Introduced | 1938 | Invasive | |||
Guadeloupe | Present, Widespread | Introduced | Invasive | ||||
Guatemala | Present, Widespread | Introduced | Invasive | ||||
Haiti | Present, Widespread | Introduced | Invasive | ||||
Jamaica | Present, Widespread | Introduced | Invasive | ||||
Martinique | Present, Widespread | Introduced | Invasive | Original citation: Scheffrahn and Krecek (1999) | |||
Mexico | Present, Widespread | Introduced | Invasive | ||||
Montserrat | Present | Introduced | Invasive | ||||
Panama | Present | Introduced | Invasive | ||||
Puerto Rico | Present, Widespread | Introduced | Invasive | ||||
Saint Kitts and Nevis | Present | Introduced | Invasive | ||||
Saint Lucia | Present | Introduced | Invasive | ||||
Saint Vincent and the Grenadines | Present | Introduced | Invasive | ||||
Trinidad and Tobago | Present, Widespread | Introduced | 1933 | Invasive | |||
Turks and Caicos Islands | Present, Widespread | Introduced | Invasive | ||||
U.S. Virgin Islands | Present, Widespread | Introduced | Invasive | ||||
United States | Present | Present based on regional distribution. | |||||
-California | Absent, Formerly present | ||||||
-Florida | Present, Widespread | Introduced | 1919 | Invasive | |||
-Georgia | Present, Few occurrences | Introduced | 2001 | Invasive | |||
-Hawaii | Present, Widespread | Introduced | Invasive | First reported: c. 1900 | |||
-Louisiana | Present, Localized | Introduced | Invasive | ||||
-South Carolina | Present, Few occurrences | Introduced | Invasive | ||||
-Texas | Present, Localized | Introduced | Invasive | ||||
Oceania |
|||||||
Australia | Present | Present based on regional distribution. | |||||
-New South Wales | Present, Localized | Introduced | Invasive | First reported: <1933 | |||
-Queensland | Present, Localized | Introduced | 1964 | Invasive | |||
Fiji | Present, Localized | Introduced | 1932 | Invasive | |||
French Polynesia | Present | Introduced | 1926 | Invasive | |||
New Caledonia | Present | Introduced | 1933 | Invasive | |||
New Zealand | Present | Introduced | Invasive | ||||
South America |
|||||||
Bolivia | Present, Localized | Introduced | Invasive | ||||
Brazil | Present, Localized | Introduced | Invasive | ||||
-Bahia | Present, Localized | Introduced | Invasive | ||||
-Espirito Santo | Present, Localized | Introduced | Invasive | ||||
-Goias | Present, Localized | Introduced | Invasive | ||||
-Minas Gerais | Present, Localized | Introduced | Invasive | ||||
-Paraiba | Present, Localized | Introduced | Invasive | ||||
-Parana | Present, Localized | Introduced | Invasive | ||||
-Rio de Janeiro | Present, Widespread | Introduced | Invasive | ||||
-Rio Grande do Sul | Present, Localized | Introduced | Invasive | ||||
-Santa Catarina | Present, Localized | Introduced | Invasive | ||||
-Sao Paulo | Present, Widespread | Introduced | Invasive | ||||
Chile | Present | Introduced | |||||
-Easter Island | Present | Introduced | 1965 | Invasive | |||
Colombia | Present, Widespread | Introduced | Invasive | ||||
Ecuador | Present | Introduced | 1932 | Invasive | |||
French Guiana | Present | Introduced | Invasive | ||||
Guyana | Present, Widespread | Introduced | 1920 | Invasive | |||
Peru | Present, Widespread | Introduced | Invasive | ||||
Suriname | Present, Widespread | Introduced | Invasive | ||||
Uruguay | Present, Localized | Introduced | 1920 | Invasive | |||
Venezuela | Present, Widespread | Introduced | Invasive |
History of Introduction and Spread
Top of pageRisk of Introduction
Top of pageHabitat
Top of pageC. brevis is exclusively synanthropic. As an example of this dependence on wood in human habitats, of the approximately 6000 drywood termite samples collected from dead trees, shrubs, stumps, and other woody growth in the West Indies, where C. brevis is common in structures, none contained C. brevis (RH Scheffrahn, University of Florida, personal communication, 2004). This pattern of occurrence is characteristic for this species worldwide. The discovery of C. brevis in a woodland locality on Oahu, Hawaii, USA (Scheffrahn at al., 2000) is one of two known non-structural infestations of C. brevis. The other is a colony that was collected from a dead tree in Lima, Peru (J Krecek, University of Florida, USA, personal communication, 2004). As a general rule, if wood is exposed to rainfall or hot direct sunlight, it will not be successfully colonized by C. brevis.
Habitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Cultivated / agricultural land | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Protected agriculture (e.g. glasshouse production) | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed forests, plantations and orchards | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed grasslands (grazing systems) | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Disturbed areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Rail / roadsides | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Urban / peri-urban areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural forests | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural grasslands | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Riverbanks | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Wetlands | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Deserts | Present, no further details | Harmful (pest or invasive) |
Littoral | Coastal areas | Present, no further details | Harmful (pest or invasive) |
Hosts/Species Affected
Top of pageHost Plants and Other Plants Affected
Top of pageSymptoms
Top of pageColonies of all drywood termite species infest sound, solid hardwoods and softwoods, including all common building lumbers used in structural framing and plywood. Numerous colonies may inhabit a single structure. C. brevis is more apt than the other species to infest smaller articles of furniture such as headboards, cabinets, and picture frames and, occasionally, even thick cellulose products such as books, toilet paper rolls, tissue boxes, packaged playing cards, cigar boxes, etc.
Pseudergates and nymphs (pseudergates with wing pads) typically excavate galleries in sapwood in preference to heartwood, but show no preference between annual spring and summer growth rings. Because drywood termites seek protection from external predation, galleries are concealed beneath the wood surface. Sounding with a hard implement can locate hollowed-out wood. A very thin wood surface in late stages of attack may have a blistered appearance. However, external signs of infestations most often consist of faecal pellets extruded from 1-2 mm diameter 'kick-out' holes. Pellets will accumulate in piles directly beneath the holes. Pile diameter is proportional to the height from which pellets fall. Drywood termite faecal pellets, with six longitudinal surfaces capped with one rounded and one more tapered end, are uniquely shaped compared to all other wood-infesting insects. When C. brevis was fed on Douglas fir, most of the carbohydrates in the pellets were assimilated by the termite, but the lignin remained relatively unchanged (Leopold, 1952). Other woods are probably also digested to their residual lignin components. Pellets vary in colour from cream to red to black and are expelled periodically from different 'kick-out' holes communicating with the gallery system. The pellets do not change in shape or colour over time and their colour is often unrelated to the colour of the wood from which they were expelled. Dispersing alates, wings, and ejected faecal pellets are a sanitary nuisance, and pellets may present a slipping hazard on smooth floors.
Except during dispersal flights, C. brevis lives entirely within the wood colonized by the imagos. When an infested wood member is in close proximity < 1 cm) from another member, the termites may construct a protective carton dome or bridging structure to colonize the adjacent member or cover an exposed gallery. This carton is formed from liquid faeces, which the termites also exude to seal the 'kick-out' holes.
Biology and Ecology
Top of pageLuykx and Syren (1979) reported that diploid mitotic chromosome number in C. brevis is 37 for males and 36 for females. The diploid chromosome complement consists almost entirely of acrocentrics and telocentrics, but has one metacentric that forms the central element in a chain of three chromosomes during meiosis.
