Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Cortaderia jubata
(purple pampas grass)

Toolbox

Datasheet

Cortaderia jubata (purple pampas grass)

Summary

  • Last modified
  • 20 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Preferred Scientific Name
  • Cortaderia jubata
  • Preferred Common Name
  • purple pampas grass
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Monocotyledonae
  • Summary of Invasiveness
  • C. jubata is a large tussock grass, native to South America, which has been introduced elsewhere as an ornamental plant and, in some countries, for forage, shelter or erosion control. It has naturalised and bec...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Cortaderia jubata (purple pampas grass); general habit of flowering plants, showing the large tussock and the tall, showy, purple inflorescences.
TitleHabit
CaptionCortaderia jubata (purple pampas grass); general habit of flowering plants, showing the large tussock and the tall, showy, purple inflorescences.
Copyright©Trevor James/Hamilton, New Zealand-2004
Cortaderia jubata (purple pampas grass); general habit of flowering plants, showing the large tussock and the tall, showy, purple inflorescences.
HabitCortaderia jubata (purple pampas grass); general habit of flowering plants, showing the large tussock and the tall, showy, purple inflorescences.©Trevor James/Hamilton, New Zealand-2004
Cortaderia jubata (purple pampas grass); close-up of inflorescence.
TitleInflorescence
CaptionCortaderia jubata (purple pampas grass); close-up of inflorescence.
Copyright©Trevor James/Hamilton, New Zealand-2014
Cortaderia jubata (purple pampas grass); close-up of inflorescence.
InflorescenceCortaderia jubata (purple pampas grass); close-up of inflorescence.©Trevor James/Hamilton, New Zealand-2014
Cortaderia jubata (purple pampas grass); ‘wood shavings’ appearance of the old leaf bases.
TitleOld leaf bases
CaptionCortaderia jubata (purple pampas grass); ‘wood shavings’ appearance of the old leaf bases.
Copyright©Trevor James/Hamilton, New Zealand-2014
Cortaderia jubata (purple pampas grass); ‘wood shavings’ appearance of the old leaf bases.
Old leaf basesCortaderia jubata (purple pampas grass); ‘wood shavings’ appearance of the old leaf bases.©Trevor James/Hamilton, New Zealand-2014

Identity

Top of page

Preferred Scientific Name

  • Cortaderia jubata (Lemoine ex Carrière) Stapf

Preferred Common Name

  • purple pampas grass

Other Scientific Names

  • Gynerium jubatum Lemoine ex Carrière
  • Gynerium pygmaeum Meyen
  • Gynerium quila var. pygmaeum Nees

International Common Names

  • English: pampas grass
  • Spanish: sacuara

Local Common Names

  • Australia: pink pampas grass
  • South Africa: pampasgras
  • USA: Andean pampas grass; jubata grass; selloa pampas grass

Summary of Invasiveness

Top of page

C. jubata is a large tussock grass, native to South America, which has been introduced elsewhere as an ornamental plant and, in some countries, for forage, shelter or erosion control. It has naturalised and become established in Australia, New Zealand, South Africa and the USA, and is regarded as a very serious invasive species; it forms dense stands that displace native vegetation, and has become a serious problem in new forestry areas where it suppresses the growth of young trees and creates a fire hazard.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Monocotyledonae
  •                     Order: Cyperales
  •                         Family: Poaceae
  •                             Genus: Cortaderia
  •                                 Species: Cortaderia jubata

Notes on Taxonomy and Nomenclature

Top of page

The genus Cortaderia contains about 20 species, all confined (as native species) to South America. However, there have been numerous revisions of the genus, with many species being transferred to closely related genera, and thus caution should be used when referring to old literature. For example, when Linder et al. (2010) revised the genus, the five New Zealand species formerly classified as species of Cortaderia were transferred to Austroderia. Cortaderia archboldii, found in New Guinea, is now Chimaerochloa archboldii according to ITIS (2014).

