Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Complete genome sequencing provides novel insight into the virulence repertories and phylogenetic position of dry beans pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens.

Abstract

Bacterial wilt of dry beans (family Fabaceae) caused by the actinobacterial agent Curtobacterium flaccumfaciens pv. flaccumfaciens is one of the most important diseases threatening edible legume production around the globe. Despite the economic losses due to the bacterial wilt disease, the pathogen has not so far been investigated for its genomic features, pathogenicity determinants, and virulence strategies. Here we present the first complete genome sequence of a highly virulent bacteriocin-producing C. flaccumfaciens pv. flaccumfaciens strain P990. The bacterium has a circular chromosome consisting of 3,736 kbp with the G+C% content of 71.0%. Furthermore, a 147-kbp circular plasmid (pCff1) with 66.1% G+C% content as well as two circular plasmid-like DNAs with sizes of 25 and 22 kbp were detected within the genomic contents of C. flaccumfaciens pv. flaccumfaciens. Phylogenetic analyses revealed that only a few number of Curtobacterium sp. strains deposited in the public databases could be classified within the species C. flaccumfaciens. Comparative genomics of C. flaccumfaciens pv. flaccumfaciens using the genome sequences of actinobacterial plant pathogens revealed the presence of a set of unique low G+C% content genomic islands in the C. flaccumfaciens pv. flaccumfaciens genome. Homologs of pathogenicity-determinant loci capable of producing 1,4-beta-xylanase (xysA), pectate lyase (pelA1 and pelA2), serine protease (chpC, chpG, and pat-1), and sortase (srtA) were detected in C. flaccumfaciens pv. flaccumfaciens genome. The genomic data presented here extend our understanding of the C. flaccumfaciens pv. flaccumfaciens genomic features and pave the ways of research on functional and interaction genetics to combat the risk of bacterial wilt disease in the 21st century's dry bean industry.