Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Dickeya solani
(black leg disease of potato)

Toolbox

Datasheet

Dickeya solani (black leg disease of potato)

Summary

  • Last modified
  • 27 September 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Dickeya solani
  • Preferred Common Name
  • black leg disease of potato
  • Taxonomic Tree
  • Domain: Bacteria
  •   Phylum: Proteobacteria
  •     Class: Gammaproteobacteria
  •       Order: Enterobacteriales
  •         Family: Enterobacteriaceae
  • Summary of Invasiveness
  • Dickeya solani is a bacterial pathogen of potato thought to have crossed from horticultural crops in Northern Europe in 2005-2006. The earliest reports of disease on potato are from Belgium and the Netherlands,...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Dickeya solani on potato (Solanum tuberosum) cv. Red Robin. Image is of field grown naturally infected potatoes from Scotland, UK in July 2009.
TitleField symptoms
CaptionDickeya solani on potato (Solanum tuberosum) cv. Red Robin. Image is of field grown naturally infected potatoes from Scotland, UK in July 2009.
CopyrightPublic Domain - ex. SASA ©Crown Copyright
Dickeya solani on potato (Solanum tuberosum) cv. Red Robin. Image is of field grown naturally infected potatoes from Scotland, UK in July 2009.
Field symptomsDickeya solani on potato (Solanum tuberosum) cv. Red Robin. Image is of field grown naturally infected potatoes from Scotland, UK in July 2009.Public Domain - ex. SASA ©Crown Copyright
Dickeya solani on potato (Solanum tuberosum) cv. Estima. Plant (b) was grown from a seed potato vacuum infiltrated with a suspension of Dickeya solani, resulting in stunting and curling, wilting of leaves. Plant (a) is the healthy control.
TitleHealthy vs. infected
CaptionDickeya solani on potato (Solanum tuberosum) cv. Estima. Plant (b) was grown from a seed potato vacuum infiltrated with a suspension of Dickeya solani, resulting in stunting and curling, wilting of leaves. Plant (a) is the healthy control.
CopyrightPublic Domain - ex. SASA ©Crown Copyright
Dickeya solani on potato (Solanum tuberosum) cv. Estima. Plant (b) was grown from a seed potato vacuum infiltrated with a suspension of Dickeya solani, resulting in stunting and curling, wilting of leaves. Plant (a) is the healthy control.
Healthy vs. infectedDickeya solani on potato (Solanum tuberosum) cv. Estima. Plant (b) was grown from a seed potato vacuum infiltrated with a suspension of Dickeya solani, resulting in stunting and curling, wilting of leaves. Plant (a) is the healthy control.Public Domain - ex. SASA ©Crown Copyright
Tuber infection of potato (Solanum tuberosum) cv. Agria caused by Dickeya solani. Image is of an imported ware tuber intercepted in Scotland, UK in July 2009.
TitleSymptoms
CaptionTuber infection of potato (Solanum tuberosum) cv. Agria caused by Dickeya solani. Image is of an imported ware tuber intercepted in Scotland, UK in July 2009.
CopyrightPublic Domain - ex. SASA ©Crown Copyright
Tuber infection of potato (Solanum tuberosum) cv. Agria caused by Dickeya solani. Image is of an imported ware tuber intercepted in Scotland, UK in July 2009.
SymptomsTuber infection of potato (Solanum tuberosum) cv. Agria caused by Dickeya solani. Image is of an imported ware tuber intercepted in Scotland, UK in July 2009.Public Domain - ex. SASA ©Crown Copyright
Tuber infection of potato (Solanum tuberosum) on cv. 'Red Robin' caused by Dickeya solani. Image is of a tuber harvested from a field grown, naturally infected plant in Scotland, UK in 2009.
TitleSymptoms
CaptionTuber infection of potato (Solanum tuberosum) on cv. 'Red Robin' caused by Dickeya solani. Image is of a tuber harvested from a field grown, naturally infected plant in Scotland, UK in 2009.
CopyrightPublic Domain - ex. SASA ©Crown Copyright
Tuber infection of potato (Solanum tuberosum) on cv. 'Red Robin' caused by Dickeya solani. Image is of a tuber harvested from a field grown, naturally infected plant in Scotland, UK in 2009.
SymptomsTuber infection of potato (Solanum tuberosum) on cv. 'Red Robin' caused by Dickeya solani. Image is of a tuber harvested from a field grown, naturally infected plant in Scotland, UK in 2009.Public Domain - ex. SASA ©Crown Copyright
Dickeya solani colonies on Crystal Violet Pectate Medium (CVPM). CVPM is typically used to isolate the bacterium from infected plant material. D. solani produces pitted colonies on CVPM as a result of the actions of pectolytic enzymes.
TitleDickeya solani colonies on Crystal Violet Pectate Medium (CVPM)
CaptionDickeya solani colonies on Crystal Violet Pectate Medium (CVPM). CVPM is typically used to isolate the bacterium from infected plant material. D. solani produces pitted colonies on CVPM as a result of the actions of pectolytic enzymes.
CopyrightPublic Domain - ex. SASA ©Crown Copyright
Dickeya solani colonies on Crystal Violet Pectate Medium (CVPM). CVPM is typically used to isolate the bacterium from infected plant material. D. solani produces pitted colonies on CVPM as a result of the actions of pectolytic enzymes.
Dickeya solani colonies on Crystal Violet Pectate Medium (CVPM)Dickeya solani colonies on Crystal Violet Pectate Medium (CVPM). CVPM is typically used to isolate the bacterium from infected plant material. D. solani produces pitted colonies on CVPM as a result of the actions of pectolytic enzymes.Public Domain - ex. SASA ©Crown Copyright

Identity

Top of page

Preferred Scientific Name

  • Dickeya solani van der Wolf et al., 2014

Preferred Common Name

  • black leg disease of potato

International Common Names

  • English: blackleg; slow wilt; soft rot; stem rot; top wilt
  • French: jambe noire

Local Common Names

  • Netherlands: stengelnatrot; zwartbenigheid

Summary of Invasiveness

Top of page

Dickeya solani is a bacterial pathogen of potato thought to have crossed from horticultural crops in Northern Europe in 2005-2006. The earliest reports of disease on potato are from Belgium and the Netherlands, though it is now present in most European countries and Israel. Symptoms range from blackleg to top wilt in the growing plant and soft rotting of tubers. Symptoms are indistinguishable from those caused by Pectobacterium atrosepticum, P. carotovorum, P. parmentieri (formerly P. wasabiae) (Khayi et al., 2016) and D. dianthicola and control is usually reliant on seed certification schemes to mitigate its worst effects. It should be noted that most losses are attributable to the certification process itself though losses as high as 30% have been recorded in crops grown in Israel. There is no evidence of varietal resistance in potato. D. solani is a highly clonal organism highlighting its recent emergence as a pathogen but also the vulnerability of Europe’s highly integrated potato production system.