Two species of Cortaderia, C. jubata and C. selloana, have naturalised and become problematic invasive species in Australia, South Africa, New Zealand and parts of the western USA. One of the New Zealand Austroderia species, A. richardii (formerly C. richardii), is considered potentially invasive in Australia (University of Queensland, 2013).

Description

Top of page

C. jubata is a large tussock grass that can grow to over 2.5m in height. Individual plants can be huge and their diameters gradually increase with age; they become hollow in the centre. Popay et al (2004) in New Zealand measured clumps of the related C. selloana up to 6m across. In that environment, most plants were smaller (less than 2m across), although 20 to 30 % of the plants measured were greater than 2m across.

Habit: Perennial; caespitose. Culms 200-250 cm long; 3-6 mm diam. Culm-internodes distally glabrous. Culm-nodes brown; glabrous. Lateral branches lacking. Leaf-sheaths longer than adjacent culm internode; antrorsely scabrous; glabrous on surface, or puberulous. Ligule a fringe of hairs; 1-2 mm long. Leaf-blades 40-90 cm long; 4-12 mm wide; coriaceous; stiff. Leaf-blade midrib prominent beneath. Leaf-blade margins ciliate. Leaf-blade apex attenuate.

Inflorescence: Gynodioecious ("male", in this context, indicating the bisexual state). Inflorescence a panicle; embraced at base by subtending leaf.  Panicle open; ovate; dense; 30-60 cm long; 10-15 cm wide. Primary panicle branches 20-30 cm long. Panicle branches scabrous. Spikelets solitary. Fertile spikelets pedicelled. Pedicels 2-8 mm long; scabrous.

Fertile Spikelets: Spikelets comprising 3-5 fertile florets; with diminished florets at the apex. Spikelets lanceolate; laterally compressed; 12-15 mm long; breaking up at maturity; disarticulating below each fertile floret. Floret callus elongated; 1-1.5 mm long; pilose.

Glumes: Glumes similar; shorter than spikelet; similar to fertile lemma in texture; shiny; gaping. Lower glume lanceolate; 8-9 mm long; 0.9 length of upper glume; hyaline; light brown; without keels; 1-veined. Lower glume lateral veins absent. Lower glume surface asperulous. Lower glume margins ciliolate. Lower glume apex entire, or dentate; 2-fid; acute. Upper glume lanceolate; 8.5-10 mm long; 1 length of adjacent fertile lemma; hyaline; light brown; without keels; 1-veined. Upper glume lateral veins absent. Upper glume surface asperulous. Upper glume margins ciliate. Upper glume apex entire, or dentate; 2-fid; acute.

Florets: Fertile florets female. Fertile lemma linear, or lanceolate; 9-11 mm long; hyaline; without keel; 3-veined. Lemma midvein extending to apex. Lemma lateral veins less than two thirds length of lemma. Lemma surface scaberulous; villous; hairy below. Lemma hairs white; 7-8 mm long. Lemma apex acuminate. Palea lanceolate; 3.2-4 mm long; 0.33 length of lemma; hyaline; 2-veined. Palea keels scabrous. Palea surface pilose; hairy on flanks. Apical sterile florets resembling fertile though underdeveloped. 

Flower: Lodicules 2; cuneate; fleshy; ciliate.

Male inflorescence: bisexual similar to female; a panicle. Male spikelets distinct from female; glabrous.

Plant Type

Top of page Grass / sedge
Herbaceous
Perennial
Seed propagated

Distribution

Top of page

C. jubata is native to Argentina (Catamarca, Jujuy, La Rioja and Tucuman provinces), Bolivia, Chile, Ecuador and Peru. Like its close relative C. selloana, it has been introduced elsewhere as an ornamental garden plant (it has also been used for forage, shelter or erosion control). Both species have escaped from cultivation and become problems especially in Australia, South Africa, New Zealand and parts of the United States. C. jubata is listed as a noxious weed in California, Hawaii and Oregon (USDA-ARS, 2014), and as as a grade 1 invasive species in South Africa (AGIS, 2014).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Africa

