Leucanthemum vulgare (oxeye daisy)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Habitat
- Habitat List
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Biology and Ecology
- Climate
- Latitude/Altitude Ranges
- Rainfall
- Soil Tolerances
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Causes
- Pathway Vectors
- Impact Summary
- Economic Impact
- Environmental Impact
- Risk and Impact Factors
- Uses
- Uses List
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Contributors
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Leucanthemum vulgare (Vaill.) Lam.
Preferred Common Name
- oxeye daisy
Other Scientific Names
- Chrysanthemum ircutianum Turcz.
- Chrysanthemum lanceolatum Vest
- Chrysanthemum leucanthemum (L.) E.H.L.Krause
- Chrysanthemum leucanthemum var. pinnatifidum Lecor & Lam.
- Chrysanthemum praecox (M.Bieb.) DC
- Chrysanthemum pratense Salisb.
- Chrysanthemum sylvestre Willd.
- Leucanthemum atratum var. heterophyllum (Willd.) Rouy
- Matricaria leucanthemum (L.) Scop.
- Pontia heterophylla (Willd.) Bubani
- Pontia vulgaris Bubani
- Pyrethrum leucanthemum (L.) Franch.
- Tanacetum leucanthemum (L.) Sch.Bip.
International Common Names
- English: dog daisy; marguerite daisy; moon daisy; white daisy; whiteweed; yellow daisy
- Spanish: margarita de los prados; margarita mayor; margariton
- French: grande marguerite; Leucanthème vulgaire
Local Common Names
- China: bin ju
- France: leucanthéme commun; marguerite blanche
- Germany: Frühblühende Margerite; Gewöhnliche Wucherblume; Magerwiesen-Margerite; Wiesen-Margerite; Wiesen-Wucherblume
- Italy: margherita comune
- Japan: furansugiku
- Netherlands: grote Margriet
- Russian Federation: nivjanik obyknovennyj; popovnik; prästkrage; romaška lugovaja
- South Africa: margriet
- Sweden: praestkrage
EPPO code
- CHYLE (Leucanthemum vulgare)
Summary of Invasiveness
Top of pageL. vulgare is a perennial native to Europe and western Asia which has been introduced widely around the world. This species is reported as being invasive in the USA, Canada, India, New Zealand and Australia. In pastures and meadows it can form dense stands which can outcompete native flora and may reduce the diversity of natural vegetation or pasture quality. L. vulgare produces a large number of seed and can also regenerate from fragments of rhizome which makes control of this species difficult. L. vulgare may also serve as a host and reservoir for several species of polyphagous gall forming Meloidogyne nematodes. L. vulgare is federally regulated as a primary noxious weed in Canada.
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Asterales
- Family: Asteraceae
- Genus: Leucanthemum
- Species: Leucanthemum vulgare
Notes on Taxonomy and Nomenclature
Top of pageL. vulgare was originally named Chrysanthemum leucanthemum by Linnaeus in 1773 and this name continued to be used almost universally until the 1990s when it was found necessary to split the genus Chrysanthemum. As a result the name Leucanthemum vulgare became the approved name, though the authorization of the name varies between ‘(Vaill.) Lam.’ and more simply ‘Lam.’ The latter is used by ITIS (2015) and by Missouri Botanical Garden (2015) while The Plant List (2015) uses ‘(Vaill.) Lam.’ The combination, however, has been accepted by most authorities, although the old C. leucanthemum is still used by many, especially in the horticultural trade. The story is well described in Botanical Accuracy (2014).
L. vulgare is part of a species complex (L. vulgare aggregate) and very similar in morphology as L. ircutianum. However, L. vulgare is diploid (2n = 18) and L. ircutianum is tetraploid (2n = 36). In some European countries the name L. vulgare is mistakenly used for the tetraploid L. ircutianum and the diploid L. vulgare is called L. praecox.