Taxonomic Tree

Top of page
  • Domain: Bacteria
  •     Phylum: Proteobacteria
  •         Class: Gammaproteobacteria
  •             Order: Enterobacteriales
  •                 Family: Enterobacteriaceae
  •                     Genus: Dickeya
  •                         Species: Dickeya solani

Notes on Taxonomy and Nomenclature

Top of page

Several attempts have been made to clarify the taxonomic position and circumscribe the diversity within the species formerly known as Erwinia chrysanthemi (Burkholder et al., 1953) either on the basis of differences in host range, pathovars (Young et al., 1978; Lelliott and Dickey, 1984) or biochemical profiles, biovars (Samson and Nassan-Agha, 1978; Ngwira and Samson, 1990). These studies culminated in the creation of the genus Dickeya and the elevation of infra-specific taxa to new species within it; D. chrysanthemi, D. dadantii, D. dianthicola, D. dieffenbachiae, D. paradisiaca and D. zeae (Samson et al., 2005) with subsequent revision reassigning D. dieffenbachiae as a subspecies of D. dadantii (Brady et al., 2012). With the exception of D. dadantii subsp. dieffenbachiae all are known to cause disease in potato (Czajkowski et al., 2011; Toth et al., 2011).


In 2005/2006 a growing number of cases of potato blackleg/top wilt in Northern Europe and Israel were found to be caused by a previously unrecognized Dickeya sp. (Laurila et al., 2008; Parkinson et al., 2009; Slawiak et al., 2009b), frequently referred to in early reports as Dickeya sp. biovar 3 (Slawiak et al., 2009a; Tsror et al., 2010, 2011; Czajkowski et al., 2012a). Detailed study of this pathogen highlighted a close relationship to Dickeya dadantii, but ultimately it was considered sufficiently distinct to merit description as a new species; D. solani (van der Wolf et al., 2014b).

Distribution

Top of page

D. solani is widespread in Europe and also occurs in Israel and Republic of Georgia.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

China
-ZhejiangAbsent, intercepted onlyChen et al., 2015Intercepted on hyacinth bulbs from Netherlands at Ningbo Port.
Georgia (Republic of)PresentIntroduced2008 Invasive Tsror et al., 2011; CABI/EPPO, 2015
IsraelRestricted distributionIntroduced Invasive Tsror et al., 2009; CABI/EPPO, 2015
TurkeyPresent2016 Invasive Ozturk and Aksoy, 2017

South America

BrazilPresentPresent based on regional distribution.
-Minas GeraisPresentIntroducedCardoza et al., 2017

Europe

BelgiumPresent Invasive ILVO, 2010; Toth et al., 2011; CABI/EPPO, 2015
Czech RepublicPresentIntroduced Invasive van and der Wolf Bergsma-Vlami,, 2013First reported in 2012 (Hromadova K, State Phytosanitary Adminstration, Czech Republic, unpublished data)
DenmarkPresent Invasive van and der Wolf Bergsma-Vlami,, 2013; CABI/EPPO, 2015
FinlandPresent2004 Invasive Laurila et al., 2008; Degefu et al., 2013; CABI/EPPO, 2015
FrancePresent Invasive Toth et al., 2011; van and der Wolf Bergsma-Vlami,, 2013; CABI/EPPO, 2015
GermanyPresent Invasive van and der Wolf Bergsma-Vlami,, 2013; CABI/EPPO, 2015
GreeceRestricted distributionCABI/EPPO, 2015
-CretePresent2009 Invasive Sarris et al., 2011; CABI/EPPO, 2015
NetherlandsPresent Invasive Slawiak et al., 2008; CABI/EPPO, 2015
NorwayPresentIntroduced2012van and der Wolf Bergsma-Vlami,, 2013
PolandPresentIntroduced2005 Invasive Slawiak et al., 2009a; CABI/EPPO, 2015; Potrykus et al., 2016
Russian FederationPresentCABI/EPPO, 2015
-Central RussiaPresentCABI/EPPO, 2015
-Southern RussiaPresentCABI/EPPO, 2015
SloveniaPresentIntroduced Invasive Dreo et al., 2013
SpainPresentPalacio-Bielsa et al., 2006; Toth et al., 2011; CABI/EPPO, 2015Intercepted in Scotland in exported ware potatoes from Spain in 2009 (Saddler, SASA, Edinburgh, UK, unpublished data).
SwedenPresent Invasive Rölin and Nilsson, 2011; Toth et al., 2011; van and der Wolf Bergsma-Vlami,, 2013; CABI/EPPO, 2015
SwitzerlandPresent Invasive Keiser and Werra, 2013; van and der Wolf Bergsma-Vlami,, 2013; CABI/EPPO, 2015
UKRestricted distributionIntroduced2007 Not invasive Cahill et al., 2010; Toth et al., 2011; Elphinstone, 2012; CABI/EPPO, 2015
-Channel IslandsPresentCABI/EPPO, 2015
-England and WalesRestricted distributionIntroduced2007 Not invasive Cahill et al., 2010; CABI/EPPO, 2015
-ScotlandPresent, few occurrencesCABI/EPPO, 2015

History of Introduction and Spread

Top of page

The earliest known strains of D. solani were originally isolated from hyacinth, leading many to speculate that the pathogen crossed into potato production from horticulture (Parkinson et al., 2015). In December 2013, D. solani was intercepted at Ningbo Port, China, on diseased bulbs of Hyacinthus orientalis exported from the Netherlands (Chen et al., 2015).

Since 2004, D. solani has spread over much of Europe and to Israel in less than 5 years through trade in latently infected seed potatoes (Toth et al., 2011). It was probably first introduced to Israel in 2004 via infected seed potatoes imported from the Netherlands. It was intercepted in Israel in exported seed potatoes from France in 2009 and from Germany (Tsror et al., 2009).

