Bromus secalinus (rye brome)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Risk of Introduction
- Habitat
- Habitat List
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Growth Stages
- Biology and Ecology
- Climate
- Latitude/Altitude Ranges
- Soil Tolerances
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Causes
- Pathway Vectors
- Plant Trade
- Impact Summary
- Economic Impact
- Environmental Impact
- Threatened Species
- Risk and Impact Factors
- Uses
- Uses List
- Similarities to Other Species/Conditions
- Prevention and Control
- Gaps in Knowledge/Research Needs
- References
- Contributors
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Bromus secalinus L.
Preferred Common Name
- rye brome
Other Scientific Names
- Avena secalina Salisb.
- Bromus mollis var. secalinus (L.) Huds.
- Bromus mutabilis var. secalinus (L.) F.W.Schultz
- Bromus secalinus var. vulgaris W.D.J.Koch
- Bromus segetalis var. secalinus (L.) Döll
- Forasaccus secalinus (L.) Bubani
- Serrafalcus secalinus (L.) Bab.
International Common Names
- English: bromegrass; cheat; cheat grass; cheatgrass; chess; chess brome; chess bromegrass; cock grass; rye bromegrass; ryebrome; smooth rye brome grass; wheat-thief
- Spanish: bromo del centeno; bromo secalino; pasto valcheta
- French: brome des champs; brome des seigles; brome faux-seigle; seglin; seigle bâtard
- Russian: koster rzhanoi
- Chinese: hei mai zhuang que mai
- Portuguese: bromo-centeio; capim-cevadinha
Local Common Names
- Czech Republic: sverep stoklasa
- Denmark: rughejre
- Finland: ruiskattara
- Germany: Roggen-Trespe
- Italy: bromo segalino; forasacco delle messi; forasacco segalino; segala lanaiuola
- Japan: karasunochahiki
- Netherlands: dreps
- Poland: stoklosa zytnia
- Sweden: råglosta
- Turkey: cavdar bromu
EPPO code
- BROSE (Bromus secalinus)
Summary of Invasiveness
Top of pageBromus secalinus is a serious grassy weed infesting winter rye (Secale cereale), winter wheat (Triticum aestivum) and other cereal crops. As its life cycle fully coincides with that of the cereal crop it infests, at harvesting it can become a major contaminant of cereal seed for sowing. Originating in Eurasia, it has been spread most likely through contaminated grain shipments to North America, Australia and elsewhere. It has proved invasive of disturbed land, dry prairies, limestone glades, meadows, vacant lots, abandoned fields, crop land, field margins, roadsides, railroad tracks and waste places, displacing native vegetation.
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Monocotyledonae
- Order: Cyperales
- Family: Poaceae
- Genus: Bromus
- Species: Bromus secalinus
Notes on Taxonomy and Nomenclature
Top of pageBromus L. is a taxonomically complex genus that includes 169 annual and perennial grass species with wide geographical distribution in temperate regions (Saarela, 2008; The Plant List, 2013).
Bromus secalinus L. is an accepted name. There are 8 homotypic synonyms and 50 heterotypic synonyms (WCSP, 2016). There are no infraspecific taxa (The Plant List, 2013).
The generic name Bromus derives from the Greek word bromo meaning food which was in Classical times the Greek name for oats. The specific epithet secalinus is a reference to being found in rye (Secale cereale) crops (Clifford and Bostock, 2007); several of this species’ common names allude to its similarity to or association with rye. B. secalinus is also often referred to as 'chess' or 'cheat,' although these common names may also refer to other annual Bromus species from Eurasia (Hilty, 2015).
Description
Top of pageThe description of B. secalinus given by Clayton et al. (2016) states:
Annual; culms solitary, or caespitose. Culms erect; 20-120 cm long; 5-7-noded. Leaf-sheaths glabrous on surface. Ligule an eciliate membrane; 1-2 mm long; erose. Leaf blades 10-25 cm long; 4-10 mm wide. Leaf-blade surface scaberulous; pubescent.
Inflorescence a panicle. Panicle open, or contracted; ovate; equilateral, or nodding; 5-20 cm long. Primary panicle branches 2-8 cm long; bearing 1-4 fertile spikelets on each lower branch. Panicle branches scabrous; glabrous or pubescent. Spikelets solitary. Fertile spikelets pedicelled. Pedicels 10-30 mm long. Spikelets comprising 4-11 fertile florets; with diminished florets at the apex. Spikelets oblong, or ovate; laterally compressed; compressed slightly; 12-25 mm long; 4-7 mm wide; breaking up at maturity; disarticulating below each fertile floret. Glumes persistent; dissimilar; shorter than spikelet; parallel to lemmas. Lower glume oblong or ovate; 4.6-6.5 mm long; 0.7-0.8 length of upper glume; coriaceous; without keels; 3-5-veined. Lower glume apex acute. Upper glume elliptic or ovate; 5-8.5 mm long; 0.7-0.9 length of adjacent fertile lemma; coriaceous; without keels; 5-7-veined. Upper glume apex obtuse.
In florets, fertile lemma elliptic; 6-10 mm long; 4-11 mm wide; coriaceous; much thinner on margins; without keel; 7-9 -veined. Lemma margins involute. Lemma apex muticous or awned; 1-awned. Principal lemma awn subapical; 0-8 mm long overall; limb scabrous. Palea 1 length of lemma. Palea keels ciliolate. Apical sterile florets resembling fertile though underdeveloped.
