Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Microbiome variability across the native and invasive ranges of the ascidian Clavelina oblonga.

Abstract

Ascidians are prolific colonizers of new environments and possess a range of well-studied features that contribute to their successful spread, but the role of their symbiotic microbial communities in their long-term establishment is mostly unknown. In this study, we utilized next-generation amplicon sequencing to provide a comprehensive description of the microbiome in the colonial ascidian Clavelina oblonga and examined differences in the composition, diversity, and structure of symbiont communities in the host's native and invasive ranges. To identify host haplotypes, we sequenced a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI). C. oblonga harbored a diverse microbiome spanning 42 bacterial and three archaeal phyla. Colonies in the invasive range hosted significantly less diverse symbiont communities and exhibited lower COI haplotype diversity than colonies in the native range. Differences in microbiome structure were also detected across colonies in the native and invasive range, driven largely by novel bacteria representing symbiont lineages with putative roles in nitrogen cycling. Variability in symbiont composition was also observed among sites within each range. Together, these data suggest that C. oblonga hosts a dynamic microbiome resulting from (i) reductions in symbiont diversity due to founder effects in host populations and (ii) environmental selection of symbiont taxa in response to new habitats within a range. Further investigation is required to document the mechanisms behind these changes and to determine how changes in microbiome structure relate to holobiont function and the successful establishment of C. oblonga worldwide.