D. solani was first reported in Poland in 2005 (Slawiak et al., 2009b). The most likely source was potatoes which were imported from the Netherlands. Large-scale survey for D. solani in seed potato fields and water sources in Poland indicated the presence of D. solani in potato fields in the years 2009-2013; the intensity of occurrence depends on the year, and is higher if the summer is hot and dry (Potrykus et al., 2016). In the same studies D. solani was not detected in waterways.

In Norway, it was first reported in 2012, again, in potatoes grown from imported seed (van der Wolf and Bergsma Vlami, 2013). In Spain, it was likely to have been first isolated from potatoes grown in Valencia in 2002, though the exact identity of this pathogen has yet to be clarified (Palacio-Bielsa et al., 2006). Most findings in Sweden, up to 2011, were in crops produced from imported seed potatoes from the Netherlands. However findings now found in Swedish, German and Finnish origin potatoes suggest the pathogen is becoming established in other production systems (Rölin and Nilsson, 2011). In Finland it was first noted in 2004, and the highest incidence was found in 2006 (Degefu et al., 2013). In Crete, Greece, it was first recorded in 2009.

D. solani was first found in England and Wales in 2007 and in Scotland in 2009 (Cahill et al., 2010). In 2010, seed potatoes of Scottish origin were reported to be free from Dickeya spp. thanks to a monitoring programme introduced to Scotland in 2006. However, D. solani was found in potatoes that had entered Scotland for processing and planting, and in one river (Cahill et al., 2010).

D. solani has become the dominant cause of blackleg in Belgium since 2005 (ILVO, 2010) and is also an important cause of blackleg in Switzerland (Keiser and de Werra, 2013).

D. solani was first confirmed in Georgia in 2008. Its likely source was imported seed potatoes from the Netherlands and Germany (Tsror et al., 2011). D. solani was first detected in Turkey in 2016 (Ozturk and Aksoy, 2017).

In addition, D. solani was detected in healthy potato rhizosphere in Germany in 2006 (Hauer et al., 2010; Potrykus et al., 2014).

In 2013, blackleg of potato was observed in a commercial field in Minas Gerais, Brazil. The pathogen was identified as D. solani (Cardoza et al., 2017).

Risk of Introduction

Top of page

It is very likely that D. solani crossed into potato production from horticulture because the earliest known strains of D. solani were originally isolated from hyacinth. Movement of D. solani via infected hyacinth is therefore likely.

World-wide trade of latently infected potatoes has facilitated the spread of D. solani.

In Israel, D. solani is considered to be a quarantine organism (Tsror et al., 2009).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedCultivated / agricultural land Present, no further details Harmful (pest or invasive)
Freshwater
Irrigation channels Secondary/tolerated habitat Harmful (pest or invasive)
Rivers / streams Secondary/tolerated habitat Harmful (pest or invasive)

Hosts/Species Affected

Top of page

Potato is the primary host for D. solani but it also causes disease in Hyacinthus orientalis (hyacinth) and has been found in association with the sedge Cyperus rotundus, a common weed in Israel (Tsror et al., 2010). The latter may serve as an alternative host in the absence of a host crop.

The vegetative growth, post-harvest, seedborne and storage stages of the host plant are most affected by D. solani.

Cultivar susceptibility studies have shown that all potato cultivars studied to date are, at least to some degree, susceptible. Roufflange et al. (2013) noted that cv. Agria was the most susceptible of six cultivars studied (cvs. Agria, Arinda, Charlotte, Innovator, Lady Claire and Victoria) when looking at aerial stem rots in greenhouse experiments. Gerardin et al. (2013) found similar results highlighting cv. Agria’s susceptibility to tuber soft rot caused by D. solani. However, it is clear that environmental factors, such as soil moisture, can have a dramatic effect on the severity of the disease in the field (Gill et al., 2014).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Cyperus rotundus (purple nutsedge)CyperaceaeWild host
Hyacinthus orientalis (hyacinth)LiliaceaeOther
Solanum tuberosum (potato)SolanaceaeMain

Growth Stages

Top of page Post-harvest, Vegetative growing stage

Symptoms

Top of page

D. solani causes blackleg and top wilt of the growing potato plant and soft rot of tubers. The wilt may be rapid as the soft rot moves from the infected tuber through the vascular system of the plant (SASA, 2009). In some varieties, wilting may occur without any apparent blackleg (SASA, 2009). 

List of Symptoms/Signs

Top of page
SignLife StagesType
Growing point / wilt
Leaves / abnormal colours
Leaves / abnormal forms
Leaves / abnormal leaf fall
Leaves / leaves rolled or folded
Leaves / rot
Leaves / yellowed or dead
Roots / necrotic streaks or lesions
Roots / soft rot of cortex
Stems / discoloration
Stems / internal discoloration
Stems / necrosis
Stems / odour
Stems / rot
Stems / wilt
Vegetative organs / soft rot
Whole plant / discoloration
Whole plant / early senescence
Whole plant / plant dead; dieback
Whole plant / unusual odour
Whole plant / wilt

Biology and Ecology

Top of page

Genetics

D. solani is closely related to D. dadantii on the basis of DNA-DNA hybridization data and average nucleotide identity (ANI) values and this has led some to speculate that it may be a subspecies of the latter (van Vaerenbergh et al., 2012). It can however, be readily distinguished from other members of the genus Dickeya on the basis of sequence data derived from the intergenic spacer region (IGS), dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA genes (van der Wolf et al., 2014b), the concatenated sequences of 23 conserved proteins (Naushad et al., 2014) and RFLP analysis of the recA gene (Waleron et al., 2013).

A recent study looking at differences between conserved signature idels (CSIs) and proteins (CSPs) amongst the plant pathogenic genera Brenneria, Dickeya, Pectobacterium and other members of the order Enterobacteriales showed that Brenneria and Pectobacterium shared a common ancestor exclusive from Dickeya (Naushad et al., 2014).

Genome sequence data from a variety of different D. solani isolates (Garlant et al., 2013; Pritchard et al., 2013; Khayi et al., 2014, 2015, 2016; Golanowska et al., 2015) and variable number tandem repeats analysis (Parkinson et al., 2015) demonstrate clearly that D. solani is a clonal organism; little variation exists between isolates from a wide variety of locations and environmental sources which adds weight to the view that this is a recently emerged pathogen. However there is some evidence to suggest that isolates obtained from hot countries, e.g., Israel, are more virulent that those obtained from the cooler north (Tsror et al., 2013) despite the lack of diversity in the genome. In studies of Golanowska et al. (2016) strains isolated in Poland indicated higher ability to macerate potato tuber tissue  than strains from Finland and Israel.