In the flower, lodicules 2; membranous. Anthers 3; 1-2 mm long. Ovary with a fleshy appendage above style insertion; pubescent on apex. Fruit a caryopsis with adherent pericarp; ellipsoid; hairy at apex; apex fleshy. Hilum linear; 1 length of caryopsis.
Distribution
Top of pageThe extent of the native distribution of B. secalinus in Europe is confused, no doubt by the fact that its seed would have been widely distributed geographically in prehistoric times by early farmers and traders as a contaminant of cereal grain. As a consequence, some authorities cite it as a mainly European species growing all over western Europe (except the far south), as well as the Caucasus, Mediterranean region and Asia Minor, extending its eastward limit into parts of European Russia, especially the north-west of Central Russia but not as far north as the Arctic (Afonin et al., 2016). USDA-ARS (2016), on the other hand, gives its native range as eastern, central, southeastern and southwestern Europe, Algeria, Republic of Georgia and Turkey, while the Royal Botanic Gardens Kew (2016) limits the native distribution to southwestern, east-central and southern Europe, the Transcaucasus, the Middle East, Siberia and northern China, with northern Europe, Algeria and most of European Russia defined as the introduced Eurasian range.
According to Afonin et al. (2016), beyond Central Russia B. secalinus is adventive, from southern Siberia to Russia’s Far East. The Flora of China (Flora of China Editorial Committee, 2016) is unclear about its native status but includes it as found in Xinjiang, Gansu, Tibet, Taiwan and Japan.
B. secalinus is an introduced species across much of North America. Present in all contiguous states of the USA except North Dakota, as well as Alaska and Hawaii, and most provinces in western and eastern Canada (USDA-NRCS, 2016), B. secalinus is listed as invasive in Arkansas, Illinois, Tennessee, Georgia and Florida (Invasive.org, 2016). In Hawaii it has been recorded naturalized at Kipukapuaulu in the Hawaii Volcanoes National Park on the island of Hawaii (Wagner et al., 2005). In Canada, the species has been reported from the Yukon, British Columbia, Alberta, Ontario, Quebec, New Brunswick, Nova Scotia, Newfoundland and Prince Edward Island (Canadian Food Inspection Agency, 2015).
Having been accidentally introduced into Australia, B. secalinus is now naturalized in New South Wales, Victoria and Tasmania (Atlas of Living Australia, 2016). Populations of the species have also been observed in Mexico (eMonocot, 2016), Argentina and Chile (Royal Botanic Gardens Kew, 2016).
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 10 Feb 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Algeria | Present | Introduced | |||||
Réunion | Present | Introduced | 1989 | ||||
Asia |
|||||||
China | Present | Present based on regional distribution. | |||||
-Gansu | Present | Native | |||||
-Tibet | Present | Native | |||||
-Xinjiang | Present | Native | |||||
Iran | Present | Introduced | |||||
Israel | Present | Introduced | |||||
Japan | Present | Introduced | |||||
Kazakhstan | Present | Native | |||||
Lebanon | Present | Native | |||||
North Korea | Present | Introduced | 1949 | ||||
South Korea | Present | Introduced | 1949 | ||||
Syria | Present | Native | |||||
Taiwan | Present | Introduced | |||||
Turkey | Present | Introduced | Including Turkey in Europe | ||||
Europe |
|||||||
Austria | Present | Introduced | 1999 | ||||
Belarus | Present | Native | |||||
Belgium | Present | Introduced | |||||
Bosnia and Herzegovina | Present | Native | |||||
Bulgaria | Present | Native | |||||
Croatia | Present | Native | |||||
Czechia | Present | Introduced | |||||
Denmark | Present | Introduced | |||||
Estonia | Present | Introduced | |||||
Finland | Present | Introduced | |||||
France | Present | Native | |||||
-Corsica | Present | Native | |||||
Germany | Present | Introduced | |||||
Greece | Present | Native | Occurrence doubtful on Crete | ||||
Hungary | Present | Native | |||||
Iceland | Present | Introduced | 1884 | ||||
Ireland | Present | Introduced | 1866 | ||||
Italy | Present | Native | Including Sicily and Sardinia | ||||
Latvia | Present | Introduced | |||||
Lithuania | Present | Introduced | |||||
Netherlands | Present | Introduced | |||||
North Macedonia | Present | Native | |||||
Norway | Present | Introduced | |||||
Poland | Present, Few occurrences | Introduced | Declining at the end of 20th century and listed as vulnerable in the Polish "Red List" (Zarzycki & Szelag, 2006) but increasing in abundance in recent years | ||||
Portugal | Present | Native | |||||
-Azores | Present | Introduced | 1974 | ||||
Romania | Present | Native | |||||
Russia | Present | Present based on regional distribution. | |||||
-Central Russia | Present | Introduced | |||||
-Eastern Siberia | Present | Native | |||||
-Northern Russia | Present | Introduced | |||||
-Russian Far East | Present | Introduced | |||||
-Southern Russia | Present | Introduced | |||||
-Western Siberia | Present | Native | |||||
Serbia | Present | Native | |||||
Slovakia | Present | Introduced | |||||
Slovenia | Present | Native | |||||
Spain | Present | Native | |||||
-Canary Islands | Present | Introduced | |||||
Sweden | Present | Introduced | |||||
Switzerland | Present | Introduced | |||||
Ukraine | Present | Native | |||||
United Kingdom | Present | Introduced | 1640 | ||||
North America |
|||||||
Canada | Present | Present based on regional distribution. | |||||
-Alberta | Present | Introduced | |||||
-British Columbia | Present | Introduced | |||||
-New Brunswick | Present | Introduced | |||||
-Newfoundland and Labrador | Present | Introduced | |||||