Physiology and Phenology
Drywood termites rely on symbiotic flagellated protists (Kirby, 1941) for digestion of the cellulose in wood fibres into available carbohydrates. A drywood termite has a specialised rectum for water absorption. Rectal papillae remove essentially all moisture from the faeces, which is then expelled as a dry pellet. Cuticular hydrocarbons and a heavy cuticular cement layer may also play a role in the desiccation resistance of C. brevis (Collins, 1969). Haverty et al. (2000) reported that at least half of the hydrocarbons of C. brevis are olefins. Breznak et al. (1973) found that reproductives of C. brevis were capable of nitrogen fixation, an element that is very limited in wood.
Reproductive Biology
Each year, a proportion of pseudergates in a mature colony moults, via the nymphal stage, into winged reproductives also known as alates. The alates leave the colony during a series of dispersal flights over a period of several weeks. This is the only time when colony members leave the confines of their excavated wood galleries and is often the first sign of a structural infestation. Alates of C. brevis fly between dusk and dawn during the spring, most typically in May and November in the northern and southern hemispheres, respectively, with a smaller flight sometimes occurring in the autumn. In Key West, Florida, USA, Minnick (1973) reported peak flights in late May and early June at approximately 30 minutes after sunrise and 80 minutes after sunset. The alates are attracted to lights, thus drawing them to structures. After a brief flight, the alates land and almost instantaneously shed their wings and segregate into male/female pairs (Minnick, 1973). The male follows the female in tandem as they inspect wood surfaces for defects such as cracks, crevices, knots, or nail holes, which are the preferred foci for nuptial chamber sites. Once the pair selects the chamber site, its opening is sealed with liquid faeces. Copulation takes place within the nuptial chamber. During the first 6 months, the initial batch of eggs hatches into larvae. In the second or third year, the first soldier may appear along with additional brood. A colony matures in no less than 5 years, at which time it produces its first crop of alates. Colony growth is slow (McMahan, 1962). Colonies can live over 10 years and contain over 1000 members. As a result of recolonizing the same wood member, numerous colonies may live in close proximity and are thought to share gallery systems. Twenty colonies (as counted by number of pairs of primary reproductives) have been recorded from a single wooden door.
In a colony foundation study, Scheffrahn et al. (1998) used paired Picea sp. blocks as a C. brevis colonization platform. The preferred colonization site was the crevice between the two blocks followed by the bottom surface that formed a crevice with the metal substrate. The tops and exterior of the block pairs were least preferred for nuptial chamber construction. They further observed that lone heterosexual pairs headed 52% of colonies containing live termites. Of incipient colonies containing brood, 80% were headed by lone heterosexual pairs, 16% had additional dealates (alate that has shed its wings) occupying chambers with a heterosexual couple, and 4% lost one or both founding reproductives. The broods in 4-month-old C. brevis colonies were small, with the number of eggs and/or larvae being three or fewer, whereas the 6-month-old colonies contained a higher proportion of larvae over eggs than in the 4-month-old colonies. McMahan (1962) reported a mean of approximately one egg and three to five larvae or pseudergates (>third-instar) from 4- to 6-month-old C. brevis colonies composed of laboratory-paired dealates placed inside prepared termitaria.
Using larger attic simulation modules, Scheffrahn et al. (2001a) found that C. brevis constructed almost all nuptial chambers in crevices forming the junctures between boards. They found that two types of nuptial chambers were usually encountered, those that were empty and those that contained live or dead dealates. The empty protochambers mostly consisted of small surface excavations 0.5-1 mm deep and a few millimetres wide. Chambers containing live dealates and especially live brood were larger and deeper; up to 21 mm wide and 8 mm deep. These chambers also usually contained pellets, although in some cases the pellets had been expelled outside.
