Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Omorgus suberosus
(hide beetle)



Omorgus suberosus (hide beetle)


  • Last modified
  • 15 November 2018
  • Datasheet Type(s)
  • Documented Species
  • Preferred Scientific Name
  • Omorgus suberosus
  • Preferred Common Name
  • hide beetle
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • Omorgussuberosus is a species of hide beetle which is widely distributed throughout its native range of South, Central and North America. In other continents (Africa, Europe and Australia) it is an int...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Omorgus suberosus (hide beetle); adult. Museum set specimen. Origin - Camp Maxey, Paris, Lamar County, Texas, USA. August 2010.
CaptionOmorgus suberosus (hide beetle); adult. Museum set specimen. Origin - Camp Maxey, Paris, Lamar County, Texas, USA. August 2010.
Copyright©Mike Quinn-2010/ - CC BY-ND-NC 1.0
Omorgus suberosus (hide beetle); adult. Museum set specimen. Origin - Camp Maxey, Paris, Lamar County, Texas, USA. August 2010.
AdultOmorgus suberosus (hide beetle); adult. Museum set specimen. Origin - Camp Maxey, Paris, Lamar County, Texas, USA. August 2010.©Mike Quinn-2010/ - CC BY-ND-NC 1.0
Omorgus suberosus (hide beetle); adult. Museum set specimen. Note scale. USA.
CaptionOmorgus suberosus (hide beetle); adult. Museum set specimen. Note scale. USA.
Copyright©Emmy Engasser/Hawaiian Scarab ID/USDA APHIS ITP/ - CC BY-NC 3.0 US
Omorgus suberosus (hide beetle); adult. Museum set specimen. Note scale. USA.
AdultOmorgus suberosus (hide beetle); adult. Museum set specimen. Note scale. USA.©Emmy Engasser/Hawaiian Scarab ID/USDA APHIS ITP/ - CC BY-NC 3.0 US
Omorgus suberosus (hide beetle); adult. Museum set specimen. Note scale. USA.
CaptionOmorgus suberosus (hide beetle); adult. Museum set specimen. Note scale. USA.
Copyright©Emmy Engasser/Hawaiian Scarab ID/USDA APHIS ITP/ - CC BY-NC 3.0 US
Omorgus suberosus (hide beetle); adult. Museum set specimen. Note scale. USA.
AdultOmorgus suberosus (hide beetle); adult. Museum set specimen. Note scale. USA.©Emmy Engasser/Hawaiian Scarab ID/USDA APHIS ITP/ - CC BY-NC 3.0 US
Omorgus suberosus (hide beetle); larva feeding on an egg of Lepidochelys olivacea (olive ridley sea turtle). La Escobilla Beach, Oaxaca, Mexico.
CaptionOmorgus suberosus (hide beetle); larva feeding on an egg of Lepidochelys olivacea (olive ridley sea turtle). La Escobilla Beach, Oaxaca, Mexico.
Copyright© - CC BY 4.0
Omorgus suberosus (hide beetle); larva feeding on an egg of Lepidochelys olivacea (olive ridley sea turtle). La Escobilla Beach, Oaxaca, Mexico.
LarvaOmorgus suberosus (hide beetle); larva feeding on an egg of Lepidochelys olivacea (olive ridley sea turtle). La Escobilla Beach, Oaxaca, Mexico.© - CC BY 4.0
Omorgus suberosus (hide beetle); adult feeding on fresh scat, probably coyote (Canis latrans). USA.
CaptionOmorgus suberosus (hide beetle); adult feeding on fresh scat, probably coyote (Canis latrans). USA.
Copyright©Whitney Cranshaw/Colorado State University/ - CC BY 3.0 US
Omorgus suberosus (hide beetle); adult feeding on fresh scat, probably coyote (Canis latrans). USA.
AdultOmorgus suberosus (hide beetle); adult feeding on fresh scat, probably coyote (Canis latrans). USA.©Whitney Cranshaw/Colorado State University/ - CC BY 3.0 US


Top of page

Preferred Scientific Name

  • Omorgus suberosus (Fabricius, 1775)

Preferred Common Name

  • hide beetle

Other Scientific Names

  • Omorgus punctatus LeConte, 1854
  • Omorgus triestinae Pittino, 1987
  • Trox alternatus Say, 1835
  • Trox crenatus Olivier, 1789
  • Trox denticulatus Palisot de Beauvois, 1805
  • Trox gibbus Olivier, 1789
  • Trox manilensis Schultze, 1916
  • Trox nobilis Wollaston, 1867
  • Trox novaecaledoniae Balthasar, 1966
  • Trox ovatus Palisot de Beauvois, 1805
  • Trox suberosus Fabricius, 1775
  • Trox torressalai Baguena, 1959
  • Trox tricolor Blackburn, 1904
  • Trox tuberosus Castelnau, 1840

