Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Bacterial nucleobases synergistically induce larval settlement and metamorphosis in the invasive mussel Mytilopsis sallei.

Abstract

Marine bacterial biofilms have long been recognized as potential inducers of larval settlement and metamorphosis in marine invertebrates, but few chemical cues from bacteria have been identified. Here, we show that larval settlement and metamorphosis of an invasive fouling mussel, Mytilopsis sallei, could be induced by biofilms of bacteria isolated from its adult shells and other substrates from the natural environment. One of the strains isolated, Vibrio owensii MS-9, showed strong inducing activity which was attributed to the release of a mixture of nucleobases including uracil, thymine, xanthine, hypoxanthine, and guanine into seawater. In particular, the synergistic effect of hypoxanthine and guanine was sufficient for the inducing activity of V. owensii MS-9. The presence of two or three other nucleobases could enhance, to some extent, the activity of the mixture of hypoxanthine and guanine. Furthermore, we determined that bacteria producing higher concentrations of nucleobases were more likely to induce larval settlement and metamorphosis of M. sallei than were bacteria producing lower concentrations of nucleobases. The present study demonstrates that bacterial nucleobases play an important role in larval settlement and metamorphosis of marine invertebrates. This provides new insights into our understanding of the role of environmental bacteria in the colonization and aggregation of invasive fouling organisms and of the metabolites used as chemical mediators in cross-kingdom communication within aquatic systems.