South AfricaPresentIntroducedUSDA-ARS, 2013Free State, Gauteng, Western Cape

North America

USAPresentPresent based on regional distribution.
-CaliforniaPresentIntroduced Invasive USDA-NRCS, 2013
-HawaiiPresentIntroduced Invasive USDA-NRCS, 2013
-OregonPresentIntroduced Invasive USDA-NRCS, 2013
-WashingtonPresentIntroduced Invasive USDA-NRCS, 2013

South America

ArgentinaPresentNativeUSDA-ARS, 2013Catamarca, Jujuy, La Rioja, Tucuman
BoliviaPresentNativeUSDA-ARS, 2013
ChilePresentNativeUSDA-ARS, 2013
EcuadorPresentNativeUSDA-ARS, 2013
PeruPresentNativeUSDA-ARS, 2013

Europe

UKPresent only in captivity/cultivationIntroduced Not invasive Royal Horticultural Society, 2009

Oceania

AustraliaPresentIntroduced Invasive USDA-ARS, 2013
-New South WalesPresentIntroduced Invasive University of Queensland, 2013Coastal central NSW
-QueenslandPresentIntroduced Invasive University of Queensland, 2013Sparingly naturalised, south-eastern areas
-South AustraliaPresentIntroduced Invasive University of Queensland, 2013Sparingly naturalised, south-eastern areas
-TasmaniaWidespreadIntroduced Invasive University of Queensland, 2013Relatively common
-VictoriaWidespreadIntroduced Invasive University of Queensland, 2013Southern Victoria
-Western AustraliaPresentIntroduced Invasive University of Queensland, 2013South-western areas
New ZealandPresentIntroduced Invasive Edgar and Connor, 2010

History of Introduction and Spread

Top of page

Like its close relative C. selloana, C. jubata has been introduced to a number of countries as an ornamental garden plant (it has also been used for forage, shelter or erosion control). According to literature cited by Costas Lippmann (1977), it was first cultivated in France and Ireland, from seed collected in Ecuador (where it is abundant in the Andes at heights of 2800 to 3400 m above sea level). Okada et al. (2009) identified southern Ecuador as the source of the original horticultural introduction, using microsatellite markers. Although it was probably in cultivation during the 19th Century, it was not noticed to have ‘escaped’ and become naturalised until the late 1950s or early 1960s (Costas Lippmann, 1977), in both California and in New Zealand. Like C. selloana, it has escaped from cultivation and become a problem, especially in Australia, South Africa, New Zealand and parts of the United States. Future climate change may well see further naturalisations and an increase in its status as a problem plant.

Introductions

Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
California 1950s Escape from confinement or garden escape (pathway cause) Yes Peterson and Russo (1988)
New Zealand 1940-1970 Escape from confinement or garden escape (pathway cause) Yes Esler (1998)

Risk of Introduction

Top of page

The greatest risk is escape of the species from its present status of ‘garden ornamental’ to its naturalisation and spread as an environmental weed; it could also be spread to new countries, especially as seeds are available on the Internet. It has also been used for land reclamation, shelter belts and as emergency stock feed (as late as 1984 nurseries in New Zealand were still producing up to 1,000,000 plants a year -- Gadgil et al., 1984). In New Zealand it is now illegal to grow or distribute either C. jubata or C. selloana.

Habitat

Top of page

C. jubata is native to the Andes mountains of northern Argentina, Bolivia and Peru, at elevations of 2800 to 3400m, where it can form stands of several hundred hectares (Peterson and Russo, 1988). In New Zealand, South Africa, Australia and California it has spread along roadsides and into other disturbed land. It has become invasive in several habitats, including coastal and grassland sites, in these countries, and its huge size, copious seed production and rapid growth make it a great threat to these (Peterson and Russo, 1988; Gosling et al., 2000; University of Queensland, 2013). It seems to be able to grow in a wide range of habitats – pine forests, plantations, bushland, quarries, logged or burnt sites, and roadsides. It causes a particular threat to coastal dunes, where it can often interfere with the growth of endangered native species (Popay et al, 2004). In California it flourishes in coastal areas, notably on foreshores, roadsides and wet areas (Peterson and Russo, 1988). The same authors, quoting Potter (1970), suggest that it grows best in full sunshine with adequate water, but that it can tolerate rather severe drought, thanks to its deep root system; they also say that although it becomes established most easily in wet sandy soil without existing vegetation, it has broad habitat requirements and will grow vigorously in nearly any soil, under low or high moisture regimes, in full sun or dense shade.