Environmental Requirements
Based on meteorological data from C. brevis localities in Africa, Williams (1976) estimated that this species thrives in climates of higher desiccation, lower wood moisture content (10-12%), and lower minimum average temperatures (7°C) than Cryptotermes dudleyi or Cryptotermes havilandi. Collins (1969) reported that C. brevis had the greatest desiccation tolerance and lowest weight loss among eight kalotermitid species exposed to 0-4% relative humidity (RH) and 35°C. Woodrow and Grace (1999) reported that microclimates associated with C. brevis in Hawaii, USA were fairly uniform with an overall mean wood-core temperature of 24°C. The highest wood-core temperature was 43°C and the lowest was 14°C. Ambient RH was more variable than temperature with values varying as much as 55% RH during a single month. Monthly mean RH was as high as 75% and ranged from 98% to 27%. In the laboratory, Steward (1983) found that C. brevis was able to reproduce quickly with adults or neotenic reproductives at moderate or low humidities (90 and 60-70% RH, respectively), whereas three other Cryptotermes species preferred higher humidities (85-95% RH).
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Metarhizium anisopliae | Pathogen | |||||
Verticillium indicum | Pathogen |
Notes on Natural Enemies
Top of pageMeans of Movement and Dispersal
Top of pageColony maturation in C. brevis is measured in years and the wing-reproductives are weak fliers making this and other termite species slow to disperse. Over water and windblown dispersal by termites is also unlikely because mate selection and copulation take place after flight. Without human transport, C. brevis would probably disperse no more than a few hundred metres per year from an urban or suburban location infested with mature, alate-producing colonies.
Movement in Trade
Any movement of seasoned wooden articles, large or small, from areas where C. brevis occurs could result in new introductions at their point of destination. Interior wooden components of boats and ships may also result in introductions at ports-of-call. Dispersing alates will be attracted to lights on portside buildings or on other boats.
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Wood | arthropods/adults; arthropods/eggs; arthropods/larvae; arthropods/nymphs; arthropods/pupae | Yes | Pest or symptoms usually visible to the naked eye |
Plant parts not known to carry the pest in trade/transport |
---|
Bark |
Bulbs/Tubers/Corms/Rhizomes |
Flowers/Inflorescences/Cones/Calyx |
Fruits (inc. pods) |
Growing medium accompanying plants |
Leaves |
Roots |
Seedlings/Micropropagated plants |
Stems (above ground)/Shoots/Trunks/Branches |
True seeds (inc. grain) |
Wood Packaging
Top of pageWood Packaging liable to carry the pest in trade/transport | Timber type | Used as packing |
---|---|---|
Processed or treated wood | All | Yes |
Solid wood packing material without bark | All | Yes |
Impact Summary
Top of pageCategory | Impact |
---|---|
Animal/plant products | Negative |
Animal/plant products | Negative |
Trade/international relations | Negative |
Trade/international relations | Negative |
Impact
Top of pageEconomic Impact
Top of pageDiagnosis
Top of pageDetection and Inspection
Top of pageSimilarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Chemical Control
Chemical prevention involves the treatment of attics and wall voids with desiccating or toxic dusts that kill freshly flown reproductives as they contact treated surfaces while searching for nest sites. Borate dusts, silica dusts, and residual chemicals have been shown to impede nuptial chamber construction (Scheffrahn et al., 1998, 2001a). The application of preventative chemicals is best done during the framing phase of construction when all wood surfaces are accessible to treatment. Dealates (alates that have shed their wings) will not infest lumber that has been pressure-treated with chromated copper arsenate (CCA) wood preservatives (Scheffrahn et al., 1998).
Local or 'spot' treatments for drywood termite control include wood injection surface applications, microwave energy, electrocution, and wood replacement. Wood injection or 'drill-and-treat' applications use an insecticide that is injected into small holes drilled to intersect termite galleries (Scheffrahn et al., 1998). This is the simplest and most direct method of treatment. Recently, the non-repellent and slow-acting insecticides, fipronil, imidacloprid and thiamethoxam, have gained registration in the USA for intragallery injections for drywood termites. Spinosad showed good field efficacy against C. brevis in field trials (Scheffrahn and Thoms, 1999; Thoms, 2000), but this chemical has not been marketed for drywood termite control. Spray and foam applications of products containing boron salts must be applied to raw, uncoated wood surfaces. Because penetration depths of borate solutions and depth of drywood termite galleries vary, drill injection into infested wood should also be performed as surface application alone has been shown not to be as effective as a remedial treatment (Scheffrahn et al., 1998). The monoterpene, limonene (a natural product) will kill drywood termites on contact when injected into galleries or applied to uncoated wood surfaces (RH Scheffrahn, University of Florida, personal communication, 2004).
