Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Modeling the interactive effects of nutrient loads, meteorology, and invasive mussels on suitable habitat for Bighead and Silver Carp in Lake Michigan.

Abstract

Anthropogenic stressors that affect ecological processes in the Laurentian Great Lakes can impact their susceptibility to bioinvasions. Bighead Hypophthalmichthys nobilis and Silver Carp H. molitrix, collectively 'bigheaded carps' (BHC), are planktivorous fishes threatening to invade Lake Michigan. While previous studies indicate the lake contains habitat suitable for BHC growth, there is a need to understand how anthropogenic-driven changes to the abiotic and biotic environment could alter its vulnerability to BHC. We applied a spatially explicit model of BHC growth rate potential (GRP; g g-1 d-1) to nine biophysical model scenarios to evaluate changes in habitat suitability in Lake Michigan. Scenarios differed in meteorology (cool, reference, warm), annual tributary phosphorus loads (0, 3300, and 5600 MTA), and the presence/absence of invasive dreissenid mussels. Mussel effects on BHC GRP relied on their contact with the surface mixed layer (SML), the depth of which was affected by meteorology. The warm year advanced the expansion of Bighead Carp habitat by increasing temperature-dependent foraging rates and lessening the time of competitive interaction with mussels due to earlier stratification separating mussels from the SML. Phosphorus loads were the most influential driver of the lake's suitability. Compared to present conditions, we estimate BHC could have grown an additional 8-40% annually in the 1980s when mussels were not in the lake and phosphorus loads were higher. Our study demonstrates how climate change and nutrient enrichment can increase Lake Michigan's vulnerability to BHC by affecting thermal regime and productivity, thereby limiting negative effects of dreissenid mussels on BHC growth.