Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Evaluation of the growth response of arid zone invasive species Salvia verbenaca cultivars to atmospheric carbon dioxide and soil moisture.

Abstract

Although climate change is expected to affect the ecology of many weed species, the nature and scale of these responses is presently not well defined. This presages a suite of potential problems for the agricultural industries. Consequently, we investigated the effects of anticipated climate change on biomass and seed production, for two varieties of wild sage, Salvia verbenaca L. var. verbenaca and Salvia verbenaca var. vernalis Bioss. For the investigation, ambient (400 ppm) and elevated (700 ppm) carbon dioxide conditions, in combination with well-watered (100% field capacity) and drought conditions (60% field capacity), were selected to represent alternative climate scenarios. The alteration in biomass production was represented by a combined measurement of nine variables; plant height, stem diameter, number of leaves, number of branches, leaf area, leaf thickness, shoot biomass, root biomass and dry leaf weight, and fecundity was measured via two variables; 100 seed weight and number of seeds per plant. All biomass measurements were reduced in a drought situation compared with well-watered conditions in ambient carbon dioxide (400 ppm), and each corresponding measurement was greater under elevated carbon dioxide (700 ppm) regardless of water treatment. In contrast, this was not observed for 100 seed weight or number of seeds per plant. Although a similar profile of a reduction in fecundity parameters was observed under drought conditions compared with well-watered conditions in ambient carbon dioxide, there was an increase in seed mass only for var. verbenaca under elevated carbon dioxide in both water treatments. In addition, there was a very small increase in the number of seeds in this species under drought conditions in elevated carbon dioxide, with neither increase in seed mass or seed number being observed in var. vernalis. These results suggest that although future climate change may result in increased competition of both these varieties with desirable plants, their management strategies will need to focus on effects of increased size of the weeds, rather than only attempting to reduce the seed bank holdings.