Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Three novel Ambrosia Fusarium Clade species producing clavate macroconidia known (F. floridanum and F. obliquiseptatum) or predicted (F. tuaranense) to be farmed by Euwallacea spp. (Coleoptera: Scolytinae) on woody hosts.

Abstract

The Ambrosia Fusarium Clade (AFC) comprises at least 16 genealogically exclusive species-level lineages within clade 3 of the Fusarium solani species complex (FSSC). These fungi are either known or predicted to be farmed by Asian Euwallacea ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in the tribe Xyleborini as a source of nutrition. To date, only 4 of the 16 AFC lineages have been described formally. In the absence of Latin binomials, an ad hoc nomenclature was developed to distinguish the 16 species lineages as AF-1 to AF-16. Herein, Fusarium species AF-3, AF-5, and AF-7 were formally described as F. floridanum, F. tuaranense, and F. obliquiseptatum, respectively. Fusarium floridanum farmed by E. interjectus on box elder (Acer negundo) in Gainesville, Florida, was distinguished morphologically by the production of sporodochial conidia that were highly variable in size and shape together with greenish-pigmented chlamydospores. Fusarium tuaranense was isolated from a beetle-damaged Paŕa rubber tree (Hevea brasiliense) in North Borneo, Malaysia, and was diagnosed by production of the smallest sporodochial conidia of any species within the AFC. Lastly, F. obliquiseptatum was farmed by an unnamed ambrosia beetle designated Euwallacea sp. 3 (E. fornicatus species complex) on avocado (Persea americana) in Queensland, Australia. It uniquely produces some clavate sporodochial conidia with oblique septa. Maximum likelihood analysis of a multilocus data set resolved these three novel AFC taxa as phylogenetically distinct species based on genealogical concordance. Particularly where introduced into exotic environments, these exotic mutualists pose a serious threat to the avocado industry, native forests, and urban landscapes in diverse regions throughout the world.