Comparative genomic analysis has identified the presence of three large polyketide/fatty acid/non-ribosomal peptide synthetase clusters (Garlant et al., 2013) not present in the closely related D. dadantii, which may be involved in the production of toxic secondary metabolites. Furthermore, D. solani contained several unique genes to the genus Dickeya which may confer advantages for adaptation to new environments, a finding largely backed-up by a subsequent, independent study (Pédron et al., 2014).

Physiology and Phenology

D. solani produces Gram-negative, motile, rods. It produces phosphatases and growth on α-methylglucoside results in indole and acid production. Arginine is not degraded under anaerobic conditions. Acid is produced from D-arabinose, mannitol, melibiose and raffinose but not from 5-ketogluconate or inulin. It is pectinolytic and can rapidly degrade potato tissue.

D. solani is less susceptible to attack from soil saprophytic bacteria and is a highly efficient as a colonizer of the growing potato plant, when compared against another member of the genus Dickeya pathogenic to potato in Northern Europe, D. dianthicola (Czajkowski et al., 2012c).

Environmental Requirements

D. solani does not survive well in soil in the absence of its host (Toth et al., 2011) and earlier studies have suggested it is unable to persist beyond 3 weeks, irrespective of soil type, temperature and humidity (van der Wolf et al., 2007) and may survive for as little as 7 days at 6°C and 50% field moisture capacity (van der Wolf et al., 2009).

Climate

Top of page
ClimateStatusDescriptionRemark
Cf - Warm temperate climate, wet all year Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers

Air Temperature

Top of page
Parameter Lower limit Upper limit
Mean annual temperature (ºC) 39

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Serratia plymuthica Pathogen Czajkowski et al., 2012b Netherlands

Notes on Natural Enemies

Top of page

Bacteriophages such as Bacteriophage LIMEstone 1 & 2 (Andriaenssens et al., 2012), ΦD3 Φ D5 (Czajkowski et al., 2014, 2015b), Φ D10.3 and Φ D23.1 (Cjakowski et al., 2015a) have shown some potential for biocontrol of D. solani.

Means of Movement and Dispersal

Top of page

Accidental Introduction

D. solani is predominantly seedborne and almost all new findings can be traced back to the movement of latently infected seed (Slawiak et al., 2008; Tsror et al., 2009, 2011; Cahill et al., 2010; Elphinstone, 2012; Degefu et al., 2013; Dreo et al., 2013). However, D. solani has also been found in irrigation water in both Finland and the UK (Laurila et al., 2008; Cahill et al., 2010; Parkinson et al., 2015) with infected crops grown in the vicinity or the processing of infected potatoes with waste waters discharged into local rivers the likely source of these infestations. D. solani was not detected during a 4 year survey of waterways in Poland. Although this has not been conclusively proven, the possibility exists that D. solani may also be spread by the use of infested irrigation water.

D. solani was detected in healthy potato rhizosphere in Germany in 2006 (Hauer et al., 2010; Potrykus et al., 2014).

Trade in ware potatoes may also provide an additional route for long-distance infection as the bacterial ooze on the surface of transport/storage materials (boxes, sacks, etc.), machinery etc. can serve as a source of infection if seed tubers come into subsequent contact.  Liquid and solid waste from packing or processing of infected tubers may also serve as a route for further spread of the pathogen (Toth et al., 2011).

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Crop productionAccidentally introduced into across Europe and Israel through via infected potato seed tubers Yes Yes Toth et al., 2011
FoodBacterial ooze on storage materials and machinery, and waste from processing, can spread infection Yes Toth et al., 2011
HorticultureD. solani has been found on diseased hyacinth bulbs Yes Chen et al., 2015; van der Wolf et al., 2014b
Internet salesSeed potatoes and hyacinth bulbs are bought by hobby gardeners Yes

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Machinery and equipmentSmearing of heavily infected potatoes across machinery can facilitate spread to healthy tubers Yes Toth et al., 2011
WaterSpread within a field in ground-water. Infested water can infect healthy plants Yes Toth et al., 2011
WindLikely to spread by wind-blown rain from heavily infected growing plants Yes Toth et al., 2011

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Bulbs/Tubers/Corms/Rhizomes Yes Yes Pest or symptoms usually invisible

Impact Summary

Top of page
CategoryImpact
Economic/livelihood Negative

Economic Impact

Top of page

In Israel, potato yield reductions up to 30% have been recorded as a consequence of D. solani infection across a wide number of commercially produced cultivars (Tsror et al., 2009) and in more limited studies yield reductions of up to 50% from individual plants have been recorded in Finland (Laurila et al., 2010).

It should be stressed that most direct losses to potato production in Europe caused by D. solani have occurred as a result of downgrading or rejection of potatoes during seed certification (Toth et al., 2011). As national certification tolerances differ, the economic impact varies from country to country. Strict tolerance in the Netherlands has led to increased direct losses of up to €30M annually (Prins and Breukers, 2008), largely attributable to the actions of D. solani.

According to ILVO (2010), D. solani is an aggressive form of Dickeya causing macerative blackleg in seed potatoes from Flanders, Belgium and causing a major block to export.

Risk and Impact Factors

Top of page Invasiveness
  • Reproduces asexually
Impact outcomes
  • Host damage
  • Negatively impacts agriculture
  • Negatively impacts livelihoods
Impact mechanisms
  • Pathogenic
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect as a commodity contaminant
  • Difficult to identify/detect in the field
  • Difficult/costly to control

Similarities to Other Species/Conditions

Top of page

Symptoms caused by D. solani on potato, specifically blackleg and top wilt of the growing potato plant and soft rot of tubers, are indistinguishable from those produced by other plant pathogenic bacteria, namely: Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum, P. parmentieri (earlier classified as P. wasabiae), P. wasabiae, D. dianthicola, etc. Therefore, it is vital that a positive diagnosis is not reliant on visual inspection alone. A number of diagnostics protocols are available and have been recently reviewed (Czajkowski et al., 2015). Most are reliant on either conventional (Potrykus et al., 2014) or real-time PCR (Kelly et al., 2012; Pritchard et al., 2012; van der Wolf et al., 2014a; Humphris et al., 2015), with the latter work by Humphris and co-workers giving a step-by-step guide, methods and protocols for diagnosis.

