Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Codium parvulum



Codium parvulum


  • Last modified
  • 16 December 2019
  • Datasheet Type(s)
  • Invasive Species
  • Preferred Scientific Name
  • Codium parvulum
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Chlorophyta
  •       Class: Bryopsidophyceae
  •         Order: Bryopsidales
  • Summary of Invasiveness
  • Codium parvulum is a green seaweed found in infralittoral habitats, originally described from the Red Sea. It entered the Mediterranean via the Suez Canal, and since 2004 it has been established along the north...

  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    CAB International
    OX10 8DE
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page

Preferred Scientific Name

  • Codium parvulum (Bory ex Audouin) P.C.Silva

Other Scientific Names

  • Spongodium parvulum Bory de Saint Vincent ex Audouin

Summary of Invasiveness

Top of page

Codium parvulum is a green seaweed found in infralittoral habitats, originally described from the Red Sea. It entered the Mediterranean via the Suez Canal, and since 2004 it has been established along the northern Mediterranean coast of Israel where it is considered to be invasive and altering native ecosystems.

In 2008 it was reported from Lebanon, and is now widespread and invasive along the Lebanese coast. It continued to spread, and in 2012 it was reported from Turkey and the Aegean coast. In 2013 it was reported from Syria.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Chlorophyta
  •             Class: Bryopsidophyceae
  •                 Order: Bryopsidales
  •                     Family: Codiaceae
  •                         Genus: Codium
  •                             Species: Codium parvulum

Notes on Taxonomy and Nomenclature

Top of page

Codium parvulum was originally named Spongodium parvulum Bory de Saint Vincent ex Audouin, 1817 (Silva and Lipkin, 2003; WoRMS, 2018). The species epithet parvulum is a Latin adjective meaning very small.


Top of page

The thallus is flat and procumbent, light green, and anchored to the substrate by tufts of rhizoids (Israel et al., 2010; ISPRA, 2018).

Thallus irregularly branched and anastomosing in the lower portion, with the ultimate branches being divaricately dichotomous (Israel et al., 2010; ISPRA, 2018).

Thallus is cylindrical, 1.5-4.5 mm diameter, and is wider at nodes that are slightly flattened (Israel et al., 2010) and is up to 13 cm long (Aydogan and Taşkın, 2015). Hair distance from apical portion 140-450 µm (Aydogan and Taşkın, 2015). Thallus dissects out into individual utricles that develop from deflected apices of sympodial filaments. The mature utricles in slender portions of the thallus are pestle-shaped and obovoid or broadly clavate and 120-270µm in diameter (Israel et al., 2010). The mature utricles in the broader part of the thallus are clavate to subcylindrical and 500-750 um long.

Medullary filaments are 20-40 µm diameter (Israel et al., 2010).

Gametangia slender, cylindrical, slightly broader at the base, 43-52 µm diameter, 240-320 µm long, singly on a short pedicel (Israel et al., 2010). Gametangia are borne at the apex of the utricle (Aydogan and Taşkın, 2015).

Chloroplasts are discoid of fusiform with one pyrenoid (Aydogan and Taşkın, 2015).

Plant Type

Top of page Macroalgae


Top of page

C. parvulum is a green seaweed originally described from the Red Sea. Since 2004 it has been recorded off the northern shores of Israel in the Mediterranean (Israel et al., 2010). From 2008 it has been reported along the Lebanese coast (Bitar et al., 2017). In 2012 and 2013, it was reported from the Aegean Sea in Turkey, and from Syria, respectively (Aydogan and Taşkın, 2015; Bitar et al., 2017).

C. parvulum has been described as being native to the Indo-Pacific Ocean (Zenetos et al., 2010; Bosch, 2017). In the eastern Mediterranean, it is considered to be invasive and established (Zenetos at al., 2010; Çinar and Bilecenoğlu, 2015).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 10 Jan 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes


EgyptPresentNativeIsrael et al. (2010); Bitar et al. (2017)Red Sea


IsraelPresent, LocalizedIntroducedInvasiveHoffman et al. (2011); Israel et al. (2010); Hoffman et al. (2014)Haifa Bay in the sea, on shore and some in rock pools and pot holes
LebanonPresent, WidespreadIntroduced2008InvasiveBitar et al. (2017)First found at Nakourain in June 2008. Currently along the entire Lebanese coast between 1-35 m depth
SyriaPresentIntroduced2013Bitar et al. (2017)First found April 2013
TurkeyPresentIntroduced2012Aydogan and Taskin (2015)Turkey and the Aegean Sea at Ayvalik

History of Introduction and Spread

Top of page

C. parvulum is originally described from the Red Sea (Israel et al., 2010; ISPRA, 2018), and is now distributed in Egypt and Israel (ISPRA, 2018).