Fumigation ('tenting') is a highly technical procedure that involves surrounding the structure with a gas-tight tarpaulin, sealing the tarpaulin to the ground, releasing an insecticidal gas inside the enclosure, and aerating the fumigant after a set exposure time. The overriding advantage of structural fumigation to control C. brevis and other drywood termites is that fumigation insures the eradication of this pest throughout the entire structure including all hidden or inaccessible infestations. Sulfuryl fluoride is the primary fumigant for C. brevis control in the USA. Osbrink et al. (1987) reported on sulfuryl fluoride toxicity to drywood termites under laboratory conditions.
Drywood termites are hidden inside the wood they infest, therefore it may be difficult to immediately verify the success of a given treatment. However, new detection methods may improve control verification (Quarles, 2004). A dispersal flight within a few years of treatment suggests either that the treatment was unsuccessful, infested wood was brought into the structure, or a hidden, untreated, infestation was present and remains to be treated. Accumulation of pellets, especially in a cone-shaped pattern, is also a sign of active drywood termites. All pellets should be removed after a treatment to ensure that colony activity has ceased. A re-treatment is warranted if new pellets are observed. Pellets may continue to trickle from the wood after successful control if the wood member is periodically subjected to vibrations or jarring such as a door or doorframe.
Early Warning Systems
C. brevis alates are attracted to lights. Therefore a light trap or sticky trap near a light can be used to monitor for C. brevis dispersal flights.
IPM Programmes
Although no data exist on the effectiveness of non-chemical methods, several might be considered to reduce the colonization potential of C. brevis in structures. These methods include alate exclusion, alate avoidance, the use of non-wood materials, nuptial chamber site reduction, and wood article inspection. Alate exclusion consists of 'tight' building practices, such as the use of exterior caulking and use of small mesh <1 mm openings) attic and window screening, but complete blockage of alate entry points is difficult. The reduction or elimination of outside lighting around buildings during dispersal flight season may prevent attraction of alates from neighbouring infested structures. Nail holes, cracks and crevices, used by C. brevis as foci for nuptial chamber construction should be sealed. All wooden furnishings being brought into buildings should be inspected for C. brevis infestation.
Non-chemical treatments for C. brevis and other drywood termites have been marketed at various times in the USA (Lewis and Haverty, 1996). Microwave energy, applied to relatively small sections of infested wood, kills termites by heating them. The electrocution method uses a hand-held 'gun', which is passed slowly over the infested wood. The high voltage and low current energy emitted by the probe electrocutes termites in the immediate application area, but metal interferes with this treatment. Wood replacement allows for absolute removal of a drywood termite infestation if it is isolated to a wood member that can be detached relatively easily, as for example, a fascia board or a door.
Due to technical challenges, heat treatments are usually not applied to the entire building, but are limited to known areas of infestation, and along with excessive cold, are classified as compartmental treatments. In the USA, heat treatments have been used to eradicate drywood termites from a portion of a house such as an attic, porch, or bedroom, or from an individual apartment or condominium unit inside a multi-family dwelling. Hot air is delivered using high-output propane heaters. Scheffrahn et al. (1997b) reported that C. brevis was killed when exposed to 50°C for more than or exactly 4 minutes regardless of humidity or prior heat acclimation. Similar results were later obtained on C. brevis populations in Hawaii, USA (Woodrow and Grace, 1998). Excessive cold is primarily used for treating wall voids or similar small enclosures in a structure. Liquid nitrogen is delivered into these voids until the temperature falls to a level lethal to drywood termites (Rust et al., 1997). Small wooden articles can be treated by placing them in warm ovens or freezers. Items placed in freezers should be sealed in bags to avoid condensation upon removal.