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
 
Terrestrial – ManagedManaged forests, plantations and orchards Principal habitat Harmful (pest or invasive)
Managed forests, plantations and orchards Principal habitat Natural
Disturbed areas Principal habitat Harmful (pest or invasive)
Disturbed areas Principal habitat Natural
Rail / roadsides Principal habitat Harmful (pest or invasive)
Rail / roadsides Principal habitat Natural
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details Harmful (pest or invasive)
Natural grasslands Principal habitat Harmful (pest or invasive)
Natural grasslands Principal habitat Natural
Riverbanks Principal habitat Natural
Scrub / shrublands Present, no further details Harmful (pest or invasive)
Littoral
Coastal dunes Principal habitat Harmful (pest or invasive)
Coastal dunes Principal habitat Natural

Biology and Ecology

Top of page

Genetics

The chromosome number is recorded as 2n = 108 (Edgar and Connor, 2010) -- in contrast to the closely related C. selloana where 2n=72 (Lambrinos, 2002). C. jubata is apomictic, with all plants being female and producing genetically identical seeds which are quite viable.

Reproductive Biology

Drewitz and DiTomaso (2004) studied the seed biology of C. jubata in California and found that it can produce over 100,000 light, wind-dispersed seeds from a single inflorescence, although only about 20 to 30 % of these are able to germinate when exposed to light and to temperatures of between 8 and 35oC. Seeds below 0.2 mg in weight (about 40% of the population) did not germinate, whilst those over 0.5 mg in weight (just over 2% of the population) gave 90% germination. Individual plants about 1 m in diameter contain between 5 and 20 inflorescences per tussock and could therefore produce between 300,000 and 1,300,000 seeds (average about 924,000) (Drewitz and DiTomaso, 2004).

Drewitz and DiTomaso (2004) buried seeds in nylon bags and exhumed samples at intervals. No seeds remained viable after four months’ burial, although seeds kept in the laboratory for a similar period of time showed no loss of viability.

Physiology and Phenology

In California the species flowers between July and October (Costas-Lippmann, 1979) and in Hawaii between early August and late October (Chimera, 1997). In New Zealand it flowers from January to March (summer and early autumn) (Edgar and Connor, 2010).

Only 8% of seeds germinated in darkness as opposed to about 26% in the light (Drewitz and DiTomaso, 2004). The authors found no evidence of any dormancy in the seeds and also found that burying seeds 1 cm or more below the soil surface reduced emergence dramatically.

Longevity

Established plants seem able to survive for 10 to 15 years (Pleasants and Whitehead, 1977).

Associations

Although C. jubata is highly competitive with native plants once it is established, it appears able to coexist with many different species (Lambrinos, 2000; Popay et al., 2004) -- the danger is that both plants and populations will grow and eventually smother associated native species. Its rapid growth to large size allows it to acquire light, moisture and nutrients that would otherwise be used by native species (Peterson and Russo, 1988).

Environmental requirements

C. jubata is native to the Andes mountains of northern Argentina, Bolivia and Peru, at elevations of 2800 to 3400m (Peterson and Russo, 1988). The same authors, quoting Potter (1970), suggest that it grows best in full sunshine with adequate water, but that it can tolerate rather severe drought, thanks to its deep root system. They also say that although it becomes established most easily in wet sandy soil without existing vegetation, it has broad habitat requirements and will grow vigorously in nearly any soil, under low or high moisture regimes, in full sun or dense shade. It probably needs at least some summer moisture and freedom from freezing temperatures -- several consecutive nights of frost will generally not kill the plant, but can severely damage it.