Description
Top of pageL. vulgare is a glabrous to sparsely pubescent shallow rooted perennial. Roots arise from a short creeping rootstock with many adventitious roots. Underground stems contain water soluble red pigments in the xylem and pith tissues and root tips may be red. Either short rhizomes or stout root-crowns may give rise to stems. Seedlings bear cotyledons that open above the soil surface; Stems are erect, simple or slightly branching, usually 1-2 per plant, but may form thick clusters. The stems are decumbent at their base, usually 30-90 cm in height reaching a maximum height of 2 m. Leaves are sparsely pubescent and three-nerved. Basal leaves are stalked, spatulate to obovate and irregularly dentate) to regularly crenulate 10-25 cm long and 3-7 cm wide. Stem leaves are smaller, alternate, mostly sessile, obovate to narrowly lanceolate becoming ligulate apically with coarse teeth and the base usually deeply lobed or fringed with slender segments. Flower heads are erect, usually solitary on long terminal peduncles and are 2.5-7.5 cm in diameter with 1-15 inflorescences per plant. The flower heads are mainly heterogamous with female ray florets and hermaphrodite disk florets. White ray florets, 15-30 per head are 0.5-2.4 cm long, ligulate, the apex rounded or with three small teeth; the 400-500 yellow disk florets are 4 mm long and tubular forming a dense, slightly domed centre. The numerous involucral bracts are green, edged with brown, and surround the base of each head. Fruits from both disk and ray florets are gray-silvery obovoid to cylindrical achenes with 5-10 equal raised ribs, 2-3 mm long and 0.8-1 mm wide. The pappus is absent or reduced to a crown. When crushed, all parts of the plant have a disagreeable sour odour (Clements et al., 2004).
Distribution
Top of pageL. vulgare is native to Europe and eastwards into central Asia. L. vulgare has been introduced to many other temperate areas including further east in Asia and particularly in North America. It now occurs sporadically in subtropical regions including Australia, South America and South Africa and in more tropical countries in East Africa but mainly at high elevations. In the USA, USDA-ARS (2015) indicates extensive but incomplete distribution across continental USA. The USDA-NRCS (2015) however indicates every state to be invaded including Alaska and, further afield, Hawaii. The distribution table shows mainly where it is native or has naturalized. It is however, widely cultivated and may be present in a number of further territories.
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 10 Feb 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Kenya | Present | Introduced | |||||
Réunion | Present | Introduced | 1982 | ||||
South Africa | Present | Introduced | |||||
Tanzania | Present | Introduced | |||||
Antarctica |
|||||||
French Southern Territories | Present | Introduced | 1963 | Original location reported: Amsterdam Island | |||
Asia |
|||||||
Armenia | Present | Native | |||||
Bhutan | Present | Introduced | 2008 | ||||
China | Present | Introduced | 1910 | ||||
-Fujian | Present | Introduced | |||||
-Gansu | Present | Introduced | |||||
-Hebei | Present | Introduced | |||||
-Henan | Present | Introduced | |||||
-Jiangsu | Present | Introduced | |||||
-Jiangxi | Present | Introduced | |||||
Georgia | Present | Native | |||||
India | Present | Introduced | |||||
-Jammu and Kashmir | Present, Only in captivity/cultivation | Introduced | |||||
-West Bengal | Present | Introduced | |||||
North Korea | Present | Introduced | 1999 | ||||
South Korea | Present | Introduced | First reported: 1992-93 | ||||
Taiwan | Present | Introduced | 1929 | ||||
Europe |
|||||||
Austria | Present | Native | |||||
Belarus | Present | Native | |||||
Belgium | Present | Native | |||||
Bosnia and Herzegovina | Present | Native | |||||
Croatia | Present | Native | |||||
Czechia | Present | Native | |||||
Estonia | Present | Native | |||||
Faroe Islands | Present | Introduced | |||||
Finland | Present | Introduced | |||||
France | Present | Native | |||||
-Corsica | Present | Introduced | 1863 | ||||
Germany | Present | Native | |||||
Greece | Present | Native | |||||
Hungary | Present | Native | |||||
Iceland | Present | Introduced | 1931 | ||||
Ireland | Present | Native | |||||
Italy | Present | Native | Including Sardinia | ||||
Latvia | Present | Native | |||||
Lithuania | Present | Native | |||||
Moldova | Present | Native | |||||
Montenegro | Present | Native | |||||
North Macedonia | Present | Native | |||||
Norway | Present | ||||||
Poland | Present | Native | |||||
Portugal | Present | Native | |||||
-Azores | Present | Introduced | 1937 | ||||
-Madeira | Present | Introduced | 1868 | ||||
Romania | Present | ||||||
Russia | Present | ||||||
-Central Russia | Present | Native | |||||
