Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Artificial neural networking to estimate the leaf area for invasive plant Wedelia trilobata.

Abstract

Leaf area are very important parameter for the understanding of growth and physiological responses of invasive plant species under different environmental factors. This study was conducted to build non-destructive leaf area model of Wedelia trilobata that were grown in greenhouse. Regression analysis and artificial neural network (ANN) approaches were used for the development of leaf area model with the help of leaf length and width of 262 plants samples. In selection of best method under both techniques, the lower value of mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and higher value of R2 were considered. According to the results it was found that ANN have higher value of (R2 = 0.96) and lower value of error (MAE = 0.023, RMSE = 0.379, MAPE = 0.001) than regression analysis (R2 = 0.94, MAE = 0.111, RMSE = 1.798, MAPE = 0.0005). It was concluded that error between predicted and actual value was less under ANN. Therefore, ANN model approach can be used as an alternating method for the estimation of leaf area. Through estimation of leaf area, invasive plant growth can predict under different environment conditions.