International Common Names

  • English: skin beetle

Summary of Invasiveness

Top of page

Omorgussuberosus is a species of hide beetle which is widely distributed throughout its native range of South, Central and North America. In other continents (Africa, Europe and Australia) it is an introduced species. Although it has spread remarkably fast, the reasons for its successful invasion of new habitats remain unclear. There is little information regarding its feeding habits but it is probably a generalist, potentially making it adaptable to new environments. Both adults and larvae have been reported eating feathers, fur, and skin. It has been reported (both adults and larvae) as a common species in the litter accumulated below chicken cages in chicken farms. O. suberosus has been reported to enter nests of the threatened olive ridley sea turtle (Lepidochelys olivacea) (e.g. Ostional Beach, Costa Rica; La Escobilla, México) as well as the nests of other threatened sea turtle species, such as green sea turtle (Chelonia mydas). O. suberosus has been considered a pest of turtle eggs, however it is not yet known whether it affects the survival of turtles.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Coleoptera
  •                         Family: Trogidae
  •                             Genus: Omorgus
  •                                 Species: Omorgus suberosus

Notes on Taxonomy and Nomenclature

Top of page

“Carcass beetles” is the general name to family Trogidae which consists of two subfamilies, Omorginae and Troginae, the former with two genera, Omorgus and Polynoncus, and the latter with two genera, Trox and Phoberus (Strümpher, 2015).

The first native South American trogid to be described was Omorgus suberosus (Fabricius) (under Trox) in 1775. Synonyms include: Trox suberosus Fabricius, 1775; Trox (Omorgus) suberosus Burmeister, 1876 (Scholtz, 1982); Omorgus suberosus Baker, 1968 (Scholtz, 1986a); Omorgus triestinae Pittino, 1987. syn. nov (Scholtz, 1990). The species described by Pittino (1987) as O. triestinae but it is, without doubt, O. suberosusScholtz (1990). For world literature and synonyms see Scholtz (1982).

Scholtz (1986) published a phylogenetic analysis that clarified the family limits, redefined the genera Trox and divided two of them into subgenera - Trox into Trox s. str. and Phoberus MacLeay, and Omorgus into Omorgus s. str., Haroldomorgus (subgen. nov.) and Afromorgus (subgen. nov.). Afromorgus is hereby maintained in Scholtz’s sense, as a subgenus of Omorgus (Zidek, 2013).

For more taxonomic information on O. suberosus see (Strümpher et al., 2014a,b; 2015; 2016).


Top of page

Larve: The larvae are long (8-23 mm), greyish white with brown head and large jaws (Allgower, 1979).

Although Deloya (2005) and Evans (2014) attempt to describe the morphology of adult O. suberosus, undoubtedly the most complete description is provided by Scholtz (1990):

Adult re-description. Size: length Il.5-15.0 mm, width 6.5-8.0 mm.

Head: clypeus triangular, pointed, slightly deflexed; surface of clypeus and frons punctate; frons with 2 distinct median tubercles; antennal scape roundly pointed, with fulvous setae; scape approximately half total length of antenna; club fulvous.

Pronotum: surface punctate; sides narrow, lateral margins slightly sinuate, with an incision anterior of the basal corner; margins slightly attenuated anteriorly; median discal area evenly rounded, without distinct ridges and tubercles; basal angle rounded.

Elytra: humeral calli large; sides narrow; lateral margins smooth, with dense short setae; sutural margin with raised continuous ridge without tubercles but with regularly spaced nitid areas and short setae; even-numbered costae broad, slightly raised ridges, without tubercles but with regularly spaced nitid areas and short setae; odd-numbered costae barely raised continuous areas, sometimes with smaller nitid areas; intercostae with distinct punctures; elytral profile convex, attaining maximum height approximately in the middle (Scholtz, 1990).

The O. suberosus eggs and larvae are easily found due to their white and cream colouring which contrasts with the substrate.


Top of page

O. suberosus occurs in the New World as a native species, from southern South America to Canada (although its introduced/native status in Canada is uncertain). It is a relatively widespread species in Mexico (see Deloya (2000) for detailed distribution information), California (USA) (GBIF, 2016), Texas (USA) (GBIF, 2016), Costa Rica (GBIF, 2016), Argentina (Sholtz, 1990), Bolivia (Sholtz, 1990), Brazil (Sholtz, 1990) and the Galapagos Islands (Ecuador) (Sholtz, 1990). Pieces of O. suberosus have been found AC-200 DC in the cave La Chigüera in Ticuman, Morelos México (Muñiz Vélez, 2001).

It occurs as an introduced species on islands in the Pacific (Fiji, New Caledonia) (Scholtz, 1990) and Atlantic (Cape Verde, Canary Islands) (Ziani et al., 2015), and various mainland countries in Africa, Oceania, and Europe, although its native/introduced status in Spain is uncertain (Vaurie, 1962; Scholtz, 1982; Batet & López-Colón, 1995; Coello & Baena, 2008; Zídek, 2013).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


Cape VerdePresentLandin, 1963; Ziani et al., 2015
MoroccoLocalisedZiani et al., 2015Salé, Rabat airport
-Canary IslandsPresentZiani et al., 2015Fuerteventura, Costa Calma