Toth et al. (2010) noted characteristics which help distinguish Dickeya spp. from Pectobacterium spp.: "Dickeya spp. can initiate disease from lower inoculum levels, have a greater ability to spread through the plant’s vascular tissue, are considerably more aggressive, and have higher optimal temperatures for disease development (the latter potentially leading to increased disease problems as Europe’s climate warms). However, they also appear to be less hardy than Pectobacterium spp. in soil and other environments outside the plant."

Prevention and Control

Top of page

Prevention

Within the European Community (EC) D. solani is a regulated, non-quarantine pest and as such is controlled in the majority of Member States by their respective potato seed certification schemes. In general, potato seed production is initiated from pathogen-tested nuclear stock microplants and field production is limited to a restricted number of generations thus avoiding the build-up of pathogens, such as D. solani, with each field multiplication (Toth et al., 2011). All classification schemes are reliant on visual inspection of field crops and tubers in store and although there is generally a zero tolerance to blackleg and soft rot diseases in high grade material, latent infections exist and will obviously be overlooked, leading some to advocate the use of post-harvest testing to monitor seed stocks for the presence of D. solani (Czajkowski et al., 2011).

Scotland was the first country within the EC to enforce testing of all non-indigenous seed stocks prior to planting to ensure that they are free of D. solani (Kerr et al., 2010). It has also introduced a zero tolerance for blackleg caused by Dickeya spp. in its seed tuber classification scheme, using a system based on field inspection backed by laboratory testing, in which high-risk crops (non-Scottish origin) are targeted but 10% of indigenous production is also surveyed to ensure freedom from Dickeya spp.

As the movement of latently infected seed is the principal infection route, measures to assure seed health are gaining traction in some countries, such as the Safe Haven Scheme currently in operation within the UK (see http://www.potato.org.uk/growing/plant-health/safe-haven). This is an industry-led initiative that ensures that only disease-free microplants can enter the production chain and that field-grown generations can only be grown on agricultural units that cannot handle seed from outside the scheme. In this way, healthy planting material is passing through the production chain, with no possible avenue for the introduction of infection from other sources of seed tubers.

Control

Movement control

Once D. solani has become established there are a number of measures that can reduce its impact and the risk of spreading the pathogen further. Cleaning and disinfection of machinery, equipment and grading lines are very important and a range of disinfectants have shown efficacy in suppressing D. solani (Czajkowski et al., 2013). There are also a number of studies that have detected the presence of D. solani in irrigation water in both Finland and the UK (Laurila et al., 2008; Cahill et al., 2010; Parkinson et al., 2015) suggesting that monitoring sources of irrigation water, backed by restrictions on irrigation where the pathogen is found, may reduce contamination and disease in field-grown crops.

Biological control

Some preliminary studies are providing evidence that biological control may have benefit in reducing the impact of D. solani. Studies have explored the use of bacteriophage (Adriaenssens et al., 2012) and antagonistic bacteria such as Serratia plymuthica (Czajkowski et al., 2012b).

References

Top of page

Adeolu M, Alnajar S, Naushad S, Gupta RS, 2016. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol, 12:5575-5599.

Adriaenssens EM, Vaerenbergh Jvan, Vandenheuvel D, Dunon V, Ceyssens PJ, Proft Mde, Kropinski AM, Noben JP, Maes M, Lavigne R, 2012. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by 'Dickeya solani'. PLoS ONE, 7(3):e33227. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0033227

Brady CL, Cleenwerck I, Denman S, Venter SN, Rodríguez-Palenzuela P, Coutinho TA, Vos Pde, 2012. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb, nov., descriptions of Lonsdalea quercina subsp. quercina comb, nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb, nov., and emendation of the description of Dickeya dadantii. International Journal of Systematic and Evolutionary Microbiology, 62(7):1592-1602. http://ijs.sgmjournals.org

Burkholder WH, McFadden LA, Dimock AW, 1953. A bacterial blight of chrysanthemums. Phytopathology, 43:522-526.

CABI/EPPO, 2015. Dickeya solani. [Distribution map]. Distribution Maps of Plant Diseases, No.October. Wallingford, UK: CABI, Map 1175 (Edition 1).

Cahill G, Fraser K, Kowalewska MJ, Kenyon DM, Saddler GS, 2010. Recent findings from the Dickeya survey and monitoring programme. In: The Dundee Conference. Crop Protection in Northern Britain 2010, Dundee, UK, 23-24 February 2010. Dundee, UK: The Association for Crop Protection in Northern Britain, 171-176.

Cardoza YF, Duarte V, Lopes CA, 2017. First report of blackleg of potato caused by Dickeya solani in Brazil. Plant Disease, 101(1):243. http://apsjournals.apsnet.org/loi/pdis

Chen XF, Zhang HL, Chen J, 2015. First report of Dickeya solani causing soft rot in imported bulbs of Hyacinthus orientalis in China. Plant Disease, 99(1):155. http://apsjournals.apsnet.org/loi/pdis

Czajkowski R, Boer WJde, Veen JAvan, Wolf JMvan der, 2012. Characterization of bacterial isolates from rotting potato tuber tissue showing antagonism to Dickeya sp. biovar 3 in vitro and in planta. Plant Pathology, 61(1):169-182. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02486.x/abstract

Czajkowski R, Boer WJde, Veen JAvan, Wolf JMvan der, 2012. Studies on the interaction between the biocontrol agent, Serratia plymuthica A30, and blackleg-causing Dickeya sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathology, 61(4):677-688. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02565.x/full

Czajkowski R, Boer WJde, Wolf JMvan der, 2013. Chemical disinfectants can reduce potato blackleg caused by 'Dickeya solani'. European Journal of Plant Pathology, 136(2):419-432. http://rd.springer.com/journal/10658

Czajkowski R, Boer WJde, Zouwen PSvan der, Kastelein P, Jafra S, Haan EGde, Bovenkamp GWvan den, Wolf JMvan der, 2012. Virulence of Dickeya solani and Dickeya dianthicola biovar-1 and -7 strains on potato (Solanum tuberosum). Plant Pathology, 62:597-610.