When the Suez Canal was completed in 1869, it joined two previously separate marine ecosystems, and this migration of marine species via the canal has been termed the Lessepsian migration (Golani, 1998). It is thought that C. parvulum has dispersed along the Suez Canal to the Mediterranean (Israel et al., 2010; ISPRA, 2018). It may have arrived in Haifa, Israel, through shipping via ballast water or hull fouling since many cargo ships anchor near the Port of Haifa on the route between the Mediterranean and Indo-Pacific Ocean (Hoffman et al., 2014).

From 2004, C. parvulum was reported near the northern shore of Israel, with the first significant drift seen in the winter of 2004 (Israel et al., 2010). In November 2007 a drift occurred on the southern sandy shore of the Haifa Bay area (Israel et al., 2010). The onshore strip was estimated as 10 km long, 3 m wide and 20 cm thick with a total estimated biomass of 6000 tons (Israel et al., 2010). Another major drift of C. parvulum was found near Atlit in February 2008 and included another species (Caulerpa prolifera) and had a lower estimated biomass (Israel et al., 2010).

In 2013, samples of algae were collected from 5 sites along the northern Mediterranean coast of Israel; C. parvulum was found in 4 of the 5 sites (Hoffman et al., 2014). The average biomass of C. parvulum per 20 cm2 quadrat ranged from 0.7-121.4 g (Hoffman et al., 2014). At Haifa-Bat Galim Beach C. parvulum had the highest biomass of all species in the sample (Hoffman et al., 2014).

In June 2008, C. parvulum was identified for the first time from Lebanon (at Nakourain), covering a large area at up to 30 m in depth (Bitar et al., 2017). In 2017, it was invasive along the whole Lebanese coast between 1 and 35 m depth (Bitar et al., 2017).

In 2012, C. parvulum was identified for the first time from Turkey and the Aegean Sea (Aydogan and Taşkın, 2015). In April 2013 it was identified for the first time from Syria (Bitar et al., 2017).


Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
Israel 2004 Interconnected waterways (pathway cause) Yes No Israel et al. (2010) From Red Sea
Israel 2004 Hitchhiker (pathway cause) Yes No Hoffman et al. (2014) From Red Sea
Turkey 2012 Yes No Aydogan and Taşkın (2015)

Risk of Introduction

Top of page

If C. parvulum is accidentally carried in ballast water and on hulls, there will continue to be a risk of spreading the alga to new areas where shipping occurs. If it disperses naturally along the Suez Canal, this is also likely to continue to occur if conditions are favourable for it to do so. 


Top of page

Widespread in the infralittoral habitats between Haifa Bay and Atlit (Israel et al., 2010).

Rocky and soft substrates, 10-15 m depth although it may grow at depths of 20-30m (Israel et al., 2010).

C. parvulum is found at 1-30 m depths in the Lebanon (Bitar et al., 2017), and 10-15 m depths on the Aegean coast of Turkey (Aydogan and Taşkın, 2015). It has been seen in the sea, on shore and in rock pools and pot holes in Haifa Bay, Israel (Hoffman et al., 2011).

Habitat List

Top of page
Inshore marine Principal habitat Harmful (pest or invasive)
Inshore marine Principal habitat Natural

Biology and Ecology

Top of page


Chromosome numbers are only known for six Codium species, and the basic haploid number appears to be 10 (Guiry, 2011).

PCR amplification techniques using C. parvulum, revealed products of 798 and 422 base pairs, respectively, for the rbcL exon and the rps3-rpl16 region (Israel et al., 2010).

There are three main clades based on phylogenetic analysis, termed A, B and C, with Codium parvulum being placed in clade C (Verbruggen et al., 2012).

Reproductive Biology

C. parvulum is thought to persist all year round, although responses to environmental factors are not known (Israel et al., 2010). It is thought to grow fastest during spring when temperatures, light, and nutrient levels are optimal (Israel et al., 2010).

Codium spp. have only a gametophyte generation (Zaiko, 2005). The eggs and sperm are found in separate chambers called gametangia which project off the utricles (Zaiko, 2005). Most species of Codium are dioecious, with the male and female gametangia on separate plants (Zaiko, 2005).


