Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Vegetation, water infiltration, and soil carbon response to Adaptive Multi-Paddock and Conventional grazing in Southeastern USA ranches.

Abstract

We examine Adaptive Multi-Paddock (AMP) grazed with short grazing events and planned recovery periods and paired ranches using Conventional Continuous Grazing (CG) at low stock density on vegetation, water infiltration, and soil carbon across SE USA. Increased vegetation standing biomass and plant species dominance-diversity were measured in AMP grazed ranches. Invasive perennial plant species richness and abundance increased with AMP grazing in the south, while in the north they increased on CG grazed ranches. Percent bare ground was significantly greater in CG at the Alabama and Mississippi sites, no different at the Kentucky and mid-Alabama sites, and greater on AMP at the Tennessee pair. On average, surface water infiltration was higher on AMP than paired CG ranches. Averaged over all locations, soil organic carbon stocks to a depth of 1 m were over 13% greater on AMP than CG ranches, and standing crop biomass was >300% higher on AMP ranches. AMP grazing supported substantially higher livestock stocking levels while providing significant improvements in vegetation, soil carbon, and water infiltration functions. AMP grazing also significantly increased available forage nutrition for key constituents, and increased soil carbon to provide significant resource and economic benefits for improving ecological health, resilience, and durability of the family ranch.