Climate

Top of page
ClimateStatusDescriptionRemark
Cf - Warm temperate climate, wet all year Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year

Notes on Natural Enemies

Top of page

In 2011, the Sustainable Farming Fund (2011) funded a project to start searching for possible biocontrol agents both in New Zealand and in South America. A black smut fungus and a fly which attack the flowerheads seem to be quite damaging on Ecuadorian plants. No reports on their identification have been published as yet.

Means of Movement and Dispersal

Top of page

Natural Dispersal (Non-Biotic)

The seeds are light and produced in huge numbers, although Drewitz and DiTomaso (2004) found that seeds below 0.2 mg in weight (about 40% of the population) did not germinate; those over 0.5 mg in weight (just over 2% of the population) gave 90% germination. The seeds are primarily wind-dispersed, although some may also be carried by water or on animals, vehicles or machinery (University of Queensland, 2013).

Accidental Introduction

University of Queensland (2013) suggests that some local spread might take place as the result of the dumping of garden waste.

Intentional Introduction

C. jubata has already been introduced as an ornamental to several countries and the greatest danger is of spread from gardens where it has been planted into nearby native reserves and other places suitable for its establishment. Seeds are available on the internet, which raises the danger of its spread to new countries.

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Machinery and equipment Yes
Water Yes
Wind Yes

Impact Summary

Top of page
CategoryImpact
Cultural/amenity Negative
Environment (generally) Negative

Economic Impact

Top of page

In New Zealand, good forestry establishment is sometimes impossible because of suppression of young trees by pampas grass (C. jubata and C. selloana) (Gadgil et al., 1984). The same authors estimated that releasing trees from pampas grass to allow them to barely survive cost about NZ$350 ha-1 in 1983, and that later tending operations like pruning and thinning have been estimated to increase total tending costs by 144%. Complete body cover is needed to protect operators from the sharp edges of the leaves.

Environmental Impact

Top of page

Reports on the impact of C. jubata on native environments have been published in Australia, South Africa, California and New Zealand. Its rapid growth and accumulation of aboveground and belowground biomass allow it to acquire light, moisture and nutrients that would be used by other plants, and the large amount of dry matter that it produces make it a fire hazard (ISSG, 2014).

In California the most threatened habitats are coastal sand dunes and inland sand hills that contain a number of rare and endangered plant species (Peterson and Russo, 1988). Lambrinos (2000) describes its adverse effects on an endangered Mediterranean shrubland, where a diverse and unique shrub community is replaced by a perennial-dominated grassland with reduced native richness, and arthropod and small mammal communities are also affected.

Reports from Australia (University of Queensland, 2013) suggest that C. jubata is more aggressive than C. selloana; it forms dense stands of giant tussocks in wetter areas, where it displaces native vegetation (University of Queensland, 2013). It is considered an environmental weed in Victoria, New South Wales, Tasmania and Western Australia.

In New Zealand, the threats it offers are such that propagating, selling or distribution of the species is illegal (Ministry for Primary Industries, 2014). It readily colonises disturbed sites, quickly becomes dense and can suppress the growth of other species. It replaces ground cover, shrubs and ferns, creates a fire hazard, provides habitats for possums and rats, and impedes access.

In Hawaii the naturalized populations are as yet quite small, but could easily spread and become problematic. Of particular concern is the discovery of small infestations in rainforest, the first such infestations anywhere (Chimera, 1997).

In South Africa, the species is classified as a grade 1 invasive species which is prohibited and must be controlled, as in those parts of the country where it is present it forms large clumps which displace smaller indigenous species (AGIS, 2014).

Social Impact

Top of page

According to AGIS (2014), referring to the situation in South Africa, the fluffy inflorescences cause respiratory problems in humans, especially to asthma sufferers, and the leaves are very abrasive with sharp, cutting edges. In New Zealand, forest workers controlling C. jubata and C. selloana need complete body cover to protect them from the sharp edges of the leaves (Gadgil et al., 1984).

