Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Intergenic spacer single nucleotide polymorphisms for genotyping Amylostereum areolatum (Russulales: Amylostereacea) symbionts of native and non-native Sirex species.

Abstract

In North America Amylostereum areolatum (Chaillet ex Fr.) Boidin is a fungal symbiont associated with both the non-native Sirex noctilio Fabricius (Hymenoptera: Siricidae) and less commonly the native Sirex nigricornis Fabricius (Hymenoptera: Siricidae) woodwasps. The relationship between S. noctilio and A. areolatum constitutes a serious threat to pine plantation in the southern hemisphere. Studies have shown evidence of exchange of symbionts between non-native and native Sirex species. Our objectives were (1) to identify and assemble a panel of rDNA intergenic spacer-single nucleotide polymorphisms (IGS-SNPs) for genotyping strains of A. areolatum symbionts associated with Sirex species in North America, and (2) to develop genetic markers for monitoring the spread of specific A. areolatum haplotypes associated with S. noctilio across regions. The IGS-SNPs panel analyzed included haplotypes B1, B2, D1, D2 (from known IGS type B and D), E, and F. Genetic markers and haplotype-specific primers were designed to detect the IGS haplotypes D and E of A. areolatum. We found that haplotype D was absent in A. areolatum from S. nigricornis in Louisiana, while haplotype E was detected in all A. areolatum from S. nigricornis in Canada and Louisiana. Both haplotype D and E were co-detected in approximately 5% of samples from Canada. The IGS-SNP markers detected specific haplotypes accurately. Observing haplotype D in any A. areolatum from the native S. nigricornis likely indicates the presence of the potentially harmful S. noctilo-A. areolatum complex. The work highlights how IGS-SNPs can help in early detection without direct occurrence/observations of the non-native species of concern.