North America

CanadaPresentScholtz, 1990
MexicoWidespreadNativeDeloya, 2000; Muñiz Vélez, 2001; GBIF, 2016Baja California Sur, Chiapas, Coahuila, Colima, Guerrero, Jalisco, Michoacán, Nayarit, Nuevo León, Oaxaca, Puebla, Sonora, Tamaulipas, Veracruz, Yucatán
USAPresentPresent based on regional distribution.
-AlabamaLocalisedNative Not invasive GBIF, 2016Sheffield
-ArizonaLocalisedNative Not invasive GBIF, 2016Estrella Mountain Park, Madera Canyon, Tucson
-CaliforniaWidespreadNative Not invasive GBIF, 2016Tujunga, Blythe, Riverside, Indio, Cajon Pass, Alpine, Carlsbad, Cajon Wash, Moorpark, Del Mar, Pittsburg, Santa Margarita Ranch, Bakersfield, San Jacinto, Carolina del Sur (Clemson), Carolina del Norte (Junction)
-ColoradoPresentNative Not invasive GBIF, 2016
-FloridaLocalisedNative Not invasive GBIF, 2016Titusville
-GeorgiaLocalisedNative Not invasive GBIF, 2016Goose Island State Park
-KansasLocalisedNative Not invasive GBIF, 2016Greensburg, Lawrence vicinity, Keith Sebelius Reservoir, Elk City State Park
-MinnesotaLocalisedNative Not invasive GBIF, 2016Proctor
-MissouriLocalisedNative Not invasive GBIF, 2016Frontenac
-NebraskaLocalisedNative Not invasive GBIF, 2016Lincoln
-New MexicoLocalisedNative Not invasive GBIF, 2016Hobbs
-TexasWidespreadNative Not invasive GBIF, 2016Stephenville, Taylor, Welder Wildlife Refuge, San Antonio, Houston, Texas Experiment Station, Lake Tanglewood, Boerne, Davis Mountains State Park, Carrizo Springs, Monahans Sand Hills State Park, College Station, Kerrville, Presidio, Inks Lake State Park, La Feria, Caprock, Fabens, Corpus Christi, Laredo, Balmorhea, San Ygnacio, Fort Davis, Davis Mountains Resort, Seminole Canyon State Park, Sonora, Goldthwaite, Nacogdoches, Tyler State Park, Bentsen Rio Grande Valley State Park, Clint, Lajitas, Lake Casa Blanca State Park, Big Bend Ranch State Natural Area, Langes Mill Rd, Shafter, Cuero, Martin Dies Jr. State Park, Falfurrias, Donie, New Baden, Hawkins, Red Oak, Muleshoe, Brownsville
-WisconsinPresentNative Not invasive GBIF, 2016Hainesville, Comstock

Central America and Caribbean

Costa RicaWidespreadNative Not invasive GBIF, 2016Guanacaste (Playa Naranjo, Nacaome, Bagaces, Estación Biológica, Maritza), San José (San Lorenzo), Nicoya (Nandayure), Upala, Guanacaste (Liberia), Punta Arenas (Coto Brus), San José (Brasil de Alajuela)
Dominican RepublicLocalisedGBIF, 2016Santo Domingo (La Trinidad)
NicaraguaPresentNative Not invasive GBIF, 2016León. Masaya (Las Flores)

South America

ArgentinaWidespreadNative Not invasive Scholtz, 1990; Diéguez and Gómez, 2004; Gomez, 2005Buenos Aires, Chaco, Córdoba, La Pampa, La Rioja, Mendoza, Salta, Santiago de Estero, Tucumán
BoliviaWidespreadNative Not invasive Scholtz, 1990Bahia Negro, Buena vista, Carandaiti, Chugisaca, La Paz (Yungas de la Paz), Santa Cruz, Tugüipa
BrazilPresentPresent based on regional distribution.
-AmazonasLocalisedNative Not invasive Scholtz, 1990Manaus, Para
-BahiaPresentNative Not invasive Scholtz, 1990
-Espirito SantoPresentNative Not invasive Scholtz, 1990
-Mato GrossoLocalisedNative Not invasive Scholtz, 1990Barra, Porto Velho, Santa Teresinha
-Mato Grosso do SulLocalisedNative Not invasive Correa et al., 2013Aquidauana (between the Pantanal and the Cerrado ecosystems) 20°28’15"S, 55°47’13"W
-Minas GeraisLocalisedNative Not invasive Scholtz, 1990Aquas vermelhas, Vicosa
-ParanaLocalisedNative Not invasive Scholtz, 1990; Santos, 2014Ipiranga
-PernambucoPresentNative Not invasive Scholtz, 1990
-Rio de JaneiroLocalisedNative Not invasive Scholtz, 1990Itatiaia
-Sao PauloLocalisedNative Not invasive Scholtz, 1990; Gianizella and Prado, 1999; Lópes et al., 2007Atibaia, Campinas, Granja Capuavinha, Monte Mor, São João de Boa Vista. Granja Crisdan
ChilePresentNative Not invasive Scholtz, 1990El Salvador
ColombiaPresentNative Not invasive Scholtz, 1990Atlántico (Barranquilla), Cundinamarca (Bogotá), Guajira, Magdalena (Santa Marta), Norte de Santander (Cúcuta), Valledupar (Cesar)
EcuadorLocalisedNative Not invasive Vaurie, 1962; Scholtz, 1990; Zídek, 2013Guayas (Guayaquil), Provincia de Manabi (Manta)
-Galapagos IslandsWidespreadNativeVaurie, 1962; Scholtz, 1990; Zídek, 2013Isla Isabela, Isla Pinta, Isla San Cristóbal, Isla San Salvador, Isla Santa Cruz, Isla Santa María
ParaguayLocalisedNative Not invasive Scholtz, 1990Asunción (Colón)
PeruPresentNative Not invasive Scholtz, 1990Cartago, Lima, Trujillo, Tumbes, Valle Chicama
UruguayLocalisedNative Not invasive Scholtz, 1990Montevideo (Las Pedras), Paysandú, Rocha (Lazcano)
VenezuelaLocalisedNative Not invasive Scholtz, 1990Distrito Capital (Caracas), Monagas (Maturin), Táchira (San Cristóbal)


