Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

The high adaptability of Hyphantria cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response.

Abstract

Hyphantria cunea is one of the most destructive invasive agricultural and forest pests worldwide. In order to better understand the adaptation mechanism of H. cunea larvae to secondary metabolites of their highly diversified host plants, the physiological function and detoxification ability of midgut, as well as the gut microbial community were investigated in H. cunea larvae fed with cinnamic acid-treated artificial diets. Our results showed that cinnamic acid treatment could not affect the growth and food utilization of H. cunea larvae, as evidenced by a non-significantly altered larval body weight and efficiency of conversion of ingested food. Evaluation of oxidative stress-related parameters (e.g. malondialdehyde and hydrogen peroxide) and midgut histopathology also clearly confirmed that cinnamic acid treatment caused no significant oxidative damage and pathological changes in the larval midgut. Variance analysis showed that cinnamic acid treatment significantly increased the content of non-enzymatic antioxidants (ascorbic acid and glutathione), the activity of antioxidant enzymes (superoxide dismutase and peroxidase) and detoxification enzyme (carboxylate esterase), as well as the abundance of several gut microbiota at the genus level (Hydrogenophaga and Acinetobacter) involved in the organic substance degradation in larval midgut. Further Pearson's correlation analysis revealed that these strongly altered gut microbiota at the genus level appeared to be significantly correlated with the detoxification and antioxidation parameters. These findings demonstrate the high adaptability of H. cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response, and indicate the existence of an extremely effective counter-defense mechanism for H. cunea larvae against the secondary metabolites of host plants.