Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Seed germination of exotic and native winter annuals differentially responds to temperature and moisture, especially with climate change scenarios.

Abstract

Seeds of winter annuals require a summer after-ripening period for dormancy loss and low autumn temperatures for germination. With current and future changes in moisture and temperature, we tested the effects of warming along a relative humidity (RH) gradient on dormancy loss and effects of decreased diurnal temperature range (DTR) on germination. We further reasoned that the effects of changes in these variables would be disproportionate between the exotic and native winter annuals. Seeds of exotic species (Buglossoides arvensis, Lamium purpureum and Ranunculus parviflorus) and co-occurring native species (Galium aparine, Paysonia stonensis and Plantago virginica) were collected in middle Tennessee. After-ripening occurred over a 15-100% RH gradient at 25 and 30°C and germination was tested at 20/10 and 20/15°C. Niche breadth was calculated using Levins' B. Fresh Ranunculus seeds had high germination and those of other species did not. Germination for these species increased with after-ripening, mostly across the RH gradient irrespective of temperature. A decrease in DTR showed mixed results - the extreme being Ranunculus with no germination at 20/15°C. Most exotic species had wider germination niche breadths than native species. With climate change, we suggest that a decrease in DTR may have a larger effect on germination than increasing moisture or warming on dormancy break. Moreover, there is not a clear-cut winner with climate change when we compare exotic versus native species because the responses of our six species were species specific.