Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Investigating the suitability of fly ash/metakaolin-based geopolymers reinforced with South African alien invasive wood and sugarcane bagasse residues for use in outdoor conditions.

Abstract

The prevailing approach of total clearing to contain the spread of invasive plants (IP) in South Africa is generating enormous lignocellulosic wastes. This study examined the possibility of utilizing these wastes in the production of geopolymer composites for use in outdoor environments. Untreated wood particles from Acacia mearnsii and A. longifolia, as well as sugarcane bagasse residues, were incorporated into a geopolymer matrix developed from a binary precursor system of 75% fly ash and 25% metakaolin. The variables considered included precursor-activator ratio (PA), curing pattern (CP), lignocellulosic material (LM), and alkali concentration (Mcon). The production process was established using a mixed factorial experimental design. PA and CP were considered at 2 levels, while LM and MCon were considered at 3 levels. The density of the boards exceeded 1 g cm-3 and are classified as high-density boards. The boards have comparable sorption properties to the cement-bonded particleboard according to the EN 632-2: 2007 standard. However, only A. longifolia boards produced with 12 M NaOH and PA ratio of 2:1 met the mechanical strength requirements. Thermogravimetric analysis revealed that the boards are thermally stable. These results have shown that South African woody IPs are suitable for geopolymer wood composites, but there is still concern about their durability in the alkaline matrix. Scanning electron microscopy micrographs indicated mineralization of the particles and a partial degradation of hemicellulose was confirmed by Fourier transform infrared spectroscopy. Although the degraded components did not prevent geopolymer setting, there is need to further investigate the extent and means of preventing degradation as this can derail the intended use of the product.