Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

A new lineage of crayfish-infecting microsporidia: the Cambaraspora floridanus n. gen. n. sp. (Glugeida: Glugeidae) complex from floridian freshwaters (USA).

Abstract

Crayfish are a vital ecological asset in their native range but can be highly damaging as invasive species. Knowledge of their diseases, including high levels of research on Aphanomyces astaci (crayfish plague), show that disease plays a vital role during crayfish invasions. Microsporidian diseases in crayfish are less studied but are thought to have important links to crayfish health and invasion dynamics. In this study we provide a systematic description of a novel microsporidian parasite from the Floridian crayfish, Procambarus paeninsulanus, with additional genetic identification from related Microsporidia from Procambarus fallax, Cambarellus shufeldtii and Cambarellus blacki. This novel microsporidium from P. paeninsulanus is described in a new genus, Cambaraspora, and species, Cambaraspora floridanus, and represents a novel member of the Clade V Microsporidia within the Glugeidae. The parasite develops in the muscle tissue of P. paeninsulanus, within a sporophorous vesicle, and produces a spore with 19-21 turns of the polar filament measuring 6.136 ± 0.84 µm in length and 2.12 ± 0.23 µm in width. The muscle-infecting nature of the parasite suggests that it is horizontally transmitted. Genetic data for the 18S of the parasite from all hosts confirms its assignment to Clade V and reveal it to be a relative of multiple fish-infecting parasites. It shows closest genetic relationship to Glugea plecoglossi, but branches alongside multiple microsporidia from fish, crustaceans and eDNA isolates. The information presented here suggests that this novel parasite may have the potential to infect piscine hosts and is a likely mortality driver in the P. paeninsulanus population. Its potential as a control agent or wildlife disease invasion threat is explored, as well as the placement of this novel microsporidium within the Glugeidae.