Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

SfABCC2 transporter extracellular loops 2 and 4 are responsible for the Cry1Fa insecticidal specificity against Spodoptera frugiperda.

Abstract

Bacillus thuringiensis (Bt) bacteria produce Cry toxins that kill insect pests. Insect specificity of Cry toxins relies on their binding to larval gut membrane proteins such as cadherin and ATP-binding cassette (ABC) transporter proteins. Mutations in ABC transporters have been implicated in high levels of resistance to Cry toxins in multiple pests. Spodoptera frugiperda is an insect pest susceptible to Cry1Fa and Cry1Ab toxins while Mythimna separata is tolerant to Cry1Fa and less susceptible to Cry1Ab. Here, we analyzed the potential role of ABCC2 in determining the susceptibility of S. frugiperda to Cry1Fa and Cry1Ab, by expressing SfABCC2 or MsABCC2 in Hi5 insect cell line and by the systematic replacements of extracellular loops (ECLs) between these two proteins. Expression of SfABCC2 in Hi5 conferred susceptibility to both Cry1Fa and Cry1Ab, in contrast to the expression of MsABCC2 that mediated low toxicity to Cry1Ab and no toxicity to Cry1Fa in agreement with their larvicidal toxicities. The SfABCC2 and MsABCC2 amino acid sequences showed differential residues among ECL1, ECL2, ECL4 and ECL6 loops, while ECL3 and ECL5 share the same primary sequence. The exchange of ECLs between SfABCC2 and MsABCC2 demonstrated that ECL4 and ECL2 contribute to Cry1Fa toxicity, where ECL4 plays a major role. The medium region (named M2) of ECL4 was identified as the most important region of SfABCC2 involved in Cry1Fa toxicity as shown by point mutations in this region. These findings will be helpful to understand the mechanisms of action of Bt toxins in S. frugiperda.