-Eastern Siberia | Present | Introduced | |||||
-Northern Russia | Present | Native | |||||
-Russian Far East | Present | Introduced | |||||
-Southern Russia | Present | ||||||
-Western Siberia | Present | ||||||
Serbia | Present | Native | |||||
Slovakia | Present | Native | |||||
Slovenia | Present | Native | |||||
Sweden | Present | Introduced | 1600 | ||||
Switzerland | Present | Native | |||||
Ukraine | Present | Native | |||||
United Kingdom | Present | Native | |||||
North America |
|||||||
Canada | Present, Widespread | Introduced | |||||
-Alberta | Present | Introduced | |||||
-British Columbia | Present | Introduced | |||||
-Manitoba | Present | Introduced | |||||
-New Brunswick | Present | Introduced | |||||
-Newfoundland and Labrador | Present | Introduced | |||||
-Nova Scotia | Present | Introduced | |||||
-Ontario | Present | Introduced | |||||
-Prince Edward Island | Present | Introduced | |||||
-Quebec | Present | Introduced | |||||
-Saskatchewan | Present | Introduced | |||||
-Yukon | Present | ||||||
Cuba | Present | Introduced | |||||
United States | Present, Widespread | Introduced | Introduced in the mid 1700s | ||||
-Alabama | Present | Introduced | |||||
-Alaska | Present | Introduced | |||||
-Arizona | Present | Introduced | |||||
-Arkansas | Present | Introduced | |||||
-California | Present | Introduced | |||||
-Colorado | Present | Introduced | |||||
-Connecticut | Present | Introduced | |||||
-Delaware | Present | Introduced | |||||
-District of Columbia | Present | Introduced | |||||
-Florida | Present | Introduced | |||||
-Georgia | Present | Introduced | |||||
-Hawaii | Present | Introduced | Hawaii and Maui islands | ||||
-Idaho | Present | Introduced | |||||
-Illinois | Present | Introduced | |||||
-Indiana | Present | Introduced | |||||
-Iowa | Present | Introduced | |||||
-Kansas | Present | Introduced | |||||
-Kentucky | Present | Introduced | |||||
-Louisiana | Present | Introduced | |||||
-Maine | Present | Introduced | |||||
-Maryland | Present | Introduced | |||||
-Massachusetts | Present | Introduced | |||||
-Michigan | Present | Introduced | |||||
-Minnesota | Present | Introduced | |||||
-Mississippi | Present | Introduced | |||||
-Missouri | Present | Introduced | |||||
-Montana | Present | Introduced | |||||
-Nebraska | Present | Introduced | |||||
-Nevada | Present | Introduced | |||||
-New Hampshire | Present | Introduced | |||||
-New Jersey | Present | Introduced | |||||
-New Mexico | Present | Introduced | |||||
-New York | Present | Introduced | |||||
-North Carolina | Present | Introduced | |||||
-North Dakota | Present | Introduced | |||||
-Ohio | Present | Introduced | |||||
-Oklahoma | Present | Introduced | |||||
-Oregon | Present | Introduced | |||||
-Pennsylvania | Present | Introduced | |||||
-Rhode Island | Present | Introduced | |||||
-South Carolina | Present | Introduced | |||||
-South Dakota | Present | Introduced | |||||
-Tennessee | Present | Introduced | |||||
-Texas | Present | Introduced | |||||
-Utah | Present | Introduced | |||||
-Vermont | Present | Introduced | |||||
-Virginia | Present | Introduced | |||||
-Washington | Present | Introduced | |||||
-West Virginia | Present | Introduced | |||||
-Wisconsin | Present | Introduced | |||||
-Wyoming | Present | Introduced | |||||
Oceania |
|||||||
Australia | Present | Introduced | 1881 | ||||
-Lord Howe Island | Present | Introduced | 1977 | ||||
-New South Wales | Present, Widespread | Introduced | 1907 | ||||
-South Australia | Present, Localized | Introduced | |||||
-Victoria | Present, Widespread | Introduced | 1905 | ||||
-Western Australia | Present, Localized | Introduced | |||||
New Zealand | Present | Introduced | 1867 | Established | |||
South America |
|||||||
Argentina | Present | Introduced | |||||
Chile | Present | Introduced | 1875 | ||||
Peru | Present | Introduced | |||||
Uruguay | Present | Introduced |
History of Introduction and Spread
Top of pageL. vulgare is believed to have been introduced into North America in the mid-1700s. It is noted by Fernald (1903) that by 1785 this species was already well established around the Boston area.
It is recorded as being first naturalized in New Zealand in 1867 (New Zealand Plant Conservation Network, 2015), and Parsons and Cuthbertson (1992) record its arrival in Australia in the early twentieth century.
Habitat
Top of pageL. vulgare is a plant of disturbed areas such as roadsides, waste areas and overgrazed or infertile grassland. It can benefit from high moisture and high levels of nutrients but under these conditions it suffers competition from taller plants. As a result it is more likely to be dominant under less fertile conditions. It has been noted that native soils have a strong suppressive potential towards L. vulgare, whereas this is not the case in soils from across the introduced range (Maron et al., 2014).
Habitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | Managed | Cultivated / agricultural land | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Managed grasslands (grazing systems) | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Disturbed areas | Secondary/tolerated habitat | Natural |
Terrestrial | Managed | Rail / roadsides | Secondary/tolerated habitat | |
Terrestrial | Natural / Semi-natural | Natural grasslands | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural grasslands | Secondary/tolerated habitat | Natural |
Terrestrial | Natural / Semi-natural | Riverbanks | Secondary/tolerated habitat | Natural |
Hosts/Species Affected
Top of pageA range of crops may be invaded by L. vulgare including barley (Hordeum vulgare), flax (Linum usitatissimum), oats (Avena sativa), oilseed rape (Brassica napus), sunflower (Helianthus annuus), wheat (Triticum species) and Lucerne (Medicago sativa), but it is most commonly a problem in pastures. In natural grassland it may become dominant to the detriment of the natural vegetation, but no individual species have been reportedly threatened.
Host Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Brassica napus | Brassicaceae | Other | |
Helianthus annuus (sunflower) | Asteraceae | Other | |
Hordeum vulgare (barley) | Poaceae | Other | |
Linum usitatissimum (flax) | Other | ||
Medicago sativa (lucerne) | Fabaceae | Other | |
Triticum aestivum (wheat) | Poaceae | Other |
Biology and Ecology
Top of pageGenetics
The diploid (2n = 18) L. vulgare is part of a species complex (L. vulgare aggregate). It is closely related with the tetraploid L .ircutianum (2n = 36). The two species differ slightly in morphology with most parts, including pollen, being larger in the tetraploid. There are also small differences in flowering time and habitat preference. Both species are widely distributed across Europe. According to Mulligan (1958) the diploid is most common across North America. Both the diploid L. vulgare and the tetraploid L. ircutianum occur in Canada with L. ircutianum mainly found in the east of the country (Clements et al., 2004).
Reproductive Biology
Andersson (2008) reports that L. vulgare is self-incompatible and it has been shown that the white ray florets play a significant role in attracting pollinating insects. However, Clements et al. (2004) indicate that, although it is chiefly insect pollinated, self pollination can later result from stigmas bending to make contact with the anthers. Insects involved in pollination include bumble bees and a range of other small insects but not honey bees. Seed production can approach 300 seeds per inflorescence and 10,000 per m2 (Parsons and Cuthbertson, 1992).
Seeds are viable as soon as they are shed and show little or no dormancy. When first shed they require light for germination but after stratification they are less dependent on light. Pêgo et al. (2012) found temperatures of 25°C to be optimal for germination, while high temperatures of 30°C were damaging.
Vegetative reproduction can also occur from rhizome fragments after cultivation.
Physiology and Phenology
Germination may occur in the autumn after shedding or in the following spring. A rosette is formed initially and this may produce some flowering shoots in the first year but mostly they occur in subsequent years. Flowering is triggered by a combination of low temperature vernalization and long days. Plants flower from around May to July. Seeds may mature within ten days of flowering. After seed shedding in autumn the shoots die down leaving the rosette to overwinter.
As the plant matures, it develops a spreading rootstock and short rhizomes from which further shoots can occur. In the absence of competition a single plant can spread to produce 75 flowering shoots and nearly 400 inflorescences in two years. Several inflorescences develop per stem, but a single flower head is more usual under more competitive conditions.
Longevity
In the absence of dormancy the longevity of the seeds may be quite short in particular when conditions are suitable for germination. However, in a study by Toole and Brown (1946) seeds buried deeply in the soil in 1902 retained up to 40% viability over a period of 10 years. This decreased significantly over 20 years but after 39 years 1% viability was still recorded. Established plants of L. vulgare vary in their ability to persist. Böcher and Larsen (1967) found that diploid plants tended not to survive much beyond two years, whereas the tetraploids were more genuinely perennial.
Nutrition
In a grassland situation, L. vulgare benefited from the addition of slurry but not from potassium and phosphorus (Korevaar, 2013). On its own, it benefited from nitrogen fertilization but in a mixed sward, competing species benefited to a greater extent (Palmborg et al., 2004). Hence L. vulgare is more likely to thrive in relatively infertile soils.
Associations
L. vulgare is associated with arbuscular mycorrhizal fungi some of which provide protection against the pathogen Rhizoctonia solani [Thanatephorus cucumeris] (Lewandowski et al., 2013).