Czajkowski R, Ozymko Z, Jager Vde, Siwinska J, Smolarska A, Ossowicki A, Narajczyk M, Lojkowska E, 2015. Genomic, Proteomic and Morphological Characterization of Two Novel Broad Host Lytic Bacteriophages FPD10.3 and FPD23.1 Infecting Pectinolytic Pectobacterium spp. and Dickeya spp. PLoS ONE, 10(3):e0119812. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119812

Czajkowski R, Ozymko Z, Lojkowska E, 2014. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 ('D. solani'). Plant Pathology, 63(4):758-772. http://onlinelibrary.wiley.com/doi/10.1111/ppa.12157/full

Czajkowski R, Ozymko Z, Siwinska J, Ossowicki A, Jager Vde, Narajczyk M, Lojkowska E, 2015. The complete genome, structural proteome, comparative genomics and phylogenetic analysis of a broad host lytic bacteriophage FD3 infecting pectinolytic Dickeya spp. Standards in Genomic Sciences, 10(68):1-8.

Czajkowski R, Ozymko Z, Zwirowski S, Lojkowska E, 2014. Complete genome sequence of a broad-host-range lytic Dickeya spp. bacteriophage phiD5. Archives of Virology, 159(11):3153-3155. http://rd.springer.com/article/10.1007/s00705-014-2170-8/fulltext.html

Czajkowski R, Pérombelon MCM, Jafra S, Lojkowska E, Potrykus M, Wolf JMvan der, Sledz W, 2015. Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Annals of Applied Biology, 166(1):18-38. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1744-7348

Czajkowski R, Pérombelon MCM, Veen JAvan, Wolf JMvan der, 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 60(6):999-1013. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02470.x/abstract

Degefu Y, Potrykus M, Golanowska M, Virtanen E, Lojkowska E, 2013. A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Annals of Applied Biology, 162(2):231-241. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1744-7348

Dreo T, Naglic T, Peterka M, Ravnikar M, 2013. Characterization of Slovenian Pectobacterium and Dickeya isolates from potato. (Karakterizacija Slovenskih izolatov Pectobacterium in Dickeya spp. iz krompirja.) In: Zbornik Predavanj in Referatov, 11. Slovenskega Posvetovanja o Varstvu Rastlin Z Mednarodno Udelezbo (in okrogle mize o zmanjsanju tveganja zaradi rabe FFS v okviru projekta CropSustaIn), Bled, Slovenia, 5.-6. Marec 2013 [ed. by Trdan, S.\Macek, J.]. Ljubljana, Slovenia: Plant Protection Society of Slovenia, 125-131.

Elphinstone JG, 2012. Final report - 'Dickeya solani' - survey of seed crops in England and Wales 2011 (Ref: R454). Potato Council. http://www.potato.org.uk/publications/r454-dickeya-solani-survey

Garlant L, Koskinen P, Rouhiainen L, Laine P, Paulin L, Auvinen P, Holm L, Pirhonen M, 2013. Genome sequence of Dickeya solani, a new soft rot pathogen of potato, suggests its emergence may be related to a novel combination of non-ribosomal peptide/polyketide synthetase clusters. Diversity, 5(4):824-842. http://www.mdpi.com/1424-2818/5/4/824

Gerardin D, Rouffiange J, Kellenberger I, Schaerer S, Dupuis B, 2013. Potato susceptibility to soft rot caused by Dickeya spp. (Sensibilité de la pomme de terre à la pourriture molle provoquee par Dickeya spp.) Recherche Agronomique Suisse, 4(6):288-295. http://www.agrarforschungschweiz.ch

Gill ED, Schaerer S, Dupuis B, 2014. Factors impacting blackleg development caused by Dickeya spp. in the field. European Journal of Plant Pathology, 140(2):317-327. http://rd.springer.com/journal/10658

Golanowska M, Galardini M, Bazzicalupo M, Hugouvieux-Cotte-Pattat N, Mengoni A, Potrykus M, Slawiak M, Lojkowska E, 2015. Draft genome sequence of a highly virulent strain of the plant pathogen Dickeya solani, IFB0099. Genome Announcements, 3(2):e00109-15. http://genomea.asm.org/content/3/2/e00109-15.full

Golanowska M, Kielar J, Lojkowska E, 2016. The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland. European Journal of Plant Pathology 99 (9): 1271 (doi: 10. European Journal of Plant Pathology, 99(9):1271.

Heuer H, Ebers J, Weinert N, Smalla K, 2010. Variation in permissiveness for broad-host-range plasmids among genetically indistinguishable isolates of Dickeya sp. from a small field plot. FEMS Microbiology Ecology, 73(1):190-196. http://www.blackwell-synergy.com/loi/fem

Humphris SN, Cahill G, Elphinstone JG, Kelly R, Parkinson NM, Pritchard L, Toth IK, Saddler GS, 2015. Detection of the bacterial potato pathogens Pectobacterium and Dickeya spp using conventional and real time PCR. In: Methods in molecular biology - plant pathology techniques and protocols, Second edition [ed. by Lacomme C]. New York: Springer.

ILVO, 2010. Institute for Agricultural and Fisheries Research. Annual report 2010., Belgium: Erik Van Bockstaele. http://www.ilvo.vlaanderen.be/Portals/68/documents/Mediatheek/AV/AV2010EN.pdf

Keiser A, Werra Pde, 2013. Blackleg and wet rot preventive fight!. Schwarzbeinigkeit und Nassfaule vorbeugend bekampfen!, 7. Kartoffelbau, 18-22.

Kelly RM, Cahill G, Elphinstone JG, Mitchell WJ, Mulholland V, Parkinson NM, Pritchard L, Toth IK, Saddler GS, 2012. Development of a real-time PCR assay for the detection of 'Dickeya solani'. In: The Dundee Conference. Crop Protection in Northern Britain, 2012, Dundee, UK, 28-29 February 2012. Dundee, UK: The Association for Crop Protection in Northern Britain, 201-206.

Kerr J, Speirs J, Saddler GS, 2010. Dickeya: swift policy response by the Scottish Government to tackle this new bacterial threat. Aspects of Applied Biology, No.104:7-12.

Khayi S, Blin P, Chong TM, Chan KG, Faure D, 2016. Complete genome anatomy of the emerging potato pathogen Dickeya solani type strain IPO 2222T. Standards in Genomic Sciences, 2016(11):87.