References
Top of pageAdamson AM, 1937. Preliminary report on termites and termite damage in Trinidad, West Indies. Tropical Agriculture, 14:141-149.
Adamson AM, 1938. Notes on termites destructive to buildings in the Lesser Antilles. Tropical Agriculture, 15:220-221.
Anonymous, 1980. C.I.B. Distribution maps of pests. No. 77. In: Edwards R, Mill AE, 1986. Termites in buildings. Tonbridge, UK: Brown Knight & Truscott Ltd.
Araujo RL, 1958. Contribuicãio à biogeographia dos térmitas da São Paulo, Brasil. Insecta - Isoptera. Archos Instituto Biologia def. Agric. Animale, 25:185-217.
Araujo RL, 1970. Termites of the Neotropical region. In: Krishna K, Weesner FM, eds. Biology of Termites Vol. II. New York, USA, London, UK: Academic Press, 527-576.
Bacchus S, 1987. A taxonomic and biometric study of the genus Cryptotermes (Isoptera: Kalotermitidae). Tropical Pest Bulletin, 7:1-91.
Bandeira AG, Miranda CS, Vasconcellos A, 1998. Danos causados por cupins em João Pessoa, Paraíba - Brasil. In: Fontes LR, Filho EB, eds. Cupins o desafio do conhecimento. Piracicaba, Brasil: Fundação de estudos agrários Luiz de Quieroz, 75-85.
Banks N, 1919. Antillean Isoptera. Bulletin of the Museum of Comparative Zoology, 26:475-489.
Banks N, Snyder TE, 1920. A revision of the Nearctic termites. Bulletin of the U.S. National Museum, 108:1-228.
Becker G, 1953. Observations on wood-destroying insects (termites and beetles) in Guatemala. Zeitschrift für Angewandte Entomologie, 35:339-73.
Campos SL, Pena GLE, 1973. Los insectos de Isla de Pascua: Resultados de una prospeccion entomologica. Revista Chilena de Entomologia, 7:217-229.
Chhotani OB, 1970. Taxonomy, zoogeography and phylogeny of the genus Cryptotermes (Isoptera: Kalotermitidae) from the Oriental region. Memoirs of the Zoological Survey of India, 15:1-81.
Collins M, 1969. Water relations in termites. In: Krishna K, Weesner FM, eds. Biology of Termites Vol. I. New York and London: Academic Press, 433-458.
Emerson AE, 1925. The termites from Kartabo, Bartica District, Guyana. Zoologica, 6(4):291-459.
Fontes LR, 1998. Novos aditamentos ao "Catálogo dos Isoptera do Novo Mundo", e uma filogenia para os gêneros neotropicais de Nasutitermitinae. In: Fontes LR, Filho EB, eds. Cupins o desafio do conhecimento. Piracicaba, Brasil: Fundação de estudos agrários Luiz de Quieroz, 309-412.
Fowler HG, Forti LC, 1990. Status and prospects of termite problems and control in Brazil. Sociobiology, 17:45-56.
Fullaway DT, 1921. Cryptotermes brevis in Hawaii (Isoptera). Proceedings of the Hawaiian Entomological Society, 4:456-457.
Fuller C, 1921. The termites of South Africa, being a preliminary notice. South African Journal of Natural History, 39:14-52.
Gay FJ, 1967. A world review of introduced species of termites. Bulletin No. 286. Melbourne, Australia: CSIRO, 88.
Hagen HA, 1858. Specielle Monographie der Termiten. Linnea Entomologica, 12:4-342.
Harris WV, 1959. Notes on termites injurious to forestry in British Honduras. The Empire Forestry Review, 38:181-185.
Hickin N, 1961. A record of accidental importation. Timber Technology, 69:26-27.