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Pioneering in disturbed areas
  • Tolerant of shade
  • Benefits from human association (i.e. it is a human commensal)
  • Long lived
  • Fast growing
  • Has high reproductive potential
  • Reproduces asexually
Impact outcomes
  • Altered trophic level
  • Ecosystem change/ habitat alteration
  • Modification of fire regime
  • Modification of successional patterns
  • Monoculture formation
  • Negatively impacts forestry
  • Negatively impacts human health
  • Reduced native biodiversity
  • Threat to/ loss of endangered species
  • Threat to/ loss of native species
Impact mechanisms
  • Competition - monopolizing resources
  • Competition - shading
  • Rapid growth
Likelihood of entry/control
  • Highly likely to be transported internationally deliberately
  • Difficult to identify/detect in the field
  • Difficult/costly to control

Uses

Top of page

Economic Value

According to Gadgil et al. (1984) the closely related C. selloana had been used in New Zealand as animal forage since the early 1930s but this use has now disappeared.  Plants of both species have been produced commercially for this purpose, and also for shelter belts, land protection and erosion control, but now neither species can be propagated, sold or distributed (Ministry for Primary Industries, 2014). Plants and seeds are commercially available from nurseries in several countries, and several decorative cultivars have been produced.

Social Benefit

Presumably many people still appreciate having one or more pampas grass plants in their gardens.

Uses List

Top of page

Animal feed, fodder, forage

  • Fodder/animal feed

Environmental

  • Boundary, barrier or support
  • Erosion control or dune stabilization
  • Ornamental
  • Shade and shelter

General

  • Sociocultural value

Ornamental

  • garden plant

Similarities to Other Species/Conditions

Top of page

C. jubata is similar in general appearance to its close relative C. selloana and also to its less close relatives, the New Zealand species of Austroderia (known there by their Maori name toetoe). The leaf blades of C. jubata are shorter than those of C. selloana, not curled at the tip and less V-shaped in cross-section; they are also dark green on both surfaces while those of C. selloana are blue-green on the upper surface and dark green on the lower. The flower heads of C. jubata are shorter, more flexuous and purplish, drying to a dirty brown, while those of C. selloana are of various colours. C. jubata spikelets are smaller, with purple glumes, and contain a few less florets than those of C. selloana (Edgar and Connor, 2010; DiTomaso, 2000). According to Connor (1973), in its introduced range, C. jubata has only female flowers and reproduces by apomixis.

The New Zealand native Austroderia species all have prominent secondary veins on the leaves in addition to the prominent midrib: the two invasive Cortaderia species have a prominent midrib only (Edgar and Connor, 2010). Austroderia species have a white waxy bloom at the bases of the leaves and the old leaf sheaths do not curl up: the two Cortaderia species do not have the waxy bloom, and the old leaf sheaths curl up (like wood-shavings) and break into short lengths (New Zealand Department of Conservation, 2013).

Another difference between species of Cortaderia and those of Austroderia is their flowering time (at least in New Zealand). C. jubata begins flowering in late January, and C. selloana begins flowering in early March. Austroderia species flower from October to January (New Zealand Department of Conservation, 2013).

Prevention and Control

Top of page

Once established within a country, the further spread of C. jubata is hard to limit, except perhaps by eliminating plants growing upwind of important sites.

Prevention

Legislation and associated public awareness campaigns, as has happened in New Zealand since the inclusion of C. jubata in the National Pest Plant Accord (2012), seems to be an effective way of discouraging future spread. Similar legislation is in place in some Australian States (University of Queensland, 2013) and in South Africa (Invasive Species South Africa, 2013).

Public awareness

Most of New Zealand’s Regional Councils actively run public awareness campaigns to remind people that they cannot distribute C. jubata and their policies are actively backed up by strict policing. Some of these Councils have eradication or containment in their pest management strategies (Ministry for Primary Industries, 2013).