-Nova Scotia | Present | Introduced | |||||
-Ontario | Present | Introduced | |||||
-Prince Edward Island | Present | Introduced | |||||
-Quebec | Present | Introduced | |||||
-Yukon | Present | Introduced | |||||
Mexico | Present | Introduced | |||||
United States | Present | Present based on regional distribution. | |||||
-Alabama | Present | Introduced | |||||
-Alaska | Present | Introduced | |||||
-Arizona | Present | Introduced | |||||
-Arkansas | Present | Introduced | Invasive | ||||
-California | Present | Introduced | |||||
-Colorado | Present | Introduced | |||||
-Connecticut | Present | Introduced | |||||
-Delaware | Present | Introduced | |||||
-District of Columbia | Present | Introduced | |||||
-Florida | Present | Introduced | Invasive | ||||
-Georgia | Present | Introduced | Invasive | ||||
-Hawaii | Present | Introduced | Naturalized | Naturalized in Hawaii Volcanoes National Park | |||
-Idaho | Present | Introduced | |||||
-Illinois | Present | Introduced | Invasive | ||||
-Indiana | Present | Introduced | |||||
-Iowa | Present | Introduced | |||||
-Kansas | Present | Introduced | |||||
-Kentucky | Present | Introduced | |||||
-Louisiana | Present | Introduced | |||||
-Maine | Present | Introduced | |||||
-Maryland | Present | Introduced | |||||
-Massachusetts | Present | Introduced | |||||
-Michigan | Present | Introduced | |||||
-Minnesota | Present | Introduced | |||||
-Mississippi | Present | Introduced | |||||
-Missouri | Present | Introduced | |||||
-Montana | Present | Introduced | |||||
-Nebraska | Present | Introduced | |||||
-Nevada | Present | Introduced | |||||
-New Hampshire | Present | Introduced | |||||
-New Jersey | Present | Introduced | |||||
-New Mexico | Present | Introduced | |||||
-New York | Present | Introduced | |||||
-North Carolina | Present | Introduced | |||||
-Ohio | Present | Introduced | |||||
-Oklahoma | Present | Introduced | |||||
-Oregon | Present | Introduced | |||||
-Pennsylvania | Present | Introduced | |||||
-Rhode Island | Present | Introduced | |||||
-South Carolina | Present | Introduced | |||||
-South Dakota | Present | Introduced | |||||
-Tennessee | Present | Introduced | Invasive | ||||
-Texas | Present | Introduced | |||||
-Utah | Present | Introduced | |||||
-Vermont | Present | Introduced | |||||
-Virginia | Present | Introduced | |||||
-Washington | Present | Introduced | |||||
-West Virginia | Present | Introduced | |||||
-Wisconsin | Present | Introduced | |||||
-Wyoming | Present | Introduced | |||||
Oceania |
|||||||
Australia | Present | Present based on regional distribution. | |||||
-New South Wales | Present | Introduced | |||||
-Tasmania | Present | Introduced | |||||
-Victoria | Present | Introduced | |||||
South America |
|||||||
Argentina | Present | Introduced | |||||
Chile | Present | Introduced | 1904 |
History of Introduction and Spread
Top of pageAs a previously very common weed of wheat and especially rye crops, it would have reached maturity at the same time as the crop and thus benefited from harvesting at the appropriate stage in its life cycle to allow its viable seed to contaminate cereal seed lots and thus be dispersed as a contaminant with the cereal seed locally, nationally and even internationally, this probably being the main method of its introduction by early colonists from Europe to North America, Australia and elsewhere.
In the eastern USA, Mack (2003) notes that B. secalinus, along with a number of other agricultural weeds, were widespread but probably not invasive until 1860.
Risk of Introduction
Top of pageAs a cereal seed contaminant difficult to identify and eliminate, the risk of introduction to other regions is high.
Habitat
Top of pageAs an aggressive weed, rye brome invades open, disturbed areas below 1500 m elevation, dry prairies, limestone glades, disturbed grassy meadows, vacant lots, abandoned fields, crop land, field margins, roadsides, railroad tracks and waste places. It is a weed of winter wheat, rye and lucerne fields. This grass species is able to adapt to many soil types, from mesic to dry soils in full sun. It prefers heavy, clay, over-wet and cold soils (Baldwin et al., 2012; Darbyshire, 2003; Saarela and Peterson, 2016; Afonin et al., 2016; Invasive.org, 2016; Tennessee Exotic Pest Plant Council, 2016).
Habitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Cultivated / agricultural land | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Managed forests, plantations and orchards | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Managed grasslands (grazing systems) | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Disturbed areas | Principal habitat | Natural |
Terrestrial | Managed | Rail / roadsides | Principal habitat | Natural |
Terrestrial | Natural / Semi-natural | Natural grasslands | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural grasslands | Principal habitat | Natural |
Hosts/Species Affected
Top of pageRye brome is a noxious weed of cereal crops, especially wheat and rye but also barley, and of grass crops.
Host Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Secale cereale (rye) | Poaceae | Main | |
Triticum aestivum (wheat) | Poaceae | Main |
Biology and Ecology
Top of pageGenetics
B. secalinus is an allotetraploid with a chromosome number of 2n = 28 (Spalton, 2002; Saarela and Peterson, 2016)
Reproductive Biology
B. secalinus is an annual cross-pollinated grass reproducing exclusively by seed (Tennessee Exotic Pest Plant Council, 2016). According to Afonin et al. (2016), one plant can produce up to 5000-6000 caryopsides, although Nádasyné Ihárosi and Nagy (2010) give a figure of 800-1600 seeds per plant.