Environmental Requirements
L. vulgare is moderately salt and drought tolerant, as suggested by the slightly fleshy leaves (Guan et al., 2010). It is also moderately tolerant of frost (USDA hardiness zones: 3-9), and shading. An 85% reduction in light was seen to reduce rosette biomass by 70% and seedling biomass by 92% (Clements et al., 2004). In the UK, it is found to prefer neutral to basic soils over acid soils (Howarth and Williams, 1968). Seed production was seen to increase under raised levels of carbon dioxide (Rüegg et al., 1999).
Climate
Top of pageClimate | Status | Description | Remark |
---|---|---|---|
Cf - Warm temperate climate, wet all year | Preferred | Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year | |
Cs - Warm temperate climate with dry summer | Preferred | Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers | |
Cw - Warm temperate climate with dry winter | Preferred | Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters) | |
Ds - Continental climate with dry summer | Preferred | Continental climate with dry summer (Warm average temp. > 10°C, coldest month < 0°C, dry summers) | |
Dw - Continental climate with dry winter | Tolerated | Continental climate with dry winter (Warm average temp. > 10°C, coldest month < 0°C, dry winters) |
Latitude/Altitude Ranges
Top of pageLatitude North (°N) | Latitude South (°S) | Altitude Lower (m) | Altitude Upper (m) |
---|---|---|---|
60 | 45 |
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Mean annual rainfall | 700 | 2000 | mm; lower/upper limits |
Soil Tolerances
Top of pageSoil drainage
- free
Soil reaction
- acid
- alkaline
- neutral
Soil texture
- heavy
- light
- medium
Special soil tolerances
- infertile
- saline
- shallow
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Cyphocleonus trisulcatus | Herbivore | McClay et al. (2013) | ||||
Dichrorampha aeratana | Herbivore | McClay et al. (2013) | ||||
Dichrorampha baixerasana | Herbivore | McClay et al. (2013) | ||||
Dichrorampha consortana | Herbivore | McClay et al. (2013) | ||||
Diplapion stolidum | Herbivore | McClay et al. (2013) | ||||
Tephritis neesii | Herbivore | McClay et al. (2013) |
Notes on Natural Enemies
Top of pageA wide range of natural enemies including insects, fungi, viruses and bacteria have all been recorded from L. vulgare and can be found in full detail in Clements et al. (2004).
A number of these, Dichrorampha aeratana, D. consortana, D. baixerasana, Cyphocleonus trisulcatus, Tephritis neesii and Apion stolidum [Diplapion stolidum] are currently being studied for their potential as biological control agents (McClay et al., 2013).
Means of Movement and Dispersal
Top of pageNatural Dispersal
Natural dispersal is limited but may occur by strong winds, or water movement.
Vector Transmission
The main biotic transmission is via the gut of grazing animals. It is not palatable to cattle but seeds can survive passage through the gut of cattle (Bos species) and of horses (Equus ferus caballus). The plant is however palatable to sheep (Ovis aries) and goats (Capra aegagrus), but seeds do not apparently survive passage through sheep (Clements et al., 2004),
Accidental Introduction
Accidental introduction will occur locally and over long distance as a result of contamination of hay or of pasture seed mixes. Along roadsides, seeds are no doubted carried by traffic and by the winds created by traffic.
Intentional Introduction
Intentional introduction may occur for planting as an ornamental, though this is discouraged in favour of the larger flowered and less persistent Shasta daisy (L. x superbum). L. vulgare may also be introduced for medicinal purposes.
Pathway Causes
Top of pageCause | Notes | Long Distance | Local | References |
---|---|---|---|---|
Animal production | Via the gut of livestock | Yes | ||
Crop production | Via contaminated pasture seed | Yes | Yes | |
Cut flower trade | Yes | |||
Escape from confinement or garden escape | Yes | |||
Forage | Yes | |||
Garden waste disposal | Yes | |||
Hitchhiker | Yes | |||
Intentional release | For ornamental or medicinal purposes | Yes | Yes | |
Medicinal use | Yes | Yes | ||
Nursery trade | Yes | Yes | ||
Ornamental purposes | Yes | Yes | ||
Seed trade | Yes | Yes |
Pathway Vectors
Top of pageVector | Notes | Long Distance | Local | References |
---|---|---|---|---|
Aircraft | Yes | |||
Land vehicles | Yes | |||
Livestock | Yes | |||
Machinery and equipment | Yes | |||
Soil, sand and gravel | Yes | |||
Water | Yes |
Impact Summary
Top of pageCategory | Impact |
---|---|
Cultural/amenity | Positive |
Economic/livelihood | Negative |
Environment (generally) | Negative |
Economic Impact
Top of pageHolm et al. (1997) list a range of crops in which L. vulgare can be a serious or principal weed. These include barley (Hordeum vulgare), flax (Linum usitatissimum), oats (Avena sativa), oilseed rape (Brassica napus), sunflower (Helianthus annuus), wheat (Triticum species) in Canada, and lucerne (Medicago sativa), in Hungary. Much more widely, L. vulgare is a problem in overgrazed pastures.