Control

Physical/mechanical control

Physical removal of plants is feasible if they are small enough but this can be very labour intensive (Peterson and Russo, 1988). The same authors describe physical removal of plants at a Marine Corps base by tying a rope or chain round the plants and pulling them out with a vehicle. Mechanical excavation has been tried (Gosling et al., 2000) but this causes too much damage to surrounding vegetation.  

Biological control

Biological control of grass species has rarely been attempted because of the danger of damaging desirable grass species. In New Zealand, despite the possibility of collateral damage to native Austroderia species, the Sustainable Farming Fund (2011) has been funding the search for possible agents; a black smut fungus and a fly which attack the flowerheads seem to be quite damaging on Ecuadorian plants, but no reports on their identification have been published as yet.

Chemical control

Glyphosate in its various forms has been widely used for control of species of Cortaderia, but these adversely affect most green plant material they touch and are non-selective. Haloxyfop controls grasses without affecting broadleaf plants, offering some selectivity (Popay et al., 2004), but following aerial application to very large plants, these authors found that further treatment was needed a year after the initial application. Hexazinone is a residual herbicide that has been used to good effect in plantation forests (Gosling et al., 2000), but it is non-selective and can leach into the soil and affect non-target species.  Other herbicides that have been used include amitrole and dalapon (Peterson and Russo, 1988).

Grazing

Grazing with cattle has been used for control of Cortaderia species in plantation forests in New Zealand (Gosling et al., 2000).

References

Top of page

AGIS (Agricultural Geo-Referenced Information System), 2013. Weeds & Invasive Plants. http://www.agis.agric.za/wip/

Chimera C, 1997. Cortaderia jubata (Lemoine) Stapf. HNIS Report for Cortaderia jubata. Hawaii, USA: Hawaiian Ecosystems at Risk Project, 13 pp. http://www.hear.org/hnis/reports/hnis-corjub.pdf

Clayton WD; Vorontsova MS; Harman KT; Williamson H, 2013. GrassBase - The Online World Grass Flora. http://www.kew.org/data/grasses-db/

Connor HE, 1973. Breeding systems in Cortaderia (Gramineae). Evolution, 27:663-678.

Costas Lippmann M, 1977. More on the weedy "pampas grass" in California. Fremontia, 4(4):25-27. http://docubase.berkeley.edu/cgi-bin/pl_dochome?query_src=pl_search&format=INDEX&collection=Fremontia&id=22

Costas-Lippmann M, 1979. Embryogeny of Cortaderia selloana and C. jubata (Gramineae). Botanical Gazette, 140(4):393-397.

DiTomaso J, 2000. Cortaderia selloana. In: Invasive plants of California wildlands [ed. by Bossard CC, Randall JM, Hoshovsky MC] Berkeley, USA: University of California Press, 128-133.

Drewitz JJ; DiTomaso JM, 2004. Seed biology of jubatagrass (Cortaderia jubata). Weed Science, 52(4):525-530.

Edgar E; Connor HE, 2010. Flora of New Zealand - Vol. V: Gramineae, Ed.2 [ed. by Edgar, E.\Connor, H. E.]. Lincoln, New Zealand: Manaaki Whenua Press, Landcare Research, xlii + 23 + 650 pp.

Esler AE, 1998. Naturalisation of plants in urban Auckland: a series of articles from the New Zealand Journal of Botany. Wellington, New Zealand: DSIR Publishing.

Gadgil RL; Knowles AL; Zabkiewicz JA, 1984. Pampas - a new forest weed problem. In: Proceedings, New Zealand weed and pest control conference. Hastings, New Zealand: New Zealand Weed and Pest Control Society, 187-190.