Physiology and Phenology
Anthesis in B. secalinus takes place from around May to July (Saarela and Peterson, 2016), with fruits produced in July-August. Where it is a weed of cereals, its life cycle coincides with that of the crop (Afonin et al., 2016). In Oklahoma in the south-central USA, rye brome germinates in the autumn (from late August to mid-November), increases its reproductive tillers as it grows vegetatively through the autumn and winter months, initiates its reproductive growth in mid-March, flowers and sets seed in May, and finally matures in early June (Armstrong and Peeper, undated).
Longevity
B. secalinus is an annual plant but has been reported to form a short-term persistent soil seed bank. Seeds are able to survive in soil for over 1 year but less than 5 years (Thompson et al., 1997).
Associations
Predominantly found as a very common and dominant weed of cereal crops (wheat, rye, barley), B. secalinus is also found in association with other grass species. For example, in Taiwan, it has been observed growing together with Dactylis glomerata, Festuca arundinacea, Miscanthus sinensis, Poa annua and Vulpia myuros (Jung et al., 2006).
Environmental Requirements
B. secalinus prefers full sun and mesic to dry conditions. Seeds are able germinate in both natural light and in darkness. Germination ability significantly depends on depth of burial in the soil, with the best germination achieved when diaspores are on the soil surface (Kapeluszny and Haliniarz, 2007).
In the USA, rye brome is common in the eastern portion of the hard red winter wheat and more humid soft red winter wheat regions where the soils are acid sandy or loamy (Peeper, 1984), while in northwestern Russia it has a preference for heavy, clay, over-wet and cold soils, being rare on loam and sandy loam soils (Afonin et al., 2016). However, the grass will adapt to practically any kind of soil, and in areas of exposed open ground it can reseed itself aggressively (Hilty, 2015). In northeastern Poland, where B. secalinus appears to be becoming more frequent in cereal crops, it was observed on all soil types and in all soil-agricultural complexes, but was most frequent in winter cereals on compacted soils with pH values from 5 to 7.5 (Rzymowska et al., 2010).
Climate
Top of pageClimate | Status | Description | Remark |
---|---|---|---|
BS - Steppe climate | Tolerated | > 430mm and < 860mm annual precipitation | |
BW - Desert climate | Tolerated | < 430mm annual precipitation | |
Cf - Warm temperate climate, wet all year | Preferred | Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year | |
Cs - Warm temperate climate with dry summer | Preferred | Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers | |
Cw - Warm temperate climate with dry winter | Preferred | Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters) | |
Ds - Continental climate with dry summer | Preferred | Continental climate with dry summer (Warm average temp. > 10°C, coldest month < 0°C, dry summers) | |
Dw - Continental climate with dry winter | Preferred | Continental climate with dry winter (Warm average temp. > 10°C, coldest month < 0°C, dry winters) |
Latitude/Altitude Ranges
Top of pageLatitude North (°N) | Latitude South (°S) | Altitude Lower (m) | Altitude Upper (m) |
---|---|---|---|
60 | 45 |
Soil Tolerances
Top of pageSoil drainage
- free
- impeded
- seasonally waterlogged
Soil reaction
- acid
- neutral
Soil texture
- heavy
- light
- medium
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Aelia americana | Herbivore | Plants|Leaves | not specific | |||
Ageneotettix deorum | Herbivore | Plants|Leaves | not specific | |||
Arphia simplex | Herbivore | Plants|Leaves | not specific | |||
Chalepus walshii | Herbivore | Plants|Leaves | not specific | |||
Cosmopepla lintneriana | Herbivore | Plants|Leaves | not specific | |||
Eritettix simplex | Herbivore | Plants|Leaves | not specific | |||
Hippiscus ocelote | Herbivore | Plants|Leaves | not specific | |||
Hymenarcys aequalis | Herbivore | Plants|Leaves | not specific | |||
Hymenarcys nervosa | Herbivore | Plants|Leaves | not specific | |||
Melanoplus bivittatus | Herbivore | Plants|Leaves | not specific | |||
Melanoplus confusus | Herbivore | Plants|Leaves | not specific | |||
Melanoplus femurrubrum | Herbivore | Plants|Leaves | not specific | |||
Melanoplus keeleri luridus | Herbivore | Plants|Leaves | not specific | |||
Melanoplus packardii | Herbivore | Plants|Leaves | not specific | |||
Melanoplus sanguinipes | Herbivore | Plants|Leaves | not specific | |||
Mormidea lugens | Herbivore | Plants|Leaves | not specific | |||
Orphulella speciosa | Herbivore | Plants|Leaves | not specific | |||
Oulema melanopus | Herbivore | Plants|Leaves | not specific | |||
Pardalophora haldemanii | Herbivore | Plants|Leaves | not specific | |||
Phoetaliotes nebrascensis | Herbivore | Plants|Leaves | not specific | |||
Syrbula admirabilis | Herbivore | Plants|Leaves | not specific |
Notes on Natural Enemies
Top of pageB. secalinus is a host of wheat High plains virus which has been reported in the USA since 1993 and can cause severe symptoms (stunting, chlorosis and mortality) in both maize and wheat (EPPO, 2016).