Top of page
BW - Desert climate Preferred < 430mm annual precipitation
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)

Water Tolerances

Top of page
ParameterMinimum ValueMaximum ValueTypical ValueStatusLife StageNotes
Depth (m b.s.l.) 1 35 1-15 Down to 15 m preferred

Notes on Natural Enemies

Top of page

C. parvulum has no known herbivores (Israel et al., 2010).

Means of Movement and Dispersal

Top of page

Natural Dispersal

It is thought that C. parvulum has dispersed along the Suez Canal to the Mediterranean (Israel et al., 2010; ISPRA, 2018).

Accidental Introduction

C. parvulum may have arrived in Haifa, Israel, through shipping via ballast water or hull fouling since many cargo ships anchor near the Port of Haifa on the route between the Mediterranean and Indo-Pacific Ocean (Hoffman et al., 2014).

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
HitchhikerVia ballast water or hull fouling Yes Hoffman et al., 2014
Interconnected waterwaysDispersed along the Suez Canal Yes Israel et al., 2010; ISPRA, 2018

Pathway Vectors

Top of page

Impact Summary

Top of page
Cultural/amenity Negative
Economic/livelihood Negative
Environment (generally) Negative

Economic Impact

Top of page

Large quantities of C. parvulum disturb fishing activities which are important in the area of the Mediterranean affected (Israel et al., 2010).

Environmental Impact

Top of page

Impact on Habitats

C. parvulum can alter the structure and functionality of an ecosystem (ISPRA, 2018).

In general, the invasion of alien species may cause the disruption of local ecosystem structure and its energy and nutrient flows, resulting in its subsequent collapse (Hoffman et al. 2011). In the Mediterranean, C. parvulum is considered to be an ecosystem engineer, modifying habitats where it is invasive, and its impact is being investigated using 3-D modelling (Filin et al., 2014).

In Lebanon, invasive seaweeds, including C. parvulum, occupy extensive stretches of coast, and are replacing native benthic assemblages (Bitar et al., 2017).

Impact on Biodiversity

Impacts include disappearance and rarefaction of native species with consequent reduction of biodiversity (ISPRA, 2018).

Along with other invasive alien seaweeds, C. parvulum may pose a threat to local biodiversity in Haifa Bay, Israel (Hoffman et al., 2011).

In Israel, alien invasive seaweeds such as C. parvulum could lead to the replacement of local flora and potential extinction of native seaweed species (e.g., of Halimeda tuna) (Hoffman et al., 2011). Alien seaweed proliferation might provide suitable settlement and establishment conditions for alien grazer species, which may displace native species (Hoffman et al. 2011).

Threatened Species

Top of page
Threatened SpeciesConservation StatusWhere ThreatenedMechanismReferencesNotes
Halimeda tunaNo DetailsIsraelCompetition - monopolizing resourcesHoffman et al., 2011

Social Impact

Top of page

In Haifa Bay, Israel, invasive seasonal drifts of alien algae occur during winter and spring, and some become fragmented and wash ashore (Hoffman et al., 2011). During 2004-2008, these drifts contained fragmented C. parvulum among other species, and occurred between Atlit and Bat-Galim beaches (Hoffman et al., 2011).  Their presence reduced winter marine sports, such as windsurfing, as they dominated the sea and rotted along the beaches (Hoffman et al., 2011).  

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Reproduces asexually
Impact outcomes
  • Ecosystem change/ habitat alteration
  • Modification of nutrient regime
  • Negatively impacts livelihoods
  • Reduced native biodiversity
  • Threat to/ loss of native species
Impact mechanisms
  • Competition - monopolizing resources
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally

Similarities to Other Species/Conditions

Top of page

There are about 140 species in the genus Codium (An and Nam, 2015). Codium spp. are difficult to identify based on morphology alone, and they now tend to be identified using phylogenetic studies on the rbcL gene that codes for the large subunit of the enzyme ribulose-1,5-biphosphate carboxylase-oxygenase (An and Nam, 2015).

Phylogenetic analyses on 73 Codium species found that C. parvulum is closely related to Codium geppiorum, Codium repens and Codium intricatum (Verbruggen et al., 2012). Phylogenetic analyses by An and Nam (2015) also showed that C. parvulum is most closely related to Codium intricatum, C. repens and C. pernambucensis.

Comparing utricle dimensions can be useful for identifying some species of Codium (Verbruggen et al., 2012).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

No information for control measures was found for C. parvulum. However, when discussing control of another invasive species, Codium fragile, it has been noted that control is very difficult (GISD, 2005). This is because chemical control can cause problems for non-target species, mechanical removal is expensive and the population quickly recovers, and the species reproduces from fragments (GISD, 2005). It is concluded that quarantine measures and education aimed at preventing further spread may be the best methods for C. fragile (GISD, 2005).

