Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Mapping quantitative trait loci for resistance to fall armyworm (Lepidoptera: Noctuidae) leaf-feeding damage in maize inbred Mp705.

Abstract

The fall armyworm, Spodoptera frugiperda (J. E. Smith), is an agronomically important pest that severely limits maize (Zea mays (Linnaeus) [Poales: Poaceae]) production. This migrant insect devastates maize plants in many countries threatening the livelihood of millions. Quantitative trait loci (QTL) were mapped to identify chromosomal regions that control resistance to fall armyworm leaf-feeding and to identify molecular markers linked to the target loci for use in marker-assisted selection (MAS). A bi-parental mapping population, comprising 243 F2:3 families from the cross Mp705 (resistant) Ă— Mp719 (susceptible), was evaluated for fall armyworm leaf-feeding damage under artificial infestation over 3 yr. A linkage map comprised of 1,276 single-nucleotide polymorphism and simple sequence repeat molecular markers was constructed. Quantitative trait loci analyses identified two major QTL in bins 4.06 and 9.03 that when combined, explained 35.7% of the phenotypic variance over all environments. Mp705 was responsible for the leaf-feeding damage reducing alleles for both large effect QTL and most of the small effect QTL identified in this study. The QTL identified in bin 9.03 co-locates with a previously identified QTL that controls resistance to leaf-feeding damage in maize by fall armyworm and other lepidopteran insects. The QTL in bin 4.06 is a new source of resistance identified in this study. Beneficial alleles derived from Mp705 for the application of an integrated QTL-MAS approach could accelerate breeding efforts to minimize fall armyworm leaf-feeding in maize.