The following insect species have been recorded feeding on B. secalinus and other Bromus species:
- Stink bugs (Pentatomidae) Aelia americana, Cosmopepla lintneriana, Hymenarcys aequalis, Hymenarcys nervosa and Mormidea lugens;
- Leaf beetles (Chrysomelidae) Chalepus walshii and Oulema melanopus;
- Grasshoppers (Acrididae) Ageneotettix deorum, Arphia simplex, Eritettix simplex, Hippiscus ocelote, Melanoplus bivittatus, Melanoplus confusus, Melanoplus femurrubrum, Melanoplus keeleri luridus, Melanoplus packardii, Melanoplus sanguinipes, Orphulella speciosa, Pardalophora haldemanii, Phoetaliotes nebrascensis and Syrbula admirabilis.
Additionally, small rodents such as Microtus ochrogaster feed on seeds and foliage of B. secalinus, while immature foliage is eaten by white-tailed deer (Odocoileus virginianus), cattle and other mammalian herbivores. The seeds are also eaten by upland gamebirds and sparrows (Hilty, 2015).
Means of Movement and Dispersal
Top of pageNatural Dispersal
Seeds of B. secalinus can be dispersed short distances by wind.
Vector Transmission (Biotic)
The seeds of B. secalinus are spread by animals and humans because the mature lemmas can cling to fur and clothing (Hilty, 2015). Seeds can also be spread in cattle faeces as they remain viable even after passing through the animals’ digestive tracts (Armstrong and Peeper, undated).
Accidental Introduction
Rye brome has non-shattering seeds that, due to the weed’s similar life-cycle, easily contaminate grain from winter cereal crops. It is, thus, often reintroduced into fields through the use of contaminated cereal seed for sowing (Afonin et. al., 2016). In Canada it has been found in domestic rye (Secale cereale), smooth bromegrass (Bromus inermis), orchardgrass (Dactylis glomerata) and mixed forage seed. It is also found as a contaminant in wheat (Triticum aestivum) grain, more often from eastern Canada than from the west (Canadian Food Inspection Agency, 2015).
Dried B. secalinus plants are used in floral arrangements (Oakes, 1990). In Finland’s Åland Islands, B. secalinus was found in an area used for the disposal of florists’ waste (Carlsson et al., 2014).
Pathway Causes
Top of pageCause | Notes | Long Distance | Local | References |
---|---|---|---|---|
Crop production | spreads as a contaminant of cereal seed | Yes | Afonin et al. (2016) | |
Cut flower trade | Used in flower arrangements. In Finland, found in an area used for the disposal of florists’ waste | Yes | Yes | Carlsson et al. (2014); Oakes (1990) |
Digestion and excretion | seeds can pass through animals’ digestive systems | Yes | ||
Disturbance | Often found in open disturbed areas. | Yes | Yes | Afonin et al. (2016) |
Garden waste disposal | In Finland, found in an area used for the disposal of florists’ waste | Yes | Carlsson et al. (2014) | |
Hitchhiker | Seeds attach to humans and animals | Yes | Hilty (2015) | |
Ornamental purposes | Yes | Yes | Oakes (1990) | |
Seed trade | Principally spread as a contaminant of cereal seed | Yes | Hubbard (1954) |
Pathway Vectors
Top of pageVector | Notes | Long Distance | Local | References |
---|---|---|---|---|
Clothing, footwear and possessions | Yes | Hilty (2015) | ||
Debris and waste associated with human activities | In florists’ waste | Yes | Carlsson et al. (2014) | |
Machinery and equipment | Yes | |||
Plants or parts of plants | Common seed contaminant | Yes | Afonin et al. (2016) | |
Wind | Yes |
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
True seeds (inc. grain) | Yes | Pest or symptoms usually visible to the naked eye |
Impact Summary
Top of pageCategory | Impact |
---|---|
Cultural/amenity | Positive |
Economic/livelihood | Negative |
Environment (generally) | Negative |
Economic Impact
Top of pageB. secalinus occurs as a seed and grain contaminant. In Canada it has been found in domestic rye (Secale cereale), smooth bromegrass (Bromus inermis), orchardgrass (Dactylis glomerata) and mixed forage seed. It is also found as a contaminant in wheat (Triticum aestivum) grain, more often from eastern Canada than from the west (Canadian Food Inspection Agency, 2015).
Rye brome has been a very common and dominant weed of cereal crops in the past, even since prehistoric times; for example, an archaeological find of a rye grain lot from the 17th century in Europe consisted of 12% B. secalinus seed (Witmack, 1888). Recognizing that the weed caused reductions in crop grain yields and compromised the quality of seed for sowing, seed cleaning was adopted early on. One method, existing since the Neolithic (Knörzer, 1971) right up to the present, is based on the difference in terminal velocity between weed and cereal diaspores (Tackenberg, 2001). However, the long-standing use of this method resulted in the inadvertent selection of weeds with diaspore characteristics similar to those of the crop (large, heavy diaspores), which could not then be separated by traditional methods of seed cleaning (Barrett, 1983).
However, with the advent of improved methods of removing contaminants from cereal grain, B. secalinus is now generally in decline as an agricultural weed and is fairly uncommon or rare (Hubbard, 1954). Despite its decline in some regions, B. secalinus is still considered widespread in North America (Barkworth et al., 2007) and a major weed problem in the hard red winter wheat growing areas of the southern Great Plains (Stone et al., 2001). Field studies in Oklahoma have shown yield losses of 28-48% when winter wheat was competing with a 25 plants/m2 average density of B. secalinus (Ontario Ministry of Agriculture, Food and Rural Affairs, 2016).