BelgiumPresent only under cover/indoorsIntroducedVaurie, 1962
Czech RepublicPresent, few occurrencesIntroducedBatet and López-Colón, 1995
SpainLocalisedCoello and Baena, 2008Cádiz: Navero (Finca el Lanchar y San Fernando), San José del Valle, Chiclana de la Frontera (Laguna la Paja)


AustraliaPresentIntroducedScholtz, 1990; Zídek, 2013
-New South WalesPresentGBIF, 2016Sydney
-QueenslandPresentGBIF, 2016Warwick, Cairns
-Western AustraliaPresentGBIF, 2016Kojonup
FijiPresentIntroducedScholtz, 1990; Zídek, 2013
New CaledoniaPresentIntroducedScholtz, 1990; Zídek, 2013

History of Introduction and Spread

Top of page

The first native South American trogid to be described was O. suberosus (Fabricius) (under Trox) in 1775 (Scholtz, 1990).

Historical records regarding its introduction and spread are lacking since due to the scarceness of knowledge about the biology of this beetle. However, it was reported to have been transported via shipments of wool from Buenos Aires to the factories in Belgium (Vaurie, 1962) and to have been introduced by people to Australia (Ziani et al., 2015) and the Czech Republic (Batet & López-Colón, 1995).

Reported in the Iberian Peninsula since 1955 by Báguena, who described it as Omorgus torressalai. Repeated catches of the species since it was first found in Spain and the large number of specimens collected show that the species reproduces continuously in Spain.


Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
Belgium Argentina   Harvesting fur, wool or hair (pathway cause)Vaurie (1962)

Risk of Introduction

Top of page

O. suberosus is thought to have been transported accidentally via trade of non-food animal products such as wool.

O. suberosus has been reported eating live eggs of a threatened turtle, Lepidochelys olivacea, on the beach of La Escobilla (Oaxaca, Mexico). If the beetle is introduced to other nesting sites of threatened turtles, and further studies deem it a significant threat to turtle survival, it could have serious impacts.


Top of page

O. suberosus occupies a wide range of ecosystems, from tropical lowlands to the highlands of the mountains. It is common in dry areas both in forested areas and in open areas.

Habitat List

Top of page
Terrestrial ‑ Natural / Semi-naturalNatural grasslands Present, no further details Natural
Coastal areas Principal habitat Harmful (pest or invasive)

Biology and Ecology

Top of page

Reproductive Behaviour

Each female lays a maximum of four eggs (Baena et al., 2015) which they bury to a depth of about 15-25 cm adjacent to a food source (e.g. turtle eggs).

On emergence, the larvae feed on the animal remains and stay buried until the adult stage when they move to the soil’s surface to mate (Romero Samper and Martín Piera, 1990; Zunino, 1991).

Population Size and Structure

There is no information on the factors that influence population growth in areas of mass nesting turtles. The large amount of food available (e.g. organic matter) in the nesting areas appears to contribute to population increase.

When O. suberosus eggs are associated to turtle eggs all stages of its immature phase can be found buried in sand.


The complete life cycle of O. suberosus in a lab (temperature: 28°C, relative humidity: 75%, illumination: 12 h light/day) lasts a mean of 51.7 days (min. = 35, max. = 71). Mean duration (± SE) of each development stage is: egg to 1st instar larva: 5.6 ± 3.7, 1st to 2nd instar larva: 7.3 ± 4.5, 2nd to 3rd instar larva: 10.0 ± 4.2, 3rd instar larva to pupa: 15.0 ± 4.0 and from pupa to first adult: 13.8 ± 2.2 days (Baena et al., 2015). These three larval stages with a duration of four weeks and a pupal period of two weeks, match Scholtz (1990).


The scavenger feeding habit of O. suberosus (Muñiz Vélez, 2001) has been crucial for the collection of these beetles. There is little information regarding the feeding habits of this species, but in the study of Correa et al., (2013), O. suberosus was sampled in traps baited with carrion, cow dung, human feces and pig manure, indicating a probable generalist feeding habit. Previously, Gómez (2005) sampled O. suberosus in the woodlands of Argentina using traps baited with rotten meat and human faeces, and in Brazil this species it was found on poultry manure (Gianizella and Prado, 1999).