Khayi S, Blin P, Pédron J, Chong TeikMin, Chan KokGan, Moumni M, Hélias V, Gijsegem Fvan, Faure D, 2015. Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani. BMC Genomics, 16(788):(14 October 2015). http://www.biomedcentral.com/1471-2164/16/788

Khayi S, Cigna J, Chong TeikMin, Quêtu-Laurent A, Chan KokGan, Hélias V, Faure D, 2016. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. International Journal of Systematic and Evolutionary Microbiology, 66(12):5379-5383. http://ijs.sgmjournals.org

Khayi S, Mondy S, Beury-Cirou A, Moumni M, Hélias V, Faure D, 2014. Genome sequence of the emerging plant pathogen Dickeya solani strain RNS 08.23.3.1A. Genome Announcements, 2(1):e01270-13. http://genomea.asm.org/content/2/1/e01270-13.full

Laurila J, Ahola V, Lehtinen A, Joutsjoki T, Hannukkala A, Rahkonen A, Pirhonen M, 2008. Characterization of Dickeya strains isolated from potato and river water samples in Finland. European Journal of Plant Pathology, 122(2):213-225. http://springerlink.metapress.com/link.asp?id=100265

Laurila J, Hannukkala A, Nykyri J, Pasanen M, Hélias V, Garlant L, Pirhonen M, 2010. Symptoms and yield reduction caused by Dickeya spp. strains isolated from potato and river water in Finland. European Journal of Plant Pathology, 126(2):249-262. http://springerlink.metapress.com/link.asp?id=100265

Lelliott RA, Dickey RS, 1984. Genus VII. Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920, 209AL. In: Bergey's Manual of Systematic Bacteriology, 1 [ed. by Krieg NR, Holt JG]. Baltimore, USA: Williams and Wilkins, 469-476.

Naushad HS, Lee B, Gupta RS, 2014. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. International Journal of Systematic and Evolutionary Microbiology, 64(2):366-383. http://ijs.sgmjournals.org

Ngwira N, Samson R, 1990. Erwinia chrysanthemi: description of two new biovars (bv 8 and bv 9) isolated from kalanchoe and maize host plants. Agronomie, 10(4):341-345

Northern Ireland Executive, 2011. Agriculture Minister Michelle O'Neill MLA has confirmed the finding of Dickeya solani in seed potatoes imported from the Netherlands. Belfast, Northern Ireland, UK: nidirect.

Ozturk M, Aksoy HM, 2017. First report of Dickeya solani associated with potato blackleg and soft rot in Turkey. Journal of Plant Pathology, 99(1).

Palacio-Bielsa A, Cambra MA, López MM, 2006. Characterisation of potato isolates of Dickeya chrysanthemi in Spain by a microtitre system for biovar determination. Annals of Applied Biology, 148(2):157-164. http://www.blackwell-synergy.com/doi/abs/10.1111/j.1744-7348.2006.00045.x

Parkinson N, Pritchard L, Bryant R, Toth I, Elphinstone J, 2015. Epidemiology of Dickeya dianthicola and Dickeya solani in ornamental hosts and potato studied using variable number tandem repeat analysis. European Journal of Plant Pathology, 141(1):63-70. http://rd.springer.com/journal/10658

Parkinson N, Stead D, Bew J, Heeney J, Tsror L, Elphinstone J, 2009. Dickeya species relatedness and clade structure determined by comparison of recA sequences. International Journal of Systematic and Evolutionary Microbiology, 59(10):2388-2393. http://ijs.sgmjournals.org

Pédron J, Mondy S, Essarts YRdes, Gijsegem Fvan, Faure D, 2014. Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics, 15(283):(15 April 2014). http://www.biomedcentral.com/1471-2164/15/283

Potrykus M, Golanowska M, Hugouvieux-Cotte-Pattat N, Lojkowska E, 2014. Regulators involved in Dickeya solani virulence, genetic conservation, and functional variability. Molecular Plant-Microbe Interactions, 27(7):700-711. http://apsjournals.apsnet.org/loi/mpmi

Potrykus M, Golanowska M, Sledz W, Zoledowska S, Motyka A, Kolodziejska A, Butrymowicz J, Lojkowska E, 2016. Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Disease, 100(2):408-417. http://apsjournals.apsnet.org/loi/pdis

Potrykus M, Sledz W, Golanowska M, Slawiak M, Binek A, Motyka A, Zoledowska S, Czajkowski R, Lojkowska E, 2014. Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Annals of Applied Biology, 165(3):474-487. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1744-7348

Prins H, Breukers A, 2008. Adverse Effects of Erwinia for the seed potato mapped. (De Gevolgen van Aantasting door Erwinia voor de Pootaardappelsector in Kaart Gebracht.) Den Haag, Netherlands: LEI.

Pritchard L, Humphris S, Saddler GS, Elphinstone JG, Pirhonen M, Toth IK, 2013. Draft genome sequences of 17 isolates of the plant pathogenic bacterium Dickeya. Genome Announcements, 1(6):e00978-13. http://genomea.asm.org/content/1/6/e00978-13.full

Pritchard, L, Humphris, S, Saddler, GS, Parkinson, NM, Bertrand, V, Elphinstone, JG, Toth, IK, 2012. Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathology, 62:587-596.

Rouffiange J, Gerardin D, Kellenberger I, Schaerer S, Dupuis B, 2013. Potato susceptibility to aerial stem rot caused by Dickeya spp. (Sensibilité de la pomme de terre aux pourritures de tiges provoquées par Dickeya spp.) Recherche Agronomique Suisse, 4(10):424-431. http://www.agrarforschungschweiz.ch

Rölin A, Nilsson ATS, 2011. Dickeya spp - occurrence in Swedish grown potato tubers. Sweden: Hushallnings Sallskapet. http://www.bioforsk.no/ikbViewer/Content/94215/PTDW_Dickeya_Rolin_PR.pdf

Samson R, Legendre JB, Christen R, Fischer-le Saux M, Achouak W, Gardan L, 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology, 55(4):1415-1427.