Seed of B. secalinus is restricted in several US states and is prohibited in India, Taiwan and possibly other countries. Therefore any amount of B. secalinus seed found in grain samples could have negative trade implications (Ontario Ministry of Agriculture, Food and Rural Affairs, 2016).
As a secondary host of High plains virus (EPPO, 2016), the presence of infected B. secalinus can have negative economic effects on cereal crop yields. The presence of the weed, whether infected with the virus or not, has cost implications for its control.
Environmental Impact
Top of pageImpact on Habitats
B. secalinus is an aggressive weed that invades dry prairies, limestone glades and disturbed grassy meadows, displacing native plants (Invasive.org, 2016).
Threatened Species
Top of pageThreatened Species | Conservation Status | Where Threatened | Mechanism | References | Notes |
---|---|---|---|---|---|
Silene spaldingii (Spalding's catchfly) | USA ESA listing as threatened species | Idaho; Montana; Oregon; Washington | Competition - monopolizing resources | US Fish and Wildlife Service (2007) |
Risk and Impact Factors
Top of page- Invasive in its native range
- Proved invasive outside its native range
- Has a broad native range
- Abundant in its native range
- Highly adaptable to different environments
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Pioneering in disturbed areas
- Tolerant of shade
- Benefits from human association (i.e. it is a human commensal)
- Fast growing
- Has high reproductive potential
- Has propagules that can remain viable for more than one year
- Ecosystem change/ habitat alteration
- Negatively impacts agriculture
- Reduced native biodiversity
- Threat to/ loss of native species
- Negatively impacts trade/international relations
- Competition - monopolizing resources
- Pest and disease transmission
- Highly likely to be transported internationally accidentally
- Difficult to identify/detect as a commodity contaminant
- Difficult/costly to control
Uses
Top of pageEconomic Value
B. secalinus has in the past been occasionally utilized for hay in Washington and Oregon, USA (Hitchcock, 1935).
Social Benefit
B. secalinus has been tolerated as a weed in cereal crops up to the early twentieth century and in some countries, such as Poland, where it was used as famine food to make gruel or bread (Luczaj and Szymanski, 2007; Marekovic et al., 2015). Rye brome is also sometimes grown as an ornamental (Oakes, 1990): the dry purplish seed heads are considered attractive on the plant and in dried floral arrangements, and the species is considered a useful ground cover along highways.
Environmental Services
Seed of B. secalinus is a food source for small rodents and birds, while the foliage is eaten by deer and other herbivores (Hilty, 2015).
Uses List
Top of pageAnimal feed, fodder, forage
- Fodder/animal feed
- Forage
Environmental
- Wildlife habitat
Human food and beverage
- Emergency (famine) food
Ornamental
- Cut flower
Similarities to Other Species/Conditions
Top of pageB. secalinus is readily identified when it is in fruit. However before fruiting it is more difficult to distinguish this species from B. racemosus and B. commutatus (Bomble and Scholz, 1999; Spalton, 2002).
According to Parnell (1845), B. secalinus can be distinguished from other Bromus species in the apex of the large glume being situated half-way between the base of the glume and the summit of the second floret on the same side; and in the outer palea being rounded on the upper margin, with the breadth considerably greater than half its length.
In the UK, B. secalinus is often confused with B. hordeaceus and particularly B. commutatus. Diagnostic features of the three species are outlined by Moss (2015). In B. secalinus lower leaf sheaths can be hairless or hairy, but are always hairy in the other two species. Panicles are usually compact in B. hordeaceus but loose in the other two species. Spikelets are hairy or hairless in B. secalinus, but usually softly hairy in B. hordeaceus and hairless in B. commutatus. Mature spikelets of B. secalinus when viewed from the side have visible gaps, but usually no gaps are visible in the other two species. The most reliable diagnostic feature is the cross section of mature seeds, which is a deep V or U shape in B. secalinus but saucer-shaped in B. hordeaceus and B. commutatus.
Tennessee Exotic Pest Plant Council (2016) lists the following species as landscape alternatives that may be confused with B. secalinus: Andropogon ternarius, Calamagrostis canadensis and Chasmanthium latifolium.
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Prevention and Control
Control techniques for B. secalinus are limited, with the main focus being on its control in cereal crops, especially wheat. There is little focus on its removal from natural areas. Effective control measures for the weed in wheat are described in detail by Armstrong and Peeper (undated).
Prevention
The control of rye brome plants growing along borders, fence rows and roadsides before they produce seed can prevent spread into cereal fields. All farm equipment to be used in wheat fields should be cleaned thoroughly to prevent transfer of seed and seedlings (Armstrong and Peeper, undated). Cereal seed needs to be properly cleaned to eliminate B. secalinus and other weed seeds. Hauhouot et al. (1998) showed that rye brome seeds could be devitalized after secondary cleaning using mechanical devices such as hammer and roller mills mounted on the combine harvester. These dehulled the seeds and fractured the seed embryos, thus significantly reducing weed seed germination.
Where B. secalinus has invaded natural areas, cutting and mowing of populations before flowering will reduce the seed bank (Tennessee Exotic Pest Plant Council, 2016).
Cultural Control and Sanitary Measures
Cultural practices that encourage a vigorous winter wheat crop will help it to gain a competitive advantage over rye brome. Tillage can control weed seedlings if done before the wheat crop is sown or established. The wheat seed sown should be brome-free. Increased sowing rates and narrower row spacing help to increase the competitive ability of the wheat. Delaying wheat sowing till after the brome germinates allows seedlings to be destroyed with tillage or herbicides. Deep ploughing can effectively bury brome seed (Armstrong and Peeper, undated).