The adults and larvae of O. suberosus are normally necro-saprophagous in habit, consuming feathers, hair, skin and bone in the final stages of decomposition (Vaurie, 1955, 1962; Payne, 1965; Lumaret, 1983; Gómez, 2005, Correa et al., 2013). On finding food, female beetles bury themselves in the soil and oviposit close to the food source. On emergence, the larvae feed on the animal remains and stay buried until the adult stage when they move to the soil’s surface to mate (Romero Samper and Martín Piera, 1990; Zunino, 1991).

A wide ranging diet is a characteristic involved in the invasion success of beetles (e.g. Antunes-Carvalho and Lopes-Andrade, 2013). Hence the hypothesis that O. suberosus probably has generalist feeding habits and has the ability to explore a range of food resources. This could result in these beetles colonizing new habitats. However, this information is still scarce for O. suberosus and most of Omorgus species.


O. suberosus is associated with some species of mites, such as: Acaridae sp., Acarusfarris, Bakerdania sp., Calvolia sp., Elattoma sp., Glyptholaspis confuse, Histiostoma sp., Holostaspella bifoliata, Stylochirus sp., Macrocheles merdarius, Macrocheles robustulus, Macrocheles sp., Pygmephoridae sp., Rhodacaroidea sp., Sancassania sp., Sicilipes troxi, Stylochirus n. sp., Tyrophagus putrescentiae, Uropodina spp., .Uroseius sp. (Philips, 2009).

Environmental Requirements

O. suberosus is a species exclusive to open habitats and dry environments (Santos, 2014).


Top of page
Af - Tropical rainforest climate Preferred > 60mm precipitation per month
Aw - Tropical wet and dry savanna climate Preferred < 60mm precipitation driest month (in winter) and < (100 - [total annual precipitation{mm}/25])
BS - Steppe climate Preferred > 430mm and < 860mm annual precipitation
BW - Desert climate Preferred < 430mm annual precipitation
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)

Notes on Natural Enemies

Top of page

In Playa La Escobilla (Oaxaca, Mexico), O. suberosus is predated by crabs from the Ocypodidae Family (Ortmann, 1894) (López and Aragón, 1994). It is also depredated upon by birds of the species Cathartes aura (Linnaeus, 1758) and Coragyps atratus (Bechstein, 1793). These birds eat large amounts of beetles that are defecated almost untouched (Rosano-Hernández et al., 1996).

Means of Movement and Dispersal

Top of page

Information on movement and dispersal is scarce.

Natural Dispersal


Accidental Introduction

Introduced in non-food animal products (wool).

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Harvesting fur, wool or hair Yes Yes Vaurie, 1962

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Containers and packaging - wood Yes Vaurie, 1962

Impact Summary

Top of page
Environment (generally) Negative

Impact: Environmental

Top of page

Impact on Habitat

The scarce knowledge about the biology of these beetles has hindered studies on the ecology of this species and its potential impact on native fauna (Antunes-Carvalho and Lopes-Andrade, 2013).

Impact on Biodiversity

O. suberosus has been reported to enter the nests of sea turtles in the Pacific (Allgower, 1979; Rosano-Hernandez and Deloya, 2002; Baena et al., 2015), to depredate iguana (Conolophus subcristatus) eggs in the Galapagos Islands (Allgower, 1979; Rosano-Hernandez and Deloya, 2002) and to predate on eggs of the migratory locust Schistocerca paranensis in Argentina (Ritchert, 1958).

In the last fifteen years, a high abundance (ca. seven million) of O. suberosus has been recorded on La Escobilla beach, Oaxaca (Mexico), one of the most important nesting and foraging areas for the threatened olive ridley turtle (Lepidochelys olivacea) (Plotkin et al., 1997), listed as Endangered by the US ESA and Vulnerable by the IUCN. This high abundance, plus the presence of adults and larvae in turtle eggs, is a great concern since this beetle’s presence can be a risk factor for the survival of this species of turtle. The presence and permanence of this beetle species in this protected area has been linked to the large amount of organic matter available on the beach (Baena et al., 2015).

Given that both the larvae and adult beetles consume eggs, any stage could interrupt the incubation period of the turtle eggs on La Escobilla. The simultaneous presence of all developmental stages observed in both the field and the laboratory confirms that O. suberosus quickly develops to maturity and this allows us to infer that several generations overlap throughout the year on La Escobilla. The rapid development of these beetles raises the possibility of a rapid response in local beetle populations to the temporal dynamics of sea turtles when they arrive in large numbers (Baena et al., 2015).

To find out the impact of the beetle on turtle eggs, a laboratory experiment was carried out to demonstrate the likelihood of damage to the eggs of L. olivacea (Baena et al., 2015). Turtle eggs were presented in three conditions: alive, dead and a mixture of both (living and dead). This experiment showed that under laboratory conditions, the beetles quickly damaged both dead eggs and a mixture of live and dead eggs, but were found to consume live eggs more slowly. This suggests that O. suberosus may be recycling organic material. However, its consumption of live eggs may be sufficient in some cases to interrupt the incubation period of the turtles. While it is thought that O. suberosus on La Escobilla beach could increase the mortality of L. olivaceae embryos and hatchings (Rosano-Hernandez and Deloya, 2002; Ocana et al., 2012), there is no evidence to date of this beetle affecting the survival of this turtle’s young (Baena et al., 2015). To demonstrate that O. suberosus has a significant impact on the eggs of this species of turtle, other studies should be made. There is not yet any evidence that O. suberosus affects the survival of L. olivacea young.

