Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Abstract

Presence of Vibrio mediterranei associated to major mortality in stabled individuals of Pinna nobilis L.

Abstract

A major epizootic event attributed to Haplosporidium pinnae leading to 100% mortality of Pinna nobilis L. populations along Mediterranean coastlines started in the fall of 2016. As a result, a project to rescue 221 adult individuals of the endangered pen shell, Pinna nobilis was conducted in November 2017 in the two areas of the Spanish coast where the species was still abundant and apparently free from infection by H. pinnae: Port Lligat in the Costa Brava, and the Alfacs Bay in the Ebro Delta. For biosecurity reasons, the 106 individuals from the Ebro Delta were stabled at the IRTA facilities located next to Alfacs Bay, whereas the 115 individuals from Port Lligat were stabled in different institutions throughout the Spanish territory. Initial biopsies showed that individuals from the Ebro Delta were free of the parasite, whereas most individuals from Port Lligat were already parasitized and died in the following months. Individuals at IRTA were hold in five tanks and fed ca. 4% of their dry weight with a mix of three species of phytoplankton and fine riverine sediments (13% OM). Seawater was filtered through 10, 5 and 1 μm to ensure the absence of the parasite and disinfected with UV light. No individuals died during the 4 initial months of captivity, but two died in April-May at temperatures from 17 to 19°C. A peak of mortalities occurred during the summer months and early fall (53%) with maximums coinciding with temperatures above 25°C. Individuals were again analyzed by PCR and histology for the presence of H. pinnae, Mycobacteria sp., and other locally important pathogens of commercial bivalves (Vibrio splendidus, V. aestuarianus and Herpesvirus OsHV-1 microVar), and therefore considered as potential pathogens of pen shells. However, with the exception of 3 individuals that were positive for Mycobacteria sp., results were all negative for the studied pathogens. Microbiological culture and isolation of bacteria from three moribund individuals, sacrificed for study purposes, showed V. mediterranei as the dominant species, and further PCR analyses confirmed the presence of the bacterium in ten deceased individuals. Overall, our results suggest the V. mediterranei is an opportunistic pathogen of stabled individuals possibly subjected to stress from captivity, and that antibiotic treatment (Florfenicol) combined with vitamins and mineral supplementation and reduction of water temperature (15 to 18°C), can be used to mitigate (not to eradicate) the disease. Further research is needed to determine diets and stabling conditions that minimize captivity stress and prevent the emergence of the disease.