Samson R, Nassan-Agha N, 1978. Biovars and serovars among 129 strains of Erwinia chrysanthemi. Proceedings of the IVth International Conference on Plant Pathogenic Bacteria. Vol. II. Sta. Path. Veg. Phytobact. Angers, France: INRA, 547-553

Sarris PF, Trantas E, Pagoulatou M, Stavrou D, Ververidis F, Goumas DE, 2011. First report of potato blackleg caused by biovar 3 Dickeya sp. (Pectobacterium chrysanthemi) in Greece. New Disease Reports, 24:Article 21. http://www.ndrs.org.uk/article.php?id=024021

SCAS, 2009. Science and Advice for Scottish Agriculture. A New Threat to Potato - "Dickeya solani". Scotland, UK: Scottish Government. http://www.gov.scot/resource/doc/278281/0096693.pdf

Slawiak M, ojkowska E, Wolf JMvan der, 2009. First report of bacterial soft rot on potato caused by Dickeya sp. (syn. Erwinia chrysanthemi) in Poland. Plant Pathology, 58(4):794. http://www.blackwell-synergy.com/loi/ppa

Slawiak M, Beckhoven JRCMvan, Speksnijder AGCL, Czajkowski R, Grabe G, Wolf JMvan der, 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. European Journal of Plant Pathology, 125(2):245-261. http://springerlink.metapress.com/link.asp?id=100265

Slawiak M, Lojkowska E, Wolf JMvan der, 2008. First report of bacterial soft rot on potato caused by Dickeya sp (syn Erwinia chrysanthemi) in Poland. New Disease Reports, 18:25.

Toth IK, Wolf JMvan der, Saddler G, Lojkowska E, Hélias V, Pirhonen M, Tsror L, Elphinstone JG, 2011. Dickeya species: an emerging problem for potato production in Europe. Plant Pathology, 60(3):385-399. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02427.x/full

Tsror L, Ben-Daniel B, Chalupowicz L, Wolf Jvan der, Lebiush S, Erlich O, Dror O, Barel V, Nijhuis E, Manulis-Sasson S, 2013. Characterization of Dickeya strains isolated from potato grown under hot-climate conditions. Plant Pathology, 62(5):1097-1105. http://onlinelibrary.wiley.com/doi/10.1111/ppa.12030/full

Tsror L, Erlich O, Hazanovsky M, Daniel BB, Zig U, Lebiush S, 2012. Detection of Dickeya spp. latent infection in potato seed tubers using PCR or ELISA and correlation with disease incidence in commercial field crops under hot-climate conditions. Plant Pathology, 61(1):161-168. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02492.x/abstract

Tsror L, Erlich O, Lebiush S, Hazanovsky M, Zig U, Slawiak M, Grabe G, Wolf JMvan der, Haar JJvan de, 2009. Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. European Journal of Plant Pathology, 123(3):311-320. http://springerlink.metapress.com/link.asp?id=100265

Tsror L, Erlich O, Lebiush S, Wolf Jvan der, Czajkowski R, Mozes G, Sikharulidze Z, Daniel BB, 2011. First report of potato blackleg caused by a biovar 3 Dickeya sp. in Georgia. New Disease Reports, 23:Article 1. http://www.ndrs.org.uk/pdfs/023/NDR_023001.pdf

Tsror L, Lebiush S, Erlich O, Ben-Daniel B, Wolf Jvan der, 2010. First report of latent infection of Cyperus rotundus caused by a biovar 3 Dickeya sp.(Syn. Erwinia chrysanthemi) in Israel. New Disease Reports, 22:Article 14. http://www.ndrs.org.uk/article.php?id=22014

Vaerenbergh J van, Baeyen S, Vos P de, Maes M, 2012. Sequence diversity in the Dickeya fliC gene: phylogeny of the Dickeya genus and TaqMan® PCR for 'D. solani', new biovar 3 variant on potato in Europe. PLoS ONE, 7(5):e35738. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035738

Waleron M, Czajkowski R, Waleron K, Lojkowska E, 2013. Restriction fragment length polymorphism-based identification of Dickeya solani, a new genetic clade of Dickeya spp. Journal of Plant Pathology, 95:609-613.

Wolf J van der, Czajkowski R, Velvis H, 2009. Effectieve kolonisatie van aardappelplanten door Dickeya soorten (Erwinia chrysanthemi). Gewasbescherming Jaargang, 4:169-71.

Wolf J van der, Speksnijder A, Velvis H, Haar Jvan de, Doorn Jvan, 2007. Why is Erwinia chrysanthemi (Dickeya sp) taking over? - the ecology of a blackleg pathogen. MTT Agrifood Research, Agrifood Research Working Papers, Jokionen, Finland. New and Old Pathogens of Potato in Changing Climate, 142 [ed. by Hannukkala, A. \Segerstedt, M.]. Jokionen, Finland: MTT Agrifood Research, 30.

Wolf JM van der, Bergsma-Vlami M, 2013. Final report - Dickeya species in potato and management strategies. Euphresco, phytosanitary ERA-NET. http://www.kartoffelafgiftsfonden.dk/rappport/Rap12/AU_Final_Dickeya13.pdf

Wolf JM van der, Haas BHde, Hoof Rvan, Haan EGde, Bovenkamp GWvan den, 2014. Development and evaluation of Taqman assays for the differentiation of Dickeya (sub)species. European Journal of Plant Pathology, 138(4):695-709. http://rd.springer.com/journal/10658

Wolf JM van der, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N, Elphinstone JG, Pritchard L, Toth IK, Lojkowska E, Potrykus M, Waleron M, Vos Pde, Cleenwerck I, Pirhonen M, Garlant L, Hélias V, Pothier JF, Pflüger V, Duffy B, Tsror L, Manulis S, 2014. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology, 64(3):768-774. http://ijs.sgmjournals.org

Young JM, Dye DW, Bradbury JF, Panagopoulos CG, Robbs CF, 1978. A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research, 21(1):153-174.

Links to Websites

Top of page
WebsiteURLComment
EUPHRESCO. An European Research Area Network (ERA-NET)http://www.euphresco.org/

Organizations

Top of page

Netherlands: Plant Research International, Wageningen (PRI), Postbus 69, 6700AB,, Wageningen, www.wageningenur.nl

UK: FERA (The Food and Environment Research Agency), Sand Hutton, York, Y0411LZ, http://www.fera.defra.gov.uk

UK: The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, http://www.hutton.ac.uk/

Scotland: Science and Advice for Scottish Agriculture (SASA), 1 Roddinglaw Road, Edinburgh, EH12 9FJ, http://www.sasa.gov.uk

Contributors

Top of page

23/01/15 Original text by:

Gerry Saddler, Science and Advice for Scottish Agriculture, Edinburgh, UK

Distribution Maps

Top of page
You can pan and zoom the map
Save map