Janicki C, 1911. Zur Kenntniss des Parabasalapparat bei parasitischen Flagellaten. Biologische Centralblat, 31:321-330.
Kirby H, 1941. Devescovinid flagellates of termites. 1. The genus Devescovina. University of California Publications in Zoology, 45:1-92.
Krishna K, 1961. A generic revision and phylogenetic study of the family Kalotermitidae (Isoptera). Bulletin of the American Museum of Natural History, 122:303-408.
Lefeuve P, 1990. Termites in French Guiana. Bois et Forets des Tropiques, 224:59-64
Light SF, 1929. Present status of our knowledge of the termite of China. Lingnam Science Journal, 7:581-600.
Light SF, 1932. Termites of the Marquesas Islands. Bulletin of the Bernice P. Bishop Museum, 98:73-86.
Light SF, 1934. The termite fauna of North America with special reference to the United States. In: Kofoid CA, ed. Termites and Termite Control. II. Berkeley, USA: University of California Press, 127-135.
Light SF, 1935. The Templeton Crocker Expedition of the California Academy of Science 1932, No. 20, The termites. Proceedings of the California Academy of Sciences, 21:235-256.
Light SF, 1936. A tropical termite in California. Pan-Pacific Entomologist, 12:125-6.
Martínez JB, 1957. El termes de madera seca (Cryptotermes brevis) en las islas Canaries. Montes, 13:147-161.
Martorell LF, 1939. Insects observed in the state of Aragua, Venezuela, South America. Journal of Agriculture of the University of Puerto Rico, 23:184-185.
McMahan E, 1962. Laboratory studies of colony establishment and development in Cryptotermes brevis (Walker) (Isoptera: Kalotermitidae). Proceedings of the Hawaiian Entomological Society, 18:145-153.
Minnick DR, 1973. The flight and courtship behavior of the drywood termite, Cryptotermes brevis. Environmental Entomology, 2:587-591.
Nickle DA, Collins MS, 1992. The termites of Panama. In: Quintero DA, Aiello A, eds. Insects of Panama and Mesoamerica. New York, USA: Oxford University Press, 208-241.
Nour H, Sharawy M, Hillal H, 1966. Non subterranean termites from Egypt (Isoptera: Kalotermitidae). Bulletin de la Société Entomologique d’Egypte, 49:321-322.
Paulian R, 1970. The termites of Madagascar. In: Krishna K, Weesner FM, eds. Biology of Termites Vol. II. New York, USA, London, UK: Academic Press, 281-294.
Peters BC, 1990. Infestations of Cryptotermes brevis (Walker) (Isoptera:Kalotermitidae) in Queensland, Australia 1. History, detection and identification. Australian Forestry, 53(2):79-88; 18 ref.
Quarles W, 2004. Where are they? New methods for finding termites in structures. The IPM Practitioner, 26:1-9.
Scheffrahn RH, 1991. Allelochemical resistance of woods to termites. Sociobiology, 19(1):257-281
Scheffrahn RH, Darlington JPEC, Collins MS, Krecek J, Su NY, 1994. Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the West Indies. Sociobiology, 24:213-238.
Scheffrahn RH, Su NY, Chase JA, Mangold JR, Grace JK, Yates JR, 2000. First record of Cryptotermes cynocephalus Light (Isoptera: Kalotermitidae) and natural woodland infestations of C. brevis (Walker) on Oahu, Hawaiian Islands. Proceedings of the Hawaiian Entomological Society, 34:141-145.
Snyder TE, 1922. New termites from Hawaii, Central and South America and the Antilles. Proceedings of the United States National Museum, 61:1-32.
Snyder TE, 1934. Two new termites from Costa Rica. Proceedings of the Biological Society of Washington, 47:95-98.
Snyder TE, 1948. Our Enemy the Termite. Ithaca, New York, USA: Comstock Publishing Co. Inc.
Snyder TE, 1956. Termites of the West Indies, the Bahamas and Bermuda. Journal of Agriculture of the University of Puerto Rico, 40:189-202.