In Montana, USA, the greatest impact of L. vulgare is on forage production of infested pastures and meadows. Cattle (Bos species) avoid this species and therefore any pasture infested with dense stands will decrease forage available for grazing (Krueger and Sheley, 2003).
Environmental Impact
Top of pageImpact on Biodiversity
Khuroo et al. (2010) report damaging effects of L. vulgare on the biodiversity in Kashmir, India.
L. vulgare has become an aggressive invader of pastures, meadows and roadsides throughout the USA. In western pastures and meadows, it can form dense stands which outcompete other native vegetation (Krueger and Sheley, 2003). In Canada it can form dense populations that may decrease species diversity (Olson and Wallander, 1999; Clements et al., 2004).
Risk and Impact Factors
Top of page- Proved invasive outside its native range
- Has a broad native range
- Abundant in its native range
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Pioneering in disturbed areas
- Long lived
- Has high reproductive potential
- Has propagules that can remain viable for more than one year
- Reproduces asexually
- Has high genetic variability
- Host damage
- Negatively impacts agriculture
- Reduced native biodiversity
- Competition - monopolizing resources
- Competition - shading
- Rapid growth
- Difficult/costly to control
Uses
Top of pageEconomic Value
Noori et al. (2014) suggest that L. vulgare could be germinated and grown in soils contaminated with crude oil and could be used to augment plant establishment as part of phytoremediation practices. Powdered inflorescences of L. vulgare added to grain at 2% are effective repellents for grain and rice weevils (Sitophilus granarius and S. oryzae)
Social Benefit
L. vulgare is widely grown in Poland as a favoured and successful component of wild flower mixtures for establishment in gardens (Luczaj, 2006) and on a larger scale in South Korea and Finland (Nissinen, 2004; Lee et al., 2007). It is also grown as an ornamental plant in gardens but the slightly more showy and less persistent hybrid Shasta daisy is usually more popular.
L. vulgare has been used widely in traditional medicine for treating internal disorders and as a lotion for skin conditions. Internally it has antispasmodic diuretic and tonic properties and may still be prescribed for asthma, whooping cough and nervous excitability, while topically it may be used for ulcers and sores (Clements et al., 2004). Kováts and Gölöncsér (2010) report quite strong antibacterial properties from L. vulgare however Ramya et al. (2010) reported none.
The young leaves may also be eaten as a salad.
Environmental Services
L. vulgare was among the most promising species for establishing in field borders and attracting multiple beneficial insects (Carrié, 2012). Specifically, it provides hunting sites for spiders and is attractive to adult syrphid flies whose larvae feed on aphids (Clements et al., 2004).
Uses List
Top of pageAnimal feed, fodder, forage
- pesticide, pest repellent
Environmental
- Amenity
- Landscape improvement
- Wildlife habitat
General
- Ornamental
- Sociocultural value
Medicinal, pharmaceutical
- Source of medicine/pharmaceutical
- Traditional/folklore
Ornamental
- Cut flower
Similarities to Other Species/Conditions
Top of pageThere are superficial similarities to a number of other Asteraceae with conspicuous white flowers but the majority have very different foliage. A likely confusion may occur with the cultivated Shasta daisy, L. x superbum, a hybrid of which L. vulgare is a possible parent along with L. maximum and L. lacustre. The Shasta daisy is taller and has larger flowers than L. vulgare and there is a brown membranous margin toward the apex of each floral bract, while the floral bracts of L. vulgare are brown along the entire length of their margins.
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Prevention
SPS Measures
L. vulgare is a provincially regulated as a weed in Alberta and federally regulated as a primary noxious weed by the Seeds Act (Canadian Council on Invasive Species, 2016). It is also a prohibited weed in Victoria, Australia (Weeds of Queensland, 2015).
Control
Cultural Control and Sanitary Measures
In Canada, Booth and Skelton (2009) found that feeding by goats (Capra aegagrus) could provide control equivalent to that provided by the use of herbicides over a five year period. Given the susceptibility of L. vulgare to shading, the use of fertilizers can be a very effective means of suppression, often at least equal to that from herbicides, via the increased growth of competing vegetation (Clements et al., 2004). It also has the advantage of enhancing any forage species and avoiding the damage that may be done to them by most herbicides.