Crop rotation accompanied by herbicide application has shown increases in total net production of wheat. Stone et al. (2006) found that rotating out of winter wheat for one growing season increased grain yield in the succeeding wheat crop by up to 42%, while dockage due to B. secalinus was reduced by up to 87%.
Although wheat harvesting equipment can be adjusted to discharge a larger proportion of the rye brome seeds back into the field rather than into the grain bin, the concentration of weed seeds left behind can increase the difficulty of controlling infestations (Stone et al., 2001).
Movement Control
B. secalinus is recognized as a noxious weed seed under the US Federal Seed Act. This designation does not allow seed lots with over 300 rye brome seeds per pound of certified seed to be imported into the following states: Alabama, Arkansas, Delaware, Florida, Georgia, Kansas, Louisiana, Mississippi, New Jersey, Oklahoma, South Carolina, Tennessee and Texas. India and Taiwan totally prohibit the importation of B. secalinus (Ontario Ministry of Agriculture, Food and Rural Affairs, 2016).
Chemical Control
As a result of recent advancements in herbicide chemistry, effective herbicides are available for rye brome control in wheat. Several herbicides selectively kill rye brome when applied post-emergence, with minimal if any injury to the wheat. These include propoxycarbazone-sodium, propoxycarbazone-sodium + mesosulfuron-methyl, pyroxsulam and chlorsulfuron + metsulfuron-methyl. Sulfosulfuron can be applied both pre- and post-emergence. Imidazolinone herbicides can be used for rye brome control only with imidazolinone-resistant wheat (Armstrong and Peeper, undated). Using herbicides with different modes of action is important in control regimes to prevent the development of herbicide resistance in weed species. Resistance of B. secalinus biotypes in wheat crops to several Group 2 herbicides (imazamox, propoxycarbazone-sodium, pyroxsulam and sulfosulfuron) has already been reported in Kansas and Oklahoma (Heap, 2016).
As virtually all of these herbicides can control other grassy weed species, their use would be inappropriate in conditions where B. secalinus is growing with mixed native grasses.
Synowiec and Kalemba (2015) reported that essential oil distilled from Heracleum sosnowskyi seeds has potential to be used as a natural herbicide against weeds in maize; even a relatively small dose of 0.2 g/litre caused a significant reduction in germination and seedling growth of B. secalinus.
Gaps in Knowledge/Research Needs
Top of pageMost of the literature regarding B. secalinus concentrates on the species as a weed of cereal crops. There appears to be little research on it as an invasive impacting on natural plant communities and ecosystems, such as the North American prairies, or on its control in these situations.
References
Top of pageAfonin AN, Greene SL, Dzyubenko NI, Frolov AN, 2016. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. Economic Plants and their Diseases, Pests and Weed. http://www.agroatlas.ru
Armstrong J, Peeper TF, undated. Cheat control in Oklahoma winter wheat. Oklahoma Cooperative Extension Service Fact Sheet, PSS-2774, 8 pp. http://www.okrangelandswest.okstate.edu/files/invasive%20species%20pdfs/PSS-2774.pdf
Atlas of Living Australia, 2016. Bromus secalinus L., rye brome. Canberra, ACT, Australia: National Collaborative Research Infrastructure Strategy (NCRIS). http://bie.ala.org.au/species/Bromus+secalinus
AVH, 2015. Australia's Virtual Herbarium. Canberra, ACT, Australia: Council of Heads of Australasian Herbaria. http://avh.chah.org.au/
Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rasatti TJ, Wilken DH, 2012. The Jepson manual: vascular plants of California. Berkeley, California, USA: University of California Press.
Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB, 2007. Grass manual on the Web. Flora of North America, Vol. 24. Logan, Utah, USA: Utah State University. http://herbarium.usu.edu/webmanual/
Barrett SCH, 1983. Crop mimicry in weeds. Economic Botany, 37(3):255-282.
Canadian Food Inspection Agency, 2015. Review of proposed listing of four Bromus species as Class 3 secondary noxious on the Weed Seeds Order of the Seeds Regulations. Ottawa, Ontario, Canada: Canadian Food Inspection Agency, 38 pp. [Information request. PRA Request: 2015-08.] http://cdnseed.org/wp-content/uploads/2015/05/CFIA-Risk-Assessment-Bromus-Species.pdf
Carlsson R, Haeggstrom CA, Sundberg K, 2014. Ruderal vascular plants on a waste ground in the Island of Dano, Aland Islands, SW Finland. Memoranda Societatis pro Fauna et Flora Fennica, 90:55-66.
Clayton WD, Vorontsova MS, Harman KT, Williamson H, 2016. GrassBase - The Online World Grass Flora. Kew, UK: Royal Botanic Gardens. http://www.org/data/grasses-db.html
eMonocot, 2016. eMonocot - an online resource for monocot plants. http://e-monocot.org/
EPPO, 2016. PQR - EPPO Plant Quarantine Data Retrieval System, version 5.3.5. Paris, France: OEPP/EPPO. http://www.eppo.int/DATABASES/pqr/pqr.htm
Flora of China Editorial Committee, 2016. Flora of China. St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria. http://www.efloras.org/flora_page.aspx?flora_id=2
Heap I, 2016. International survey of herbicide resistant weeds. Lawrence, KS, USA: Weed Science Society of America. www.weedscience.com
Hilty J, 2015. Illinois wildflowers. Illinois, USA. http://www.illinoiswildflowers.info/index.htm
Invasive.org, 2016. Rye brome, Bromus secalinus L. Athens, GA, USA: Center for Invasive Species and Ecosystem Health, University of Georgia. http://www.invasive.org/browse/subinfo.cfm?sub=5212
Knorzer KH, 1971. Prehistoric weeds in the Rhineland. A contribution to the genesis of segetal associations. (Urgeschichtliche Unkrauter im Rheinland. Ein Beitrag zur Entstehungsgeschichte der Segetalgesellschaften.) Vegetatio, 23(1-2):89-111.