Squire FA, 1972. Entomological problems in Bolivia. PANS, 18(3):249-268; 10 fig.; 41-2 pp. of ref.
Walker F, 1853. List of specimens of Neuropterous insects in the collection of the British Museum. Part III. London, UK: British Museum, 501-529.
Weesner RL, 1970. Termites of the Nearctic region. In: Krishna K, Weesner FM, eds. Biology of termites Vol. II. New York, USA, London, UK: Academic Press, 477-525.
Wolcott GN, 1924. The comparative resistance of woods to the attack of the termite Cryptotermes brevis Walker. Porto Rico Insular Experimental Station Bulletin, 33.
Distribution References
Araujo RL, 1958. (Contribuicãio à biogeographia dos térmitas da São Paulo, Brasil. Insecta - Isoptera). In: Archos Instituto Biologia def. Agric. Animale, 25 185-217.
Araujo RL, 1970. Termites of the Neotropical region. In: Biology of Termites, II [ed. by Krishna K, Weesner FM]. New York; London, USA; UK: Academic Press. 527-576.
Bacchus S, 1987. A taxonomic and biometric study of the genus Cryptotermes (Isoptera: Kalotermitidae). In: Tropical Pest Bulletin, 7 1-91.
Bandeira AG, Miranda CS, Vasconcellos A, 1998. (Danos causados por cupins em João Pessoa, Paraíba - Brasil). In: Cupins o desafio do conhecimento, [ed. by Fontes LR, Filho EB]. Piracicaba, Brasil: Fundação de estudos agrários Luiz de Quieroz. 75-85.
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Coaton W G H, 1948. Bull. Dep. agric. S. Afr. 18 pp.
Fontes LR, 1998. (Novos aditamentos ao "Catálogo dos Isoptera do Novo Mundo", e uma filogenia para os gêneros neotropicais de Nasutitermitinae). In: Cupins o desafio do conhecimento, [ed. by Fontes LR, Filho EB]. Piracicaba, Brasil: Fundação de estudos agrários Luiz de Quieroz. 309-412.
Fowler HG, Forti LC, 1990. Status and prospects of termite problems and control in Brazil. In: Sociobiology, 17 45-56.
Harris WV, 1959. Notes on termites injurious to forestry in British Honduras. In: The Empire Forestry Review, 38 181-185.
Light S F, 1936. A tropical Termite in California. Pan-Pacific Entomologist. 12 (3), 125-126 pp.
Martínez JB, 1957. (El termes de madera seca (Cryptotermes brevis) en las islas Canaries). In: Montes, 13 147-161.
Nickle DA, Collins MS, 1992. The termites of Panama. In: Insects of Panama and Mesoamerica, [ed. by Quintero DA, Aiello A]. New York, USA: Oxford University Press. 208-241.
Paulian R, 1970. The termites of Madagascar. In: Biology of Termites Vol. II. New York, USA, II [ed. by Krishna K, Weesner FM]. London, UK: Academic Press. 281-294.
Scheffrahn RH, Darlington JPEC, Collins MS, Krecek J, Su NY, 1994. Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the West Indies. In: Sociobiology, 24 213-238.
Snyder T E, 1948. Our enemy the termite. Ithaca, NY, USA: Comstock Publishing Co. Inc.
Snyder T E, 1949. Publications of the Smithsonian Institution, 490 pp.
Snyder TE, 1956. Termites of the West Indies, the Bahamas and Bermuda. In: Journal of Agriculture of the University of Puerto Rico, 40 189-202.
Squire F A, 1972. Entomological problems in Bolivia. PANS. 18 (3), 249-268.
Weesner RL, 1970. Termites of the Nearctic region. In: Biology of termites Vol. II. New York, USA, II [ed. by Krishna K, Weesner FM]. London, UK: Academic Press. 477-525.
Wolcott G N, 1924. Porto Rico Insular Experimental Station Bulletin,
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/