Gaps in Knowledge/Research Needs

Top of page

There is little information about the biology, ecology, physiology, natural enemies, or on the productive uses of C. parvulum. There is also little information available on the native species that are affected by invasive C. parvulum or if any of these are endangered.


Top of page

An WA, Nam KW, 2015. New record of Codium lucasii (Bryopsidales, Chlorophyta) in Korea. Journal of Ecology and Environment, 38(4), 647-654.

Aydogan O, Taskin E, 2015. 2.2. New record of the alien green alga Codium parvulum for Turkey and the Aegean Sea. New Mediterranean Biodiversity Records (July 2015). Mediterranean Marine Science, 16(2), 472-488.

Bitar, G., Ramos-Esplá, A. A., Ocaña, O., Sghaier, Y. R., Forcada, A., Valle, C., El-Shaer, H., Verlaque, M., 2017. The introduced marine macroflora of Lebanon and its distribution on the Levantine coast. Mediterranean Marine Science, 18(1), 138-155. doi: 10.12681/mms.1993

Bosch S, 2017. Marine species distributions: from data to predictive models. PhD Thesis. University of Ghent, Belgium.

Çinar ME, Bilecenoglu M, 2015. Alien species invading the Aegean Sea habitats - an eastern synthesis. In: Marine biodiversity, fisheries, conservation and governance, [ed. by Katagan T, Tokaç A, Besiktepe S, Öztürk B ]. 636-653.

Filin S, Telem G, Rilov G, 2014. 3-D Modeling of Marine Ecosystem Engineers – a Framework for Studying Their Ecological Impact. [Proceedings of the International Workshop on Remote Sensing and GIS for Monitoring of Habitat Quality], [ed. by Pfeifer N, Zlinsky A ]. 41-43.

GISD, 2005. Codium fragile ssp. Tomentosoides (alga). Global Invasive Species Compendium.

Golani D, 1998. Impact of Red Sea Fish Migrants through the Suez Canal on the Aquatic Environment of the Eastern Mediterranean. In: Bulletin Series Yale School of Forestry and Environmental Studies,(103) . 375-387.

Guiry MD, 2011. Codium Stackhouse, 1797. In: Guiry MD, Guiry GM, 2018. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway.

Hoffman, R., Shemesh, E., Ramot, M., Dubinsky, Z., Pinchasov-Grinblat, Y., Iluz, D., 2011. First record of the Indo-Pacific seaweed Codium arabicum Kütz. (Bryopsidales, Chlorophyta) in the Mediterranean Sea. Botanica Marina, 54(5), 487-495. doi: 10.1515/BOT.2011.056

Hoffman, R., Sternberg, M., Serio, D., 2014. First report of Laurencia chondrioides (Ceramiales, Rhodophyta) and its potential to be an invasive in the eastern Mediterranean Sea. Botanica Marina, 57(6), 449-457. doi: 10.1515/bot-2014-0053

ISPRA, 2018. Identificazione e distribuzione nei mari italiani di specie non indigene. Instituto Superiore per la Protezione e la Ricerca Ambientale.

Israel A, Einav R, Silva PC, Paz G, Chacana ME, Douek J, 2010. First report of the seaweed Codium parvulum (Chlorophyta) in Mediterranean waters: recent blooms on the northern shores of Israel. Phycologia, 49(2), 107-112.

Silva PC, Lipkin Y, 2003. Marine algae published by Savigny in the zoological part of "Description de l'Égypte". Cryptogamie, Algologie, 24(4), 371-386.

Verbruggen H, Pauly K, De Clerck O, 2012. The new species Codium recurvatum from Tanzania. European Journal of Phycology, 47(3), 216-222.

WoRMS, 2018. Codium parvulum (Bory de Saint Vincent ex Audouin) P.C.Silva, 2003. World Register of Marine Species.

Zaiko A, 2005. Codium fragile. In: Baltic Sea Alien Species Database, 2007. Olenin S, Leppakoski E, Daunys D (eds.).

Zenetos, A., Gofas, S., Verlaque, M., Cinar, M. E., Garcia Raso, J. E., Bianchi, C. N., Morri, C., Azzurro, E., Bilecenoglu, M., Froglia, C., Siokou, I., Violanti, D., Sfriso, A., San Martin, G., Giangrande, A., Katagan, T., Ballesteros, 2010. Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union's Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterranean Marine Science, 11(2), 381-493.

Links to Websites

Top of page
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway source for updated system data added to species habitat list.


Top of page

08/06/2018 Original text by:

Ms Vicki Cottrell, Consultant, UK

Distribution Maps

Top of page
You can pan and zoom the map
Save map