Physical/Mechanical Control
Seedlings and established plants are readily destroyed by cultivation, but this may not be feasible without damaging associated pasture plants and it may also result in the stimulation of new germination and rapid re-establishment of L. vulgare. In Montana, regular mowing of grassland infested with L. vulgare has also been suggested to be effective to reduce seed production (Mangold et al., 2009). However, in Alberta it has been found that mowing can increase the density of L. vulgare and in an experimental one-year study a positive correlation between the number of mowings per year and the number of L. vulgare plants in the following year has been found (Clements et al., 2004).
Biological Control
Based on literature surveys eight European species have been prioritized as potential biological control agents based on records of their restricted host range. These include the root-mining tortricid moths Dichrorampha aeratana and D. baixerasana, the shoot-mining Dichrorampha consortana, the root-feeding weevils Cyphocleonus trisulcatus and Diplapion stolidum, the root-galling fly Oxyna nebulosa, the flowerhead-attacking tephritid fly Tephritis neesii and the flowerhead-attacking weevil Microplontus campestris (McClay et al., 2013). From 2010 onwards, host-specificity tests have been conducted to investigate the host range of these potential biological control agents. Tests with D. stolidum and C. trisulcatus revealed that these species are not specific enough to be considered further. In addition, tests with M. campestris revealed that this species has no evident impact on seed output. Host-specificity tests with D. aeratana and O. nebulosa are ongoing. and to date, none of these potential agents have been introduced to North America.
Chemical Control
L. vulgare is not readily controlled by herbicides that are safe to use in mixed pasture or wild vegetation. 2,4-D, mecoprop and MCPA are only effective in relatively high doses and may require a mixture with metsulfuron, picloram, dicamba, tribenuron, bentazon, clopyralid or thifensulfuron. The latter three are among the more selective in legumes. Glyphosate is effective but non-selective. Martin et al. (1990) however report the successful use of a weed wiper to apply glyphosate, metsulfuron, picloram and 2,4-D, 2,4-D and clopyralid. Where associated leguminous or other herbs are damaged, the reduced competition leads to all the more rapid recovery of L. vulgare. More detail can be found in Clements et al. (2004).
References
Top of pageBaker HG, 1991. The continuing evolution of weeds. Economic Botany, 45(4):445-449.
Botanical Accuracy, 2014. Is oxeye daisy a Leucanthemum or a Chrysanthemum?. http://www.botanicalaccuracy.com/2013/08/is-ox-eye-daisy-leucanthemum-or.html
Böcher TW; Larsen K, 1967. Cytotaxonomical studies in the Chrysanthemum leucanthemum complex. Watsonia, 4(1):11-16.
Canadian Council Invasive Species on, 2016. Canada's top 10 most important invasive horticultural plants., Canada. http://canadainvasives.ca/initiatives/national-horticulture-outreach-network/canadas-top-10-most-important-invasive-horticultural-plants/
Centre for Invasive Species and Ecosystem Health, 2015. Oxeye daisy Leucanthemum vulgare Lam., USA: Center for Invasive Species and Ecosystem Health and USDA APHIS PPQ. http://www.invasive.org/browse/subinfo.cfm?sub=5937
Euro+Med, 2014. Euro+Med PlantBase. http://www.emplantbase.org/home.html
Fernald ML, 1903. Chrysanthemum leucanthemum and the American white weed. Rhodora, 5:177-181.
Flora of China Editorial Committee, 2015. Flora of China. St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria. http://www.efloras.org/flora_page.aspx?flora_id=2
Flora of the Hawaiian Islands, 2015. Smithsonian National Museum of Natural History. Washington D.C., USA: Smithsonian Institution. http://botany.si.edu/pacificislandbiodiversity/hawaiianflora/result2.cfm?genus=Leucanthemum&species=vulgare&rank1=&epithet1=
Grierson AJC; Long DG, 2001. Flora of Bhutan including a record of plants from Sikkim and Darjeeling. Volume 2 Part 3. Edinburgh, UK: Royal Botanic Garden, Edinburgh and Royal Government of Bhutan.
Guan Z-Y; Chen S-M; Chen D-D; Yin D-M; Liu Z-L; Tang J; Yang l, 2010. Tolerance screening of 32 taxa from Chrysanthemum and its relative genera. Scientia Agricultura Sinica, 43(19):4063-4071.