O. suberosus has also been reported to enter nests of L. olivacea on other beaches in the Pacific, such as Ostional Beach in Costa Rica, and to enter the nests of other species of sea turtle, such as Galapagos green turtle (Chelonia mydas agassizi)(Allgower, 1979; Rosano-Hernandez and Deloya, 2002).

Risk and Impact Factors

Top of page Invasiveness
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Capable of securing and ingesting a wide range of food
  • Highly mobile locally
  • Gregarious
Impact outcomes
  • Threat to/ loss of endangered species
  • Threat to/ loss of native species
Impact mechanisms
  • Predation
  • Rapid growth


Top of page

O. suberosus can be used to detect potential corpse movement between habitats; this practice is expanding in forensic research (Caballero and León-Cortés, 2014).

Similarities to Other Species/Conditions

Top of page

Omorgus indigenus, the only Omorgus known from Espaniola Island, Ecuador, is similar to the ubiquitous O. suberosus but it can be distinguished by the following combination of characters; wide attenuating pronotal sides, and costate elytra without nitid areas. O. suberosus is characterized by narrow, virtually parallel pronotal sides, barely ridged elytral costae with very distinctive nitid areas. The name of indigenus is derived from the Latin for “native” (Scholtz, 1990).

On the other hand, Omorgus persuberosus (before known as Trox persuberosus, Scholtz, 1986) is very similar to the smaller O. suberosus but from which it can be most reliably distinguished by the presence of a glabrous area on the inner ventral surface of the mesotibia in O. persuberosus - this is always indument coated in O. suberosus. Males of the two species can easily be distinguished by the distinctive genitalia and by, in O. persuberosus, a subapical setal fringe on the metatibia (Scholtz, 1990).

Gaps in Knowledge/Research Needs

Top of page

Since O. suberosus could be one of the factors that cause mortality in the olive ridley turtle eggs (Lepidochelis olivacea), future research in needed on: 1) determining whether O. suberosus is present on other large nesting beaches along the coast of Pacific, Indian and Atlantic oceans, and gaining a regional overview of this marine turtle’s geographic distribution, 2) documenting the local fluctuations in beetle abundance during each nesting season, 3) behaviour studies, comparing the reproductive patterns of the beetle with L. olivacea arrival events - aspects that are of great interest given that the mating and reproductive strategies of these insects are still unknown and may be influenced by resource availability, and 4) evaluate the magnitude of the damage caused by the beetle to the turtle eggs in areas with different nesting densities.

These proposals require the concerted efforts of the authorities and research institutions, including NGOs interested in the conservation and management of L. olivacea. The information obtained from several beaches would allow for the timely implementation of suitable methods for controlling populations of O. suberosus if necessary (Baena et al., 2015).


Top of page

Abreu-Grobois A; Plotkin PT, 2008. Lepidochelys olivacea. The IUCN Red List of Threatened Species. IUCN.

Allgower K, 1979. Effect of the scarab bettle Trox suberosus on the hatching success of the east Pacifico green turtle Chelonia mydas agassizi in the Galapagos Islands. Inf. Ann Estac. Ci Ch Darwin Santa Cruz. 152-154.

Antunes-Carvalho C; Lopes-Andrade C, 2013. Two invaders instead of one: the true identity of species under the name Ceracis cucullatus (Coleoptera: Ciidae). PloS one, 8(8):e72319.

Baena ML; Escobar F; Halffter G; García-Chávez JH, 2015. Distribution and feeding behavior of Omorgus suberosus (Coleoptera: Trogidae) in Lepidochelys olivacea turtle nests. PLoS ONE, 10(9):e0139538.

Baker CW, 1968. Larval taxonomy of the Troginae in North America with notes on biologies and life histories (Coleoptera: Scarabaeidae). Bulletin of the US National Museum, 279:1-79.

Batet JM; López-Colón JI, 1995. The first report of Omorgus suberosus (Fabricius, 1775) (Coleoptera, Trogidae) in Central Europe. (Primer registro centroeuropeo de Omorgus suberosus (Fabricius, 1775) (Coleoptera, Trogidae).) Nouvelle Revue d'Entomologie, 12(4):279.

Bechstein JM, 1793. Realistic images of natural history objects: for parents, tutor, youth teachers, educators and lovers of natural history (Getreue Abbildungen naturhistorischer Gegenstande: fur Eltern, Hofmeister, Jugendlehrer, Erzieher und Liebhaber der Naturgeschichte). Erstes Hundert, Text. Schneider & Weigel.

Burmeister HCC, 1876. The Argentine species of the genus Trox F. (Die argentinischen Arten der Gattung Trox F.) Stettiner Entomologische Zeitung, 37:241-268.

Caballero U; León-Cortés JL, 2014. Beetle succession and diversity between clothed sun-exposed and shaded pig carrion in a tropical dry forest landscape in Southern Mexico. Forensic Science International, 245:143-150.

