Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Landscape ecology of Rhipicephalus (Boophilus) microplus (Ixodida: Ixodidae) outbreaks in the south Texas coastal plain wildlife corridor including man-made barriers.

Abstract

Landscape features and the ecology of suitable hosts influence the phenology of invasive tick species. The southern cattle fever tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodida: Ixodidae), vectors causal agents of babesiosis in cattle and it infests exotic, feral nilgai, Boselaphus tragocamelus Pallas, and indigenous white-tailed deer, Odocoileus virginianus (Zimmerman), on the South Texas coastal plain wildlife corridor. The corridor extends from the Mexico border to cattle ranches extending north from inside Willacy Co. Outbreaks of R. microplus infesting cattle and nondomesticated ungulate hosts since 2014 in the wildlife corridor have focused attention on host infestation management and, by extension, dispersal. However, there is a knowledge gap on the ecology of R. microplus outbreaks in the South Texas coastal plain wildlife corridor. Ixodid distribution on the wildlife corridor is strongly influenced by habitat salinity. Saline habitats, which constitute ≈25% of the wildlife corridor, harbor few ixodids because of occasional salt toxicity from hypersaline wind tides and infrequent storm surges, and from efficient egg predation by mud flat fiddler crabs, Uca rapax (Smith). Rhipicephalus microplus infestations on nilgai were more prevalent in part of the corridor with mixed low salinity and saline areas than in an area that is more extensively saline. The different levels of R. microplus infestation suggest that man-made barriers have created isolated areas where the ecology of R. microplus outbreaks involve infested nilgai. The possible utility of man-made barriers for R. microplus eradication in the lower part of the South Texas coastal plain wildlife corridor is discussed.