Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Invasive weed optimization coupled biomass and product dynamics of tuning soybean husk towards lipolytic enzyme.

Abstract

Waste to the product approach was proposed for tuning environ-threat soybean husk towards lipolytic enzyme by integrating the invasive weed optimization with biomass and product dynamics study. The invasive weed optimization constitutes based on the non-linear regression model results in a 47% enhancement in lipolytic enzyme using the optimization parameters of 7% Sigma Final, 9% exponent; Smax of 5 with a population size of 35 and Max. generations of 99. The biomass dynamic study showcases the dynamic parameters of 0.0239 µmax, 8.17 XLimst and 0.852 RFin values. The product dynamic studies reveal the kinetic parameters of kst, kdiv, PFin, which seem to be equal to -0.0338, 0.0896 and 68.1, respectively. Overall, the present study put forth the zero-waste (soybean husk) to the product (lipolytic enzyme) approach by introducing the novel "Invasive Weed Optimization" coupled with "Biomass and product dynamics" to the bioprocessing field.