Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Merremia cissoides
(roadside woodrose)



Merremia cissoides (roadside woodrose)


  • Last modified
  • 02 October 2018
  • Datasheet Type(s)
  • Invasive Species
  • Preferred Scientific Name
  • Merremia cissoides
  • Preferred Common Name
  • roadside woodrose
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • Merremia cissoides is a climbing weed native to tropical America that has been introduced to several Old World countries, presumably as an ornamental. It typically grows in disturbed areas and has been reported...

  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    CAB International
    OX10 8DE
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page

Preferred Scientific Name

  • Merremia cissoides (Lam.) Hallier f.

Preferred Common Name

  • roadside woodrose

Other Scientific Names

  • Batatas cissoides (Lam.) Choisy
  • Convolvulus calycinus Kunth
  • Convolvulus cissoides Lam.
  • Convolvulus oronocensis Willd. ex Roem. & Schult.
  • Convolvulus riparius Kunth
  • Ipomoea cissoides (Lam.) Griseb.
  • Pharbitis cissoides (Lam.) Peter

International Common Names

  • English: roadside wood rose
  • Spanish: campanilla
  • Portuguese: getirana; jetirana; jitirana

Local Common Names

  • Brazil: corda-de-viola
  • El Salvador: bejuco coronel
  • Mexico: ka' ak; k'i'ix lool aak'; k'i'xoloc; tzo-aska

Summary of Invasiveness

Top of page

Merremia cissoides is a climbing weed native to tropical America that has been introduced to several Old World countries, presumably as an ornamental. It typically grows in disturbed areas and has been reported as a weed of several crops within its native range. However, it is not as widespread and common as other weedy species of Merremia. In several countries outside its native range, its occurrence has only been documented from one or few herbarium specimens. Nonetheless, the species is considered to be increasingly naturalized in the Old World tropics. It is invasive in Florida (USA) and Cuba.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Solanales
  •                         Family: Convolvulaceae
  •                             Genus: Merremia
  •                                 Species: Merremia cissoides

Notes on Taxonomy and Nomenclature

Top of page

This species was described by Lamarck in 1793 as Convolvulus cissoides, and later transferred to the genus Merremia by Hans Hallier, in 1893. The specific epithet means "resembling Cissus", a genus of Vitaceae.

The genus Merremia is named after Blasius Merrem, a German naturalist (Quattrocchi, 2000), and belongs to the morning-glory family. As currently circumscribed, Merremia comprises over 100 species distributed in tropical regions all around the world (Staples, 2010; Stevens, 2016). It is a heterogeneous genus that needs to be redefined, as suggested by palynological and molecular studies (Stefanovic et al., 2003; Staples, 2010; Simoes et al., 2015). The largest number of species is found in the Asia/Malesia/Pacific region (about 44 native species), followed by Africa (31 native species), America (27 native species) and Australia (9 native species). Several species are widely distributed due to cultivation as ornamentals or due to accidental introductions (Bosch, 2010; Staples, 2010). Some are commonly known as "wood roses" because their fruits retain the five petal-like, brown sepals, thus resembling dry flowers.


Top of page

Herbaceous, twining or creeping vine, attaining up to 6 m in length. Stems cylindrical, glandular- pubescent. Leaves alternate, 5-palmately compound; leaflets 1.5-7.5 x 0.7-3.5 cm, elliptical, ovate or ovate-lanceolate, the apex obtuse, the base acute or decurrent, the margins entire, undulate or dentate, glabrate or glandular-pubescent on both surfaces. Flowers in simple or double dichasial cymes; peduncles longer than the petioles; bracts persistent, linear to subulate; sepals subequal or unequal, 1-1.5 cm long, ovate to ovate-lanceolate, acuminate at the apex, glandular-pubescent; corolla funnel-shaped, white or sometimes pink, with or without a purple centre, 1.5-3 cm x 3-4 cm; stamens 5, white, sometimes with lilac anthers; stigma bilobed, white. Fruit capsular, 4-valvate, globose, 6-8 mm in diameter, light brown, glabrous, surrounded by the persistent sepals. Seeds 4 per fruit, ellipsoid, 5-6 mm long, dark brown, lanate (Acevedo-Rodríguez, 2005; Austin et al., 2012).


Top of page

M. cissoides is native to tropical America (from Mexico to Paraguay and northern Argentina). In the Caribbean it has only been reported in Cuba, Puerto Rico, British Virgin Islands (Tortola), Antigua and Barbuda, Guadeloupe and Trinidad and Tobago. The species has been introduced to the USA (Florida), Benin, Madagascar, India, Sri Lanka, Thailand, Taiwan, Indonesia (Sumatra) and Papua New Guinea. Hutchinson et al. (1963) and Burkill (1985) listed it as occasionally cultivated in tropical West Africa but, except for Benin, where it has naturalized, the species has not been documented elsewhere in the area. In the De Candolle's herbarium (G-DC) there is an old specimen of M. cissoides collected in the Pamplemousses Botanic Garden in Mauritius, but the species has not been included in the Convolvulaceae of this island (Bosser and Heine, 2000).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


IndiaPresentIntroducedBased on regional distribution
-KeralaPresentIntroduced Not invasive Biju and Mathew, 1993; Keralaplants, 2016
-Tamil NaduPresent, few occurrencesIntroduced2012Kottaimuthu and Vasudevan, 2012Dindigul District
-West BengalPresentIntroducedStaples, 2010
IndonesiaPresentIntroducedBased on regional distribution
-SumatraPresent, few occurrencesIntroduced2012Rahmadani, 2013North Sumatra (Medan)
Sri LankaPresentIntroducedStaples, 2010
TaiwanPresent, few occurrencesIntroduced2008Research Center for Biodiversity, 2016Taichung (herbarium collection)
ThailandPresentIntroducedStaples, 2010


BeninPresentIntroduced1999Lejoly and Lisowski, 2001; Akoègninou et al., 2006Atlantique, Plateau, Ouémé, Kouffo and Zou Departments
MadagascarPresent, few occurrencesIntroduced1990 Not invasive Deroin, 2001Morondava
MauritiusPresent only in captivity/cultivationIntroduced1839 Not invasive Catalogue des Herbiers de Genève, 2016Cultivated plant in the Pamplemousses Botanical Garden (herbarium collection)

North America

MexicoPresentNativeMcDonald, 1993
USAPresentIntroducedBased on regional distribution
-FloridaPresentIntroduced Invasive Broward Parks and Recreation, 2016; Wunderlin et al., 2016Broward County

Central America and Caribbean

Antigua and BarbudaPresentNativePowell, 1989
BelizePresentNativeAustin et al., 2012
British Virgin IslandsPresentNativeAcevedo-Rodríguez and Strong, 2012Tortola
Costa RicaPresentNativeAustin et al., 2012
CubaPresentNativeOviedo Prieto et al., 2012; Greuter et al., 2016Both native and introduced in the country
El SalvadorPresentNativeAustin et al., 2012
GuadeloupePresentNativePowell, 1989
GuatemalaPresentNativeAustin et al., 2012
HondurasPresentNativeAustin et al., 2012
NicaraguaPresentNativeAustin et al., 2012
Puerto RicoPresentNativeAcevedo-Rodríguez, 2005
Trinidad and TobagoPresentNativeAcevedo-Rodríguez and Strong, 2012

South America

ArgentinaPresentNativeInstituto de Botánica Darwinion, 2016Corrientes, Misiones, Salta
BoliviaPresentNativeWood et al., 2014
BrazilPresentNativeBased on regional distribution
-AcrePresentNativeSimão-Bianchini and Ferreira, 2016
-AlagoasPresentNativeSimão-Bianchini and Ferreira, 2016
-AmapaPresentNativeSimão-Bianchini and Ferreira, 2016
-AmazonasPresentNativeSimão-Bianchini and Ferreira, 2016
-BahiaPresentNativeSimão-Bianchini and Ferreira, 2016
-CearaPresentNativeSimão-Bianchini and Ferreira, 2016
-Distrito FederalPresentNativeSimão-Bianchini and Ferreira, 2016
-Espirito SantoPresentNativeSimão-Bianchini and Ferreira, 2016
-GoiasPresentNativeSimão-Bianchini and Ferreira, 2016
-MaranhaoPresentNativeSimão-Bianchini and Ferreira, 2016
-Mato GrossoPresentNativeSimão-Bianchini and Ferreira, 2016
-Mato Grosso do SulPresentNativeSimão-Bianchini and Ferreira, 2016
-Minas GeraisPresentNativeSimão-Bianchini and Ferreira, 2016
-ParaPresentNativeSimão-Bianchini and Ferreira, 2016
-ParaibaPresentNativeSimão-Bianchini and Ferreira, 2016
-ParanaPresentNativeSimão-Bianchini and Ferreira, 2016
-PernambucoPresentNativeSimão-Bianchini and Ferreira, 2016
-PiauiPresentNativeSimão-Bianchini and Ferreira, 2016
-Rio de JaneiroPresentNativeSimão-Bianchini and Ferreira, 2016
-Rio Grande do NortePresentNativeSimão-Bianchini and Ferreira, 2016
-Rio Grande do SulPresentNativeSimão-Bianchini and Ferreira, 2016
-RondoniaPresentNativeSimão-Bianchini and Ferreira, 2016
-RoraimaPresentNativeSimão-Bianchini and Ferreira, 2016
-Santa CatarinaPresentNativeSimão-Bianchini and Ferreira, 2016
-Sao PauloPresentNativeSimão-Bianchini and Ferreira, 2016
-SergipePresentNativeSimão-Bianchini and Ferreira, 2016
-TocantinsPresentNativeSimão-Bianchini and Ferreira, 2016
ColombiaPresentNativeVargas, 2012
EcuadorPresentNativeAustin, 1982a
French GuianaPresentNativeAustin, 2007
GuyanaPresentNativeAustin, 2007
ParaguayPresentNativeInstituto de Botánica Darwinion, 2016Alto Paraná, Alto Paraguay, Canindeyú, Concepción, Cordillera, Paraguarí, Presidente Hayes
PeruPresentNativeBrako and Zarucchi, 1993
SurinamePresentNativeAustin, 2007
VenezuelaPresentNativeAustin, 1982b; Hoyos, 1985Margarita Island


Papua New GuineaPresentIntroducedStaples, 2010

History of Introduction and Spread

Top of page

The oldest specimens of M. cissoides outside its native range were collected in 1814 and 1839 from cultivated plants in Botanic Gardens in India and Mauritius, respectively (Catalogue des Herbiers de Genève, 2016). Despite having been introduced over 200 years ago, the occurrence of M. cissoides in these countries is rare. In India, the species was reported in the wild for the first time in 1992, based on a specimen found along a roadside in the city of Thiruvananthapuram (Biju and Mathew, 1993). In Mauritius, the species is not mentioned in the floristic studies of the island (Vaughan, 1937; Bosser and Heine, 2000).

In Madagascar, M. cissoides is known from one specimen collected in 1990 in the vicinity of Morondava. Deroin (2001) noted that the introduction of this ornamental species is too recent to be considered as naturalized on this island. In Benin, it was first reported for the southern part of the country in 2001, based on a group of specimens collected in 1999 (Lejoly and Lisowski, 2001).

M. cissoides is not listed in the Flora of Taiwan (Chang, 1978); however, there is one specimen in the herbarium of the Biodiversity Research Center in Taipei, which was collected in 2008 from an abandoned landfill near a highway, indicating that the arrival of this species to Taiwan is recent. The species has also been recently found in Sumatra by Rahmadani (2013), who states this is a potentially invasive alien species for Indonesia.


Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
India 1814 or before Horticulture (pathway cause) No No Catalogue des Herbiers de Genève (2016) Several specimens in the Geneva herbarium
Mauritius 1839 or before Horticulture (pathway cause) No No Catalogue des Herbiers de Genève (2016) One specimen in the Geneva herbarium

Risk of Introduction

Top of page

M. cissoides is advertised and sold on gardening websites (Dave's Garden, 2016Sunshine Seeds, 2016) and thus likely to be spread internationally as an ornamental. It propagates easily by seed (Labonia, 2008; Sunshine Seeds, 2016) and also by cuttings (Sunshine Seeds, 2016).


Top of page

M. cissoides grows in open, disturbed sites, including forest edges and secondary thickets, roadsides, wastelands, fencerows and cultivated lands. It occurs from sea level up to 1800 m (Standley and Williams, 1970).

Hosts/Species Affected

Top of page

The species has been reported as a weed of sugarcane fields in Brazil (Perim et al., 2009; Correia and Kronka Júnior, 2010) and has also been reported in maize (Tavella et al., 2015), soybean (Timossi and Durigan, 2006), eucalyptus (Carbonari et al., 2010) and coffee plantations (Gavilanes et al., 1988).

Biology and Ecology

Top of page


The chromosome number of M. cissoides is not known, but other species of Merremia, including the closely related M. quinquefolia, have 2n = 30 (Jones, 1968; Vij et al., 1977).

Reproductive Biology

In São Paulo, Brazil, M. cissoides is pollinated by the bees Apis mellifera, Ancyloscelis apiformis and Exomalopsis fulvofasciata (Maimoni-Rodella and Rodella, 1986). Some species of butterflies and beetles have also been observed visiting the flowers of this species, which are odourless and produce scanty nectar (Maimoni-Rodella and Rodella, 1986).

The species is self-compatible and facultatively autogamous (Maimoni-Rodella and Rodella, 1986). Seeds germinate over a wide range of temperatures (17-35°C), with 26-35°C being optimal (Labonia, 2008), and can remain viable for at least one year (Parreira et al., 2009). Success and speed of germination increase when seeds are subjected to acid scarification. Azania et al. (2003) reported that seeds maintained at room temperature and treated with concentrated sulphuric acid for 10, 15 and 20 minutes, increased germination by 19, 35 and 57%, respectively. In a different study, of all treatments evaluated (20, 25, 30, 35, 40, 45, 50, 55 and 60 minutes in 98% sulphuric acid), the most effective was the 50 minutes treatment, which led to 91% germination within 16 days of sowing (de Sousa et al., 2010).

Seed dormancy can also be overcome with hot water, dry heat and fire scarification (Azania et al., 2003). However, the use of potassium nitrate or mechanical scarification with sandpaper does not increase germination (Azania et al., 2003). Seed germination, moreover, is not affected by light conditions, with seeds germinating either under photoperiod conditions or in absence of light. Germination is significantly higher when seeds are placed on or near the soil surface (Labonia, 2008; Parreira et al., 2009).

Physiology and Phenology

In Mesoamerica, M. cissoides flowers and fruits from September to December and from March to June (McDonald, 1993; Austin et al., 2012). In Puerto Rico, the flowering and fruiting period occurs from November to March (Axelrod, 2011). In southern Brazil, the species flowers and fruits throughout the year (Ferreira and Miotto, 2013).


M. cissoides is an annual plant (Maimoni-Rodella and Rodella, 1990; McDonald, 1993; Austin et al., 2012), although the PLANTS database of the USDA Natural Resources Conservation Service lists it as perennial (USDA-NRCS, 2016). In Brazil, frutification starts at 100-120 days (Campos, 2011). Plants sowed in winter seem to have a shorter life cycle than plants sowed in early summer, the latter exhibiting better performance and greater fruit production (Maimoni-Rodella and Rodella, 1990).


In Benin, the species has been reported growing with guinea grass (Megathyrsus maximus), mission grass (Cenchrus polystachios) and gamba grass (Andropogon gayanus) (Lejoly and Lisowski, 2001). In Taiwan, it has also been reported associated with M. maximus and other ruderal species including Melinis repens, Bidens alba var. radiata [Bidens pilosa], Cynodon dactylon and Ipomoea biflora (Research Center for Biodiversity, 2016). In Sumatra, Indonesia, M. cissoides was found along a grassy riverside in association with Imperata spp. (Rahmadani, 2013).

Environmental Requirements

M. cissoides is a full sun species that grows under moderate to dry conditions. The preferred mean annual temperature range is 17-30°C, but the species can withstand lower temperatures. Seeds are able to resist fire exposure, which can actually stimulate germination (Azania et al., 2003).


Top of page
Af - Tropical rainforest climate Tolerated > 60mm precipitation per month
Am - Tropical monsoon climate Tolerated Tropical monsoon climate ( < 60mm precipitation driest month but > (100 - [total annual precipitation(mm}/25]))
As - Tropical savanna climate with dry summer Preferred < 60mm precipitation driest month (in summer) and < (100 - [total annual precipitation{mm}/25])
Aw - Tropical wet and dry savanna climate Preferred < 60mm precipitation driest month (in winter) and < (100 - [total annual precipitation{mm}/25])
Cs - Warm temperate climate with dry summer Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Tolerated Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
29 30 0 1800

Air Temperature

Top of page
Parameter Lower limit Upper limit
Absolute minimum temperature (ºC) 5
Mean annual temperature (ºC) 17 30
Mean maximum temperature of hottest month (ºC) 22 34
Mean minimum temperature of coldest month (ºC) 12 24

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Megacerus cubiculus Predator Seeds not specific
Megacerus porosus Predator Seeds not specific

Notes on Natural Enemies

Top of page

Seeds of M. cissoides are susceptible to attack by the bruchid beetles Megacerus porosus and M. cubiculus (Chrysomelidae). Larvae of these beetles develop within the seeds, feeding on the endosperm and/or cotyledons (Reyes et al., 2009).

Means of Movement and Dispersal

Top of page

Natural Dispersal

M. cissoides propagates from seeds that are released around the parent plant (Campos, 2011). In agricultural lands, seed movement may be facilitated by soil working tools and machinery. Seeds exhibit physical dormancy (Azania et al., 2003; de Sousa et al., 2010) and can remain viable for over a year (Parreira et al., 2009), which potentially allows their dissemination over long distances. The species can also propagate by stem cuttings (Sunshine Seeds, 2016).


Intentional Introduction

M. cissoides is occasionally cultivated as an ornamental species, which has probably contributed to introductions outside its native range. 

Economic Impact

Top of page

In Brazil, M. cissoides is considered a serious weed in sugarcane fields, where it climbs up plants, bending and entangling the canes. It not only competes for water and nutrients, but can also hinder mechanical harvesting operations (Kuva et al., 2007; Labonia, 2008; Correia and Kronka Júnior, 2010; Campos, 2011).

Environmental Impact

Top of page

Impact on Biodiversity

Specific information on the impact of M. cissoides in natural habitats and biodiversity is very limited, but the species can be classified as competitive-ruderal (Maimoni-Rodella and Rodella, 1990). It is a fast-growing vine that crawls over the ground or climbs up herbs and shrubs, sometimes forming a cover that can potentially smother or prevent the growth of other plants.

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Has a broad native range
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Pioneering in disturbed areas
  • Fast growing
  • Has propagules that can remain viable for more than one year
  • Reproduces asexually
Impact outcomes
  • Ecosystem change/ habitat alteration
  • Negatively impacts agriculture
  • Threat to/ loss of native species
Impact mechanisms
  • Competition - shading
  • Competition - smothering
  • Competition - strangling
  • Rapid growth
Likelihood of entry/control
  • Highly likely to be transported internationally deliberately


Top of page

Economic Value

M. cissoides is occasionally cultivated as an ornamental (Burkill, 1985) and its seeds are traded online (Dave's Garden, 2016; Sunshine Seeds, 2016). In the Yucatán Península, the species is used as forage for pigs (Flores and Bautista, 2005). It is also a melliferous plant (Arellano Rodríguez et al. 2003). 


Environmental Services

Flowers of M. cissoides are attractive to bees, butterflies and beetles (Maimoni-Rodella and Rodella, 1986).

Similarities to Other Species/Conditions

Top of page

M. cissoides is most closely related to M. quinquefolia (Powell, 1989; Rahmadani, 2013; Simoes et al., 2015). The main differences between the two lie in the indument of stems and leaves, and in the shape of bracts. M. cissoides tends to be glandulose on all parts of the plant, and the bracts are linear or subulate, whereas M. quinquefolia is mostly glabrous (or has glandular hairs confined to the peduncles and pedicels) and the bracts are minutely deltoid (Powell, 1989).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.


Public awareness

Some gardening websites warn that this plant may be weedy or invasive (Dave's Garden, 2016). The website of the Broward County Parks and Recreation Division (Florida) lists M. cissoides as one of the "invasive plants in our yards" and recommends not to plant this species (Broward Parks and Recreation, 2016).


Cultural control and sanitary measures

In sugarcane fields, the emergence of M. cissoides can be significantly controlled by leaving a cover of sugarcane straw on the ground (Azania et al., 2002; Labonia, 2008). In a sugarcane field in Brazil, a reduction of 62 and 88% of M. cissoides plants was obtained by using 15 and 20 tonnes per hectare (or 1.5 and 2 kg/m²) of sugarcane straw, respectively (Azania et al., 2002).

Chemical control

Chemical control of M. cissoides has been evaluated in sugarcane and eucalyptus plantations in Brazil. In sugarcane fields, the following herbicides and mixtures of herbicides have been shown to be effective in the post-emergence control of this species: amicarbazone, metribuzin, diuron, diuron + hexazinone, diuron + hexazinone + trifloxysulfuron + ametryn, and metribuzin + trifloxysulfuron + ametryn (Perim et al., 2009; Correia and Kronka Júnior, 2010; Monquero et al., 2011). The herbicides amicarbazone, imazapic, sulfentrazone and flumioxazin are effective when applied in pre-emergence (Labonia, 2008; Campos et al., 2009; Carvalho et al., 2011; Girotto et al., 2012; Nicolai et al., 2013; Campos et al., 2016). In particular, amicarbazone provides excellent control, either when applied directly on the ground or on a cover of sugarcane straw (Labonia, 2008; Toledo et al., 2009; Carvalho et al., 2011).

In eucalyptus plantations, the aerial application of sulfentrazone and isoxaflutole using clay granules provided better control than the conventional (ground) spray application with water (Carbonari et al., 2010).

Gaps in Knowledge/Research Needs

Top of page

While there are numerous studies on the negative impact and control of M. cissoides in sugarcane plantations in Brazil, studies documenting the impact of this species on agricultural and natural systems in other countries are lacking.


Top of page

Acevedo-Rodríguez P, Strong MT, 2012. Catalogue of seed plants of the West Indies. Smithsonian Contributions to Botany, 98:1-1192. Washington DC, USA: Smithsonian Institution

Acevedo-Rodríguez, P., 2005. Contributions from the United States National Herbarium, Department of Systematic Biology - Botany, National Museum of Natural History, Smithsonian Institution 51, 483 pp.

Akoègninou A, van der Burg WJ, van der Maesen LJG, 2006. Analytical Flora of Benin. (Flore analytique du Bénin). Leiden, Netherlands: Backhuys, 1034 pp

Arellano Rodríguez JA, Flores Guido JS, Tun Garrido J, Cruz Bojórquez MM, 2003. [English title not available]. (Nomenclatura, forma de vida, uso, manejo y distribución de las especies vegetales de la Península de Yucatán). Etnoflora Yucatanense 20. Mérida, Mexico: Universidad Autónoma de Yucatán, 819 pp

Austin DF, 1982a. 165. Convolvulaceae. In: Harling G, Sparre B, eds. Flora of Ecuador, Vol. 15. Göteborg: University of Göteborg and Swedish Museum of Natural History, 99 pp

Austin DF, 1982b. Convolvulaceae. In: Luces de Febres Z, Steyermark JA, eds. Flora of Venezuela, Vol. 8(3). (Flora de Venezuela, Vol. 8(3)). Caracas, Venezuela: Ediciones Fundación Educación Ambiental, 15-226

Austin DF, 2007. Convolvulaceae. In: Funk V, Hollowell T, Berry P, Kelloff C, Alexander SN, eds. Checklist of the plants of the Guiana Shield (Venezuela: Amazonas, Bolivar, Delta Amacuro; Guyana, Surinam, French Guiana). Contributions from the United States National Herbarium, 55:271-275

Austin DF, McDonald JA, Murguía-Sánchez D, 2012. Convolvulaceae. Flora Mesoamericana. St. Louis, Missouri, USA: Missouri Botanical Garden.

Axelrod F, 2011. A systematic vademecum of the vascular plants of Puerto Rico. Texas, USA: Brit Press, 428 pp

Azania, A. A. P. M., Azania, C. A. M., Gravena, R., Pavani, M. C. M. D., Pitelli, R. A., 2002. Sugar cane (Saccharum spp.) straw interference in emergence of weed species of the Convolvulaceae family. Planta Daninha, 20(2), 207-212. doi: 10.1590/S0100-83582002000200006

Azania, A. A. P. M., Azania, C. A. M., Pavani, M. C. M. D., Cunha, M. C. S., 2003. Dormancy breaking methods in Ipomoea and Merremia seeds. Planta Daninha, 21(2), 203-209. doi: 10.1590/S0100-83582003000200005

Biju SD, Mathew P, 1993. Merremia cissoides (Convolvulaceae): a new record for India. Journal of the Bombay Natural History Society, 90(1):121-122

Bosch CH, 2010. Merremia aegyptia (L.) Urb. PROTA4U web database. Brink M, Achigan-Dako EG, eds. Wageningen, Netherlands: Plant Resources of Tropical Africa.,aegyptia&p=Merremia+aegyptia

Bosser J, Heine H, 2000. 127. Convolvulaceae. (Convolvulacées). In: Bosser J, Cadet T, Guého J, Marais W, eds. Flora of the Mascarene Islands: Reunion, Mauritius, Rodrigues. (Flore des Mascareignes: La Réunion, Maurice, Rodrigues). Mauritius: The Sugar Industry Research Institute, 1-63

Brako, L., Zarucchi, J. L., 1993. Catalogue of the flowering plants and gymnosperms of Peru, 1286 pp.

Broward Parks and Recreation, 2016. Invasive plants in our yards. Oakland Park, Florida, USA: Broward County Parks and Recreation Division.

Burkill, H. M., 1985. The useful plants of West Tropical Africa. Vol. 1. Families A-D, (Ed. 2) : Royal Botanic Gardens.xvi + 960pp.

Campos LH, 2011. [English title not available]. (Aspectos da emergência, crescimento inicial e suscetibilidade a herbicidas utilizados em cana-de-açúcar de Merremia cissoides (Lam.) Hall. f., Neonotonia wrightii (Am.) Lackey e Stizolobium aterrimum Piper & Tracy). Master Thesis. Piracicaba, Brazil: São Paulo University

Campos, L. H. F. de, Carvalho, S. J. P. de, Nicolai, M., Christoffoleti, P. J., 2016. Susceptibility of Merremia cissoides, Neonotonia wightii and Stizolobium aterrimum to the amicarbazone, imazapic and sulfentrazone herbicides. Revista Brasileira de Herbicidas, 15(2), 129-137. doi: 10.7824/rbh.v15i2.444

Campos, L. H. F., Francisco, M. O., Carvalho, S. J. P., Nicolai, M., Christoffoleti, P. J., 2009. Susceptibility of Ipomoea quamoclit, I. triloba and Merremia cissoides to the herbicides sulfentrazone and amicarbazone. Planta Daninha, 27(4), 831-840. doi: 10.1590/S0100-83582009000400022

Carbonari, C. A., Velini, E. D., Silva, J. R. M., Bentivenha, S. R. P., Takahashi, E. N., 2010. Efficacy of the aerial application of the herbicides sulfentrazone and isoxaflutole using clay granules in eucalyptus area. Planta Daninha, 28(1), 207-212. doi: 10.1590/S0100-83582010000100024

Carvalho, F. T. de, Queiroz, J. R. G., Toledo, R. E. B. de, 2011. Efficacy of amicarbazone herbicide in controlling morningglories in sugar cane (Saccharum spp.) crop. Revista Brasileira de Herbicidas, 10(3), 183-189.

Catalogue des Herbiers de Genève, 2016. Conservatoire et Jardin botaniques de la Ville de Genève.

Chang C-E, 1978. 127. Convolvulaceae. In: Li H-L, Liu T-S, Huang T-C, Koyama T, DeVol CE, eds. Flora of Taiwan, Vol. 4. Taiwan, Republic of China: Epoch Publishing Co., 347-389

Correia, N. M., Kronka Júnior, B., 2010. Chemical control of plants of the genera Ipomoea and Merremia in sugarcane. Planta Daninha, 28(Especial), 1143-1152. doi: 10.1590/S0100-83582010000500022

Dave's Garden, 2016. Merremia cissoides. Online resources. California, USA: Internet Brands.

de Sousa, A. B. O., Abud, H. F., Innecco, R., 2010. Dormancy superation seeds of Merremia cissoides (Lam.) Hall. F. Caatinga, 23(2), 1-5.

Deroin T, 2001. 171. Convolvulaceae. In: Morat P, ed. Flora of Madagascar and the Comoros. (Flore de Madagascar et des Comores). Paris, France: Muséum National d'Histoire Naturelle, 11-287

Ferreira PPA, Miotto STS, 2013. The genus Merremia (Convolvulaceae) in Southern Brazil. Rodriguésia, 64(3):635-646

Flores S, Bautista F, 2005. [English title not available]. (Inventario de plantas forrajeras utilizadas por los Mayas en los paisajes geomorfológicos de la Península de Yucatán). In: Bautista F, Palacio G, eds. Caracterización y manejo de los suelos de la Península de Yucatán: implicaciones agropecuarias, forestales y ambientales. Mexico: Universidad Autónoma de Campeche, Universidad Autónoma de Yucatán, 209-219

Gavilanes ML, Brandão M, Laca-Buendia JP, 1988. Weeds in coffee (Coffea arabica L.) plantations in the state of Minas Gerais, Brazil. Acta Botanica Brasilica, 2(1):1-7

Girotto, M., Araldi, R., Velini, E. D., Carbonari, C. A., Gomes, G. L. G. C., Trindade, M. L. B., 2012. Photosynthetic efficiency of sugarcane cultivars and weed species after diuron application. Planta Daninha, 30(3), 599-606. doi: 10.1590/S0100-83582012000300016

Greuter W, Rankin Rodriguez R, Manitz H, 2016. Convolvulaceae. In: Greuter W, Rankin Rodriguez R, eds. The Spermatophyta of Cuba: a preliminary checklist. Part II: Checklist. (Espermatófitos de Cuba: inventario preliminar. Parte II: Inventario). Berlin, Germany: Botanischer Garten und Botanisches Museum Berlin-Dahlem, 98-105

Hoyos FJ, 1985. Flora of Margarita Island, Venezuela. (Flora de la Isla Margarita, Venezuela). Caracas, Venezuela: Sociedad y Fundación La Salle de Ciencias Naturales, 927 pp

Hutchinson, J., Dalziel, J. M., Hepper, F. N., 1963. Flora of West Tropical Africa. Volume II, (2nd ed. (rev.)) : Crown Agents for Oversea Governments and Administrations.xi + 544 pp.

Instituto de Botánica Darwinion, 2016. Catálogo de las plantas vasculares, Flora del Conosur. San Isidro, Argentina: Instituto de Botánica Darwinion.

Jones, A., 1968. Chromosome numbers in Ipomoea and related genera. Journal of Heredity, 59, 99-102.

Keralaplants, 2016. Flowering Plants in Kerala.

Kottaimuthu R, Vasudevan N, 2012. New plant records for Tamil Nadu state, India. Elixir Bio Diversity, 50:10459-10461

Kuva, M. A., Pitelli, R. A., Salgado, T. P., Alves, P. L. C. A., 2007. Phytosociology of weed community in no-burn sugarcane agroecosystems. Planta Daninha, 25(3), 501-511. doi: 10.1590/S0100-83582007000300009

Labonia VDS, 2008. [English title not available]. (Alguns aspectos de germinação e emergência de cinco espécies de plantas daninhas convolvuláceas e suas suscetibilidades a herbicidas quando aplicados sobre palha de cana-de-açúcar). Master Thesis. Piracicaba, Brazil: São Paulo University

Lejoly, J., Lisowski, S., 2001. Merremia cissoides and M. quinquefolia (Convolvulaceae), new synanthropic species for the flora of Benin. Acta Botanica Gallica, 148(2), 151-157.

Maimoni-Rodella, R. C. S., Rodella, R. A., 1986. Floral biology of Merremia cissoides. Naturalia, 11/12, 117-123.

Maimoni-Rodella, R. C. S., Rodella, R. A., 1990. Growth patterns in Merremia cissoides (Lam.) Hall f. (Convolvulaceae). Naturalia (São Paulo), 15, 81-91.

McDonald A, 1993. Convolvulaceae I. In: Sosa V, ed. Flora of Veracruz, Volume 73. (Flora de Veracruz, Fascículo 73). Xalapa, Veracruz, Mexico: Instituto de Ecología A.C., 99 pp

Monquero, P. A., Costa, V. dalla, Krolikowski, V., 2011. Saflufenacil in controlling Luffa aegyptiana, Merremia cissoides, Mucuna aterrima and Ricinus communis. Revista Brasileira de Herbicidas, 10(3), 176-182.

Nicolai, M., Obara, F. E. B., Melo, M. S. C., Souza Júnior, J. A., Cantalice-Souza, R., Christoffoleti, P. J., 2013. Differential susceptibility of the convolvulaceae species to flumioxazin through dose-response curves. Planta Daninha, 31(1), 157-163. doi: 10.1590/S0100-83582013000100017

Oviedo Prieto R, Herrera Oliver P, Caluff MG, et al., 2012. National list of invasive and potentially invasive plants in the Republic of Cuba - 2011. (Lista nacional de especies de plantas invasoras y potencialmente invasoras en la República de Cuba - 2011). Bissea: Boletín sobre Conservación de Plantas del Jardín Botánico Nacional de Cuba, 6(Special Issue 1):22-96

Parreira MC, Pavani MCMD, Alves PLCA, 2009. Fluxo de emergência de Ipomoea nil, (L.) Roth., Ipomoea quamoclit (L.), Merremia cissoides (Lam.) Hall, f. Nucleus, 6(2):83-98

Perim L, Toledo REB, Negrisoli E, Corrêa MR, Carbonari CA, Rossi CVS, Velini ED, 2009. Efficacy of amicarbazone herbicide on post-emergence control in morningglory species (Ipomoea grandifolia and Merremia cissoides). Revista Brasileira de Herbicidas, 8(1):19-26

Powell DA, 1989. Convolvulaceae. In: Howard RA, ed. Flora of the Lesser Antilles, Leeward and Windward Islands, Vol. 6. Jamaica Plain, Massachusetts, USA: Arnold Arboretum of Harvard University, 133-185

Quattrocchi U, 2000. CRC world dictionary of plant names: common names, scientific names, eponyms, synonyms, and etymology, Vol. 3. Boca Raton, Florida, USA: CRC Press, 696 pp

Rahmadani H, 2013. Merremia Dennstedt ex Endlicher (Convolvulaceae) in Sumatra. Master Thesis. Bogor, Indonesia: Bogor Agricultural University

Research Center for Biodiversity, 2016. Database of native plants in Taiwan. Taipei, Taiwan: Herbarium, Research Center for Biodiversity, Academia Sinica.

Reyes, E., Canto, A., Rodríguez, R., 2009. Megacerus species (Coleoptera: Bruchidae) and their host plants in Yucatan. Revista Mexicana de Biodiversidad, 80(3), 875-878.

Simão-Bianchini R, Ferreira PPA, 2016. Merremia cissoides. List of species of the Flora of Brazil. (Lista de espécies da Flora do Brasil). Rio de Janeiro, Brazil: Rio de Janeiro Botanic Garden.

Simoes, A. R., Culham, A., Carine, M., 2015. Resolving the unresolved tribe: a molecular phylogenetic framework for the Merremieae (Convolvulaceae). Botanical Journal of the Linnean Society, 179(3), 374-387. doi: 10.1111/boj.12339

Standley, P. C., Williams, L. O., 1970. Flora of Guatemala: Tubiflorae. Fieldiana: Botany, 24(Part IX 1/2), 1-236.

Staples, G. W., 2010. A checklist of Merremia (Convolvulaceae) in Australasia and the Pacific. Gardens' Bulletin (Singapore), 62(2), 483-522.

Stefanovic S, Austin DF, Olmstead RG, 2003. Classification of Convolvulaceae: a phylogenetic approach. Systematic Botany, 28:791-806

Stevens PF, 2016. Angiosperm Phylogeny Website. St. Louis, Missouri, USA: Missouri Botanical Garden.

Sunshine Seeds, 2016. Merremia cissoides. Ahlen, Germany: Sunshine-Seeds.

Tavella, L. B., Silva, P. S. L., Monteiro, A. L., Oliveira, V. R., Siqueira, P. L. O. F., 2015. Weed control in maize with Gliricidia intercropping. Planta Daninha, 33(2), 249-258. doi: 10.1590/0100-83582015000200010

Timossi, P. C., Durigan, J. C., 2006. Convolvulaceae management in soybean sown directly under sugarcane straw. Planta Daninha, 24(1), 91-98. doi: 10.1590/S0100-83582006000100012

Toledo, R. E. B., Perim, L., Negrisoli, E., Corrêa, M. R., Carbonari, C. A., Rossi, C. V. S., Velini, E. D., 2009. Efficacy of the herbicide amicarbazone applied on straw or soil for weed control in sugar cane. Planta Daninha, 27(2), 319-326. doi: 10.1590/S0100-83582009000200015

USDA-NRCS, 2016. The PLANTS Database. Baton Rouge, USA: National Plant Data Center.

Vargas W, 2012. [English title not available]. (Los bosques secos del Valle del Cauca, Colombia: una aproximación a su flora actual). Biota Colombiana, 13:102-164

Vaughan, R. E., 1937. Contributions to the flora of Mauritius. 1. An account of the naturalized flowering plants recorded from Mauritius since the publication of Baker's' Flora of Mauritius and the Seychelles.' (1887). Journal of the Linnean Society: Botany, 51, 285-308.

Vij, S. P., Satpal Singh, Sachdeva, V. P., 1977. Cytomorphological studies in Convolvulaceae. II. Ipomoea and allied genera. Cytologia, 42(3/4), 451-464. doi: 10.1508/cytologia.42.451

Wood JRI, Simão-Bianchini R, Fuentes AF, 2014. Convolvulaceae. In: Jørgensen PM, Nee MH, Beck SG, eds. Catalogue of vascular plants of Bolivia. (Catálogo de las plantas vasculares de Bolivia). Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, Missouri, USA: Missouri Botanical Garden Press, 520-531.

Wunderlin RP, Hansen BF, Franck AR, Essig FB, 2016. Atlas of Florida Plants. Tampa, Florida, USA: Institute for Systematic Botany, University of South Florida.


Top of page

04/09/16 Original text by: 

Fabiola Areces-Berazain, Herbarium UPRRP, University of Puerto Rico-Río Piedras, San Juan, Puerto Rico, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map