Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Verbena officinalis Verbenaceae (Lamiales): a new plant model system for phyllotaxis research.

Abstract

Phyllotactic diversity and developmental transitions between phyllotactic patterns are not fully understood. The plants studied so far, such as Magnolia, Torreya or Abies, are not suitable for experimental work, and the most popular model plant, Arabidopsis thaliana, does not show sufficient phyllotactic variability. It has been found that in common verbena (Verbena officinalis L.), a perennial, cosmopolitan plant, phyllotaxis differs not only between growth phases in primary transitions but also along the indeterminate inflorescence axis in a series of multiple secondary transitions. The latter are no longer associated with the change in lateral organ identity, and the sequence of phyllotactic patterns is puzzling from a theoretical point of view. Data from the experiments in silico, confronted with empirical observations, suggest that secondary transitions might be triggered by the cumulative effect of fluctuations in the continuously decreasing bract primordia size. The most important finding is that the changes in the primary vascular system, associated with phyllotactic transitions, precede those taking place at the apical meristem. This raises the question of the role of the vascular system in determining primordia initiation sites, and possibly challenges the autonomy of the apex. The results of this study highlight the complex relationships between various systems that have to coordinate their growth and differentiation in the developing plant shoot. Common verbena emerges from this research as a plant that may become a new model suitable for further studies on the causes of phyllotactic transitions.