Moss S, 2015. Identification of brome grasses. Rothamsted Technical Publication, October 2015:4 pp. http://www.rothamsted.ac.uk/sites/default/files/attachments/2015-12-07/Bromes%20Leaflet%20Final%20easy%20read%2011Nov15.pdf
Nadasyne Iharosi E, Nagy V, 2010. Weed knowledge. Veszprem, Hungary: University of Pannonia, 239 pp.
Ontario Ministry of Agriculture Food and Rural Affairs, 2016. Weed profile: chess, Bromus secalinus L. http://www.omafra.gov.on.ca/english/crops/facts/info_chess.htm
Parnell R, 1845. The grasses of Britain. Edinburgh, UK: William Blackwood and Sons, 311 pp.
Royal Botanic Garden Edinburgh, 2016. Flora Europaea, Database of European Plants (ESFEDS). Edinburgh, UK: Royal Botanic Garden Edinburgh. http://rbg-web2.rbge.org.uk/FE/fe.html
Royal Botanic Gardens Kew, 2016. An online resource for the world's plants. Kew, UK: Royal Botanic Gardens. http://wfo.kew.org
Saarela JM, 2008. Taxonomy of Bromus (Poaceae: Pooideae: Bromeae) Sections Bromopsis, Bromus, and Genea in British Columbia, Canada. Journal of the Botanical Research Institute of Texas, 2(1):323-372.
Saarela JM, Peterson PM, 2016. Bromus secalinus, rye brome. Jepson eFlora [ed. by Jepson Flora Project]. http://ucjeps.berkeley.edu/cgi-bin/get_IJM.pl?tid=16283
Synowiec A, Kalemba D, 2015. Composition and herbicidal effect of Heracleum sosnowskyi essential oil. Open Life Sciences, 10(1):425-432.
Tackenberg O, 2001. Methods for assessing differences in degree of dispersal potential of plant species - modelling of wind dispersal potential and rule-based derivation of the potential dispersal distance. (Methoden zur Bewertung gradueller Unterschiede des Ausbreitungspotentials von Pflanzenarten - Modellierung des Windausbreitungspotentials und regelbasierte Ableitung des Fernausbreitungspotentials.) Dissertationes Botanicae, 347:138 pp.
Tennessee Exotic Pest Plant Council, 2016. Bromus secalinus L., rye brome. TN-EPPC invasive exotic pest plants in Tennessee. http://www.tneppc.org/invasive_plants/265
The Plant List, 2013. The Plant List: a working list of all plant species. Version 1.1. London, UK: Royal Botanic Gardens, Kew. http://www.theplantlist.org
USDA-ARS, 2016. Germplasm Resources Information Network (GRIN). National Plant Germplasm System. Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx
USDA-NRCS, 2016. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov/
Wagner WL, Herbst DR, Lorence DH, 2005. Flora of the Hawaiian Islands. Washington DC, USA: Smithsonian Institution. http://botany.si.edu/pacificislandbiodiversity/hawaiianflora/index.htm
WCSP, 2016. World Checklist of Selected Plant Families. Kew, UK: Royal Botanic Gardens. http://apps.kew.org/wcsp/
Witmack L, 1888. About a rye from the Thirty Years' War. (Uber einen Roggen aus dem dreissigjahrigen Krieg.) Jahrbucher DLG, 3:67-76.
Zarzycki K, Szelag Z, 2006. Red list of the vascular plants in Poland. In: Red list of plants and fungi in Poland [ed. by Mirek, Z. \Zarzycki, K. \Wojewoda, W. \Szelag, Z.]. Krakow, Poland: W. Szafer Institute of Botany, 9-20.
Distribution References
Afonin AN, Greene SL, Dzyubenko NI, Frolov AN, 2016. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries. In: Economic Plants and their Diseases, Pests and Weed, http://www.agroatlas.ru
AVH, 2015. Australia's Virtual Herbarium., Canberra, ACT, Australia: Council of Heads of Australasian Herbaria. http://avh.chah.org.au/
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Canadian Food Inspection Agency, 2015. Review of proposed listing of four Bromus species as Class 3 secondary noxious on the Weed Seeds Order of the Seeds Regulations., Ottawa, Ontario, Canada: Canadian Food Inspection Agency. 38 pp. http://cdnseed.org/wp-content/uploads/2015/05/CFIA-Risk-Assessment-Bromus-Species.pdf
Clayton WD, Vorontsova MS, Harman KT, Williamson H, 2016. GrassBase - The Online World Grass Flora., Kew, UK: Royal Botanic Gardens. http://www.org/data/grasses-db.html
eMonocot, 2016. eMonocot - an online resource for monocot plants., http://e-monocot.org/
Royal Botanic Gardens Kew, 2016. An online resource for the world's plants., Kew, UK: Royal Botanic Gardens. http://wfo.kew.org
USDA-ARS, 2016. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx
Wagner WL, Herbst DR, Lorence DH, 2005. Flora of the Hawaiian Islands., Washington DC, USA: Smithsonian Institution. http://botany.si.edu/pacificislandbiodiversity/hawaiianflora/index.htm
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/