Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Does global warming intensify cost of antipredator reaction? A case study of freshwater amphipods.

Abstract

Global warming is a worldwide phenomenon affecting the functioning of diverse ecosystems, including fresh waters. Temperature increase affects physiology and behaviour of ectotherms due to growing energetic demands necessary to sustain increased metabolic rate. Anti-predator responses may resemble temperature-induced changes in organisms, suggesting synergism between these factors. To check how temperature shapes physiological and behavioural responses of ectotherms to predation risk, we exposed amphipods: Dikerogammarus villosus and Gammarus jazdzewskii to fish kairomones at 10, 17 or 24°C. Animals were placed in tanks where temperature was gradually adjusted to the desired test temperature and acclimated under such conditions for 3 subsequent days. Then they were exposed to the predator cue (the Eurasian perch kairomone) for 35 min to test their acute responses. We measured metabolic rate (as respiration), antioxidant defence (CAT: catalase activity, TAS: total antioxidant status), oxidative molecules (TOS: total oxidative status), oxidative damage (TBARS: thiobarbituric acid reactive substances) and behaviour (locomotor activity). Amphipods increased respiration with raising temperature and when exposed to predation risk (all temperatures). Only G. jazdzewskii exhibited increased TOS when exposed to 24°C or to predation risk at all temperatures. Antioxidant defence increased with raising temperature (CAT, TAS) and decreased under predation risk (CAT). Cellular damage increased in G. jazdzewskii under predation risk at 10 and 24°C, but raised temperature itself did not generate any damage. Amphipods reduced locomotor activity at 24°C. Thus, at elevated temperatures, amphipods minimized their cellular damage at the cost of increased antioxidant defence and lower locomotor activity (potentially disadvantageous under higher energetic demands). Under predation risk, the performance of antioxidant systems was reduced, probably due to energy allocation into anti-predatory mechanisms, leading to increased cellular damage at suboptimum temperatures. Thus, negative consequences of elevated temperature for organisms may be amplified by changes in behaviour (compromising food acquisition) and non-consumptive predator effects.