Holm L; Doll J; Holm E; Pancho J; Herberger J, 1997. World Weeds. Natural Histories and Distribution. New York, USA: John Wiley and Sons, Inc.
Krueger JM; Sheley RL, 2003. Oxeye Daisy (Chrysanthemum leucanthemum). Montguide MT200002 AG. Montana State University Extension Service, 3 pp. http://ipm.montana.edu/cropweeds/Extension/weed%20species%20-not%20every%20file%20is%20here-/oxeye%2520daisy.pdf
Lee B-C; Lee I-D; Lee H-S, 2007. Study on the early growth and anthesis characteristics of some turf type grasses and wildflower species for mixture combination of wildflower pasture. Journal of the Korean Society of Grassland Science, 27(3):173-182.
Luczaj LW, 2006. Using a seed mix to establish native hay meadow species in ornamental meadows. Polish Botanical Studies, 22:347-354.
Mangold J; Sheley R; Brown M, 2009. Oxeye daisy: Identification, biology and integrated management. Montana State University Extension, MontGuide MT200002AG. Montana, USA: Montana State University, 4 pp.
McClay AS; Stutz S; Schaffner U; Mason PG; Gillespie DR, 2013. Leucanthemum vulgare Lam., oxeye daisy (Asteraceae). In: Biological control programmes in Canada 2001-2012 [ed. by Mason, P. \Gillespie, D. R.]. Wallingford, Oxfordshire, UK: CABI, 337-342.
Missouri Botanical Garden, 2015. Tropicos database. St. Louis, Missouri, USA: Missouri Botanical Garden. http://www.tropicos.org/
Mulligan GA, 1958. Chromosome races in the Chrysanthemum leucanthemum complex. Rhodora, 60:122-5.
New Zealand Plant Conservation Network, 2015. Leucanthemum vulgare., New Zealand: New Zealand Plant Conservation Network. http://www.nzpcn.org.nz/flora_details.aspx?ID=3403
Olson BE; Wallander RT, 1999. Oxeye daisy. Biology and management of noxious rangeland weeds [ed. by Sheley, R. L. \Petroff, J. K.]. Corvallis, Oregon, USA: State University Press, 282-289.
Royal Botanic Garden Edinburgh, 2015. Flora Europaea. Edinburgh, UK: Royal Botanic Garden Edinburgh. http://rbg-web2.rbge.org.uk/FE/fe.html
Rüegg K; Lüscher A; Hartwig UA; Nösberger J, 1999. Elevated CO2 influences seed production of grassland species. Agrarforschung, 6(4):141-144.
Toole EH; Brown E, 1946. Final results of the Duval buried seed experiment. Journal of Agricultural Research, 72:201-210.
USDA-ARS, 2015. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx
USDA-NRCS, 2015. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov/
Weeds of Queensland, 2015. Ox-eye daisy: Leucanthemum vulgare. Biosecurity Queensland Edition., Australia: Queensland Government.
Distribution References
CABI, Undated. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Flora of China Editorial Committee, 2015. Flora of China., St. Louis, Missouri; Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria. http://www.efloras.org/flora_page.aspx?flora_id=2
Flora of the Hawaiian Islands, 2015. Smithsonian National Museum of Natural History., Washington D.C. USA: Smithsonian Institution. http://botany.si.edu/pacificislandbiodiversity/hawaiianflora/result2.cfm?genus=Leucanthemum&species=vulgare&rank1=&epithet1=
Grierson AJC, Long DG, 2001. Flora of Bhutan including a record of plants from Sikkim and Darjeeling., 2 (3) Edinburgh, UK: Royal Botanic Garden, Edinburgh and Royal Government of Bhutan.
New Zealand Plant Conservation Network, 2015. Leucanthemum vulgare., New Zealand: New Zealand Plant Conservation Network. http://www.nzpcn.org.nz/flora_details.aspx?ID=3403
Royal Botanic Garden, 2015. Flora Europaea., Edinburgh, UK: Royal Botanic Garden Edinburgh. http://rbg-web2.rbge.org.uk/FE/fe.html
USDA-ARS, 2015. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx
USDA-NRCS, 2015. The PLANTS Database. Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway | https://doi.org/10.5061/dryad.m93f6 | Data source for updated system data added to species habitat list. |
Global register of Introduced and Invasive species (GRIIS) | http://griis.org/ | Data source for updated system data added to species habitat list. |
Contributors
Top of page19/10/2016 Updated by:
Sonja Stutz, CABI, Switzerland
25/03/2015 Original text by:
Chris Parker, Consultant, Bristol, UK
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/