Gosling DS; Shaw WB; Beadel SM, 2000. Review of control methods for pampas grasses in New Zealand. Science for Conservation, No. 165:32 pp. http://www.doc.govt.nz/documents/science-and-technical/Sfc165.pdf

Invasive Species South Africa, 2014. Plants A-Z: Flora that is invasive in South Africa. South Africa: Invasive Species South Africa. http://www.invasives.org.za/invasive-plants.html

ISSG, 2014. Global Invasive Species Database (GISD). Invasive Species Specialist Group of the IUCN Species Survival Commission. http://www.issg.org/database/welcome/

ITIS, 2014. Integrated Taxonomic Information System. http://www.itis.gov

Lambrinos JG, 2000. The impact of the invasive alien grass Cortaderia jubata (Lemoine) Stapf on an endangered mediterranean-type shrubland in California. Diversity and Distributions, 6(5):217-231.

Lambrinos JG, 2002. The variable invasion success of Cortaderia species in a complex landscape. Ecology, 83:518-529.

Linder HP; Baeza M; Barker NP; Galley C; Humphreys AM; Lloyd KM; Orlovich DA; Pirie MD; Simon BK; Walsh N; Verboom GA, 2010. A generic classification of the Danthonioideae (Poaceae). Annals of the Missouri Botanical Garden, 97(3):306-364. http://www.bioone.org/perlserv/?request=get-archive&issn=0026-6493

Ministry for Primary Industries, 2013. Regional Pest Management. Wellington, New Zealand: Ministry for Primary Industries. http://www.biosecurityperformance.maf.govt.nz/

Ministry for Primary Industries, 2014. National Pest Plant Accord. New Zealand. http://www.biosecurity.govt.nz/nppa

New Zealand Department of Conservation, 2013. Common Weeds in New Zealand. Wellington, New Zealand: Department of Conservation. http://www.doc.govt.nz/conservation/threats-and-impacts/weeds/common-weeds-in-new-zealand/

Okada M; Lyle M; Jasieniuk M, 2009. Inferring the introduction history of the invasive apomictic grass Cortaderia jubata using microsatellite markers. Diversity and Distributions, 15(1):148-157. http://www3.interscience.wiley.com/cgi-bin/fulltext/121454979/HTMLSTART

Peterson DL; Russo MJ, 1988. Element Stewardship Abstract for Cortaderia jubata, pampas grass. Arlington, Virginia, USA: The Nature Conservancy, 8 pp. http://www.invasive.org/gist/esadocs/documnts/cortjub.pdf

Pleasants AB; Whitehead PH, 1977. Pampas grass as winter feed. New Zealand Journal of Agriculture, 135(1):2-3.

Popay I; Timmins SM; McCluggage T, 2003. Aerial spraying of pampas grass in difficult conservation sites. Science for Conservation, No.218:18 pp. http://www.doc.govt.nz/documents/science-and-technical/SFC218.pdf

Potter CH, 1970. Annuals and perennials; Marguerite daisies, California poppy, pampas grass. American Nurseryman, 131(2):13, 85-89.

Royal Horticultural Society, 2009. Cortaderia: final trials report 2007-2009. Wisley, UK: Royal Horticultural Society, 7 pp. http://apps.uk/planttrials/TrialReports/Cortaderia%202009

Sustainable Farming Fund, 2011. Biological control for pampas (Cortaderia jubata and Cortaderia selloana) in New Zealand. Wellington, New Zealand: Ministry for Primary Industries, 3 pp. http://maxa.maf.govt.nz/sff/about-projects/search/11-049/l11-049-biological-control-for-pampas-in-NZ.pdf

University of Queensland, 2013. Weeds of Australia, Biosecurity Queensland edition. Queensland, Australia. http://keyserver.lucidcentral.org/weeds/

USDA-ARS, 2013. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

USDA-ARS, 2014. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

USDA-NRCS, 2013. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov/

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.
Global register of Introduced and Invasive species (GRIIS)http://griis.org/Data source for updated system data added to species habitat list.
Invasive Plant Atlas of the United Stateshttp://www.invasiveplantatlas.org/

Contributors

Top of page

09/04/13: Original text by:

Ian Popay, consultant, New Zealand, with the support of Landcare Research.

Distribution Maps

Top of page
You can pan and zoom the map
Save map