Coello P; Baena M, 2008. New data on trogidos of Spain (Coleoptera, Scarabaeoidea, Trogidae). (Nuevos datos sobre trogidos de Espana (Coleoptera, Scarabaeoidea, Trogidae).) Boletin de la Sociedad Entomologica Aragonesa, 42:193-196.

Correa CMA; Puker A; Korasaki V; Ferreira KR, 2013. Omorgus suberosus and Polynoncus bifurcatus (Coleoptera: Scarabaeoidea: Trogidae) in exotic and native environments of Brazil. Zoologia, 30(2):238-241.

Deloya C, 2000. Distribution of the family Trogidae in Mexico (Coleoptera Lamellicornia). (Distribucion de la familia Trogidae en Mexico (Coleoptera Lamellicornia).) Acta Zoologica Mexicana, No.81:63-76.

Deloya C, 2005. Omorgus rodriguezae, especie nueva de Mexico y clave para separar las especies del genero para Centro y Norteamerica. (Omorgus rodriguezae, new species of Mexico and key to separate the species of the genus for Central and North America.) Folia Entomologica Mexicana, 44(1):121-129.

Diéguez VM; Gómez RS, 2004. Contribution to the knowledge of the Trogidae (Coleoptera ) of Argentina. (Aporte al conocimiento de las Trogidae (Coleoptera) de la Argentina.) Revista de la Sociedad Entomologica Argentina, 63(1-2):92-95.

Evans AV, 2014. Beetles of Eastern North America. Princeton, New Jersey, USA: Princeton University Press, 560 pp.

Fabricius JC, 1775. Systema Entomologiae sistens Insectorum Classes, Ordines, Genera, Species adiectis Synonymis, Locis, Descriptionibus, Observationibus ([English title not available]). Officina Libraria Kortii: Flensburgi et Lipsiae, 832 pp.

GBIF, 2016. Global Biodiversity Information Facility.

Gianizella SL; Prado AP, 1999. Occurrence and seasonality Omorgus (Omorgus) suberosus (Fabr.) (Trogidae:Coleoptera) in manure laying birds in Monte Mor, SP. (Ocorrencia e sazonalidade de Omorgus (Omorgus) suberosus (Fabr.) (Trogidae: Coleoptera) em esterco de aves poedeiras, em Monte Mor, SP.) Anais-Sociedade Entomologica Do Brasil, 28(4):749-752.

Gomez RS, 2005. Attractiveness of different baits on Trogidos (Coleoptera) in the native forest "El Espinal" Rio Cuarto (Cordoba, Argentina). (Atractividad de diferentes cebos sobre Trogidos (Coleoptera) en el Bosque Autoctono "El Espinal", Rio Cuarto (Cordoba, Argentina).) Revista de la Sociedad Entomologica Argentina, 64:103-105.

Huchet JB; Greenberg B, 2010. Flies, Mochicas and burial practices: a case study from Huaca de la Luna, Peru. Journal of Archaeological Science, 37(11):2846-2856.

Landin BO, 1963. The Lamellicorn Beetles of the Cape Verde Islands with some biogeographical aspects. Commentationes Biologicae, 26(2):1-27.

Linnaeus C, 1758. Systema Naturae, 10th edition. Salvii: Holmiae (Salvius), 824 pp.

Lópes WDZ; Costa F; Lópes WCZ; Balieiro JDC; Soares VE; Prado ÂD, 2007. Omorgus (Omorgus) suberosus (Fabricius) (Coleoptera: Trogidae) em esterco de galinhas poedeiras de São João da Boa Vista, SP, Brasil. Arquivos do Instituto Biológico, 74(3):227-232

López R; Aragón R, 1994. Program research and conservation of sea turtles. Final report of activities during the nesting season of the olive ridley torguga 1992-3 (Lepidochelys olivacea) on the beach brush, Tonameca, Pochutla. (Programa de investigacion y conservacion de las tortugas marinas. Informe final de las actividades durante la temporada de anidacion 1992-3 de la torguga golfina (Lepidochelys olivacea) en la playa La Escobilla, Tonameca, Pochutla.) Autonomous University "Benito Juarez of Oaxaca" - Academic Secretary, 57 pp.

Lumaret JP, 1983. Nesting Trox (Col, Scarabaeoidea, trogidae). (La nidification des Trox (Col, Scarabaeoidea, Trogidae).) Bulletin-Societe Entomologique de France, 88:594-596.

Marquez MR, 1990. FAO Species Catalogue. Sea turtles of the World. An annotated and illustrated catalogue of sea turtle species known to date. FAO Fisheries Synopsis, 125(11). 81 pp.

Muñiz Vélez R, 2001. Remains of ancient insects recovered in the cave "La Chaguera" state of Morelos, Mexico. (Restos de insectos antiguos recuperados en la cueva "La Chaguera" del Estado de Morelos, Mexico.) Acta Zoologica Mexicana, 083:115-125.

Ocana M; Harfush-Melendez M; Heppell SS, 2012. Mass nesting of olive ridley sea turtles Lepidochelys olivacea at La Escobilla, Mexico: linking nest density and rates of destruction. Endangered Species Research, 16(1):45-54.

Ortmann AE, 1894. Crustacean (Crustaceen). Jena, G. Fischer, 108 pp.

Payne JA, 1965. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology, 46(5):592-602.

Philips JR, 2009. The mite (Acarina) fauna of trogid beetles (Coleoptera: Trogidae). International Journal of Acarology, 35(1):1-17.

Pittino R, 1987. New Coleoptera Trogidae from South America (XXXII contribution to the knowledge of Coleoptera Scarabaeoidea). Giornale Italiano di Entomologia, 3(17):377-397.

Plotkin PT; Rostal DC; Byles RA; Owens DW, 1997. Reproductive and developmental synchrony in female Lepidochelys olivacea. Journal of Herpetology, 31:17-22.

Ritchert PO, 1958. Biology of Scarabaeidae. Annual Review of Entomology, 3. 311-334.

Romero Samper J; Martin Piera F, 1990. Reproductive behaviour of Trox perlatus hispanicus Harold, 18872 and Trox hispidus (Pontoppidan, 1763) (Coleoptera: Scarabaeidae). (Comportamiento reproductor de Trox perlatus hispanicus Harold, 18872 y Trox hispidus (Pontoppidan, 1763) (Coleoptera: Scarabaeoidea).) Elytron, 4:101-109.

Rosano-Hernandez M; Argueta-Valadez T; Frazier J, 1996. Resumen Memorias 1er encuentro Regional de Investigacion y Desarrollo Costero. Guerrero, Oaxaca y Chiapas, Mexico 4 pp.

Rosano-Hernandez M; Deloya C, 2002. Interaction between Trogidos (Coleoptera: Trogidae) and sea turtles (Reptilia: Cheloniidae) in the Mexican Pacific. (Interaccion entre Trogidos (Coleoptera:Trogidae) y tortugas marinas (Reptilia:Cheloniidae) en el Pacifico Mexicano.) Acta Zoologica Mexicana (n. s), 87:29-46.

Santos WE, 2014. Role of beetles (Insecta, Coleoptera) in Forensic Entomology. (Papel dos besouros (Insecta, Coleoptera) na Entomologia Forense.) Revista Brasileira de Criminalistica, 3(2):36-40.

Scholtz CH, 1982. Catalogue of world Trogidae (Coleoptera: Scarabaeoidea). Entomology Memoirs, Department of Agriculture and Fisheries, Republic of South Africa, No. 54. iii + 27 pp.

Scholtz CH, 1986. Phylogeny and systematics of the Trogidae (Coleoptera: Scarabaeoidea). Systematic Entomology, 11(3):355-363.

Scholtz CH, 1990. Revision of the Trogidae of South America (Coleoptera: Scarabaeoidea). Journal of Natural History, 24(6):1391-1456.

Strümpher WP; Farrell J; Scholtz CH, 2014. Trogidae (Coleoptera: Scarabaeoidea) in forensic entomology: occurrence of known and new species in Queensland, Australia. Austral Entomology, 53(4):368-372.

Strümpher WP; Sole CL; Villet MH; Scholtz CH, 2014. Phylogeny of the family Trogidae (Coleoptera: Scarabaeoidea) inferred from mitochondrial and nuclear ribosomal DNA sequence data. Systematic Entomology, 39(3):548-562.

Strümpher WP; Sole CL; Villet MH; Scholtz CH, 2016. Allopatric speciation in the flightless Phoberus capensis (Coleoptera: Trogidae) group, with description of two new species. Insect Systematics and Evolution, 47:149-179.

Strümpher WP; Villet MH; Sole CL; Scholtz CH, 2015. Overview and revision of the extant genera and subgenera of Trogidae (Coleoptera: Scarabaeoidea). Insect Systematics & Evolution, 47(1).

Vaurie P, 1955. A revision of the genus Trox in North America. Bulletin of America Museum of Natural History NY, 106:1-89.

Vaurie P, 1962. A revision of the genus Trox in South America. Bulletin of the American Museum of Natural History NY, 124(4):105-167.

Ziani S; Bezdek A; Branco T; Hillert O; Jákl S; Král D; Mantic M; Rössner E; Sehnal R, 2015. New country records of Scarabaeoidea (Coleoptera) from the Palaearctic Region. Insecta Mundi, No.0409:1-36.

Zídek J, 2013. Checklist and bibliography of the Trogidae (Coleoptera: Scarabaeoidea). Insecta Mundi, No.0314:1-38.

Zunino M, 1991. Food relocation behavior: a multivalent strategy of coleopteran. Advances in Coleopterology [ed. by Zunino M, Belles X, Blas M]. Asociacion Europea de Coleopterologia, 297-314.

Links to Websites

Top of page
Global Biodiversity Information Facility


Top of page

Mexico: CONANP,


Top of page

25/05/2016 Original text by:

Martha L. Baena Hurtado, Institute for Biological Research, University of Veracruz (IIB-UV), Xalapa, Veracruz, Mexico

Federico Escobar Sarria, Institute of Ecology, A. C., Xalapa, Veracruz, Mexico



Distribution Maps

Top of